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Disagreement over the nature of mathematics

A corpus of absolute truths, independent of 
the human mind (Platonism):
« I believe that mathematical reality lies 
outside us, that our function is to discover or 
observe it, and that the theorems which we 
prove, and which we describe grandiloquently 
as our “creations,” are simply our notes of our 
observations » (Hardy)
A creation of the human brain
« “Mathematical objects” correspond to 
physical states of our brain » (Jean-Pierre 
Changeux)



Two problems
in the philosophy of mathematics

The problem of  its “absolute truth“
“Mathematics takes us into the region of absolute 

necessity, to which not only the actual word, but 
every possible word, must conform.” (Bertrand 
Russell)

How does a finite and fallible human brain come to know 
some absolute mathematical truths, agreed upon by 
all, and seemingly waiting for their discovery since all 
eternity?

The problem of its « unreasonable effectiveness in 
the natural sciences » (Wigner)

“How is it possible that mathematics, a product of 
human thought that is independent of experience, fits 
so excellently the objects of physical reality?”
(Einstein). 



The origins of mathematics in a 
cognitive neuroscience perspective

Why are we the only species capable of mathematics? 
Humans may possess a unique ability to mobilize in a 
top-down manner and reconnect in novel ways their 
evolutionary ancient brain processors. As a result: 

- arbitrary symbols can be attached to quantities and 
other non-verbal concepts

- disparate concepts can be integrated into an over-
arching framework (e.g. the number-space metaphor)

During its evolution, our primate brain has 
been endowed with elementary 
representations that are adequate to certain 
aspects of the external world. 
These internalized representations of space, 
time and number, shared with many animal 
species, provide the foundations of 
mathematics. 



Mathematical reality 
from a cognitive neuroscience 
perspective: « absolute truth »

However, their cultural construction is fuzzy and chaotic
“Mathematics is not a careful march down a well-cleared highway, but a 

journey into a strange wilderness, where the explorers often get lost. 
Rigour should be a signal to the historian that the maps have been 
made, and the real explorers have gone elsewhere.“ (W.S. Anglin)
Intuition plays an essential role  in the invention of mathematics:

“Even though pure mathematics could do without it, it is always 
necessary to come back to intuition to bridge the abyss [that] 
separates symbol from reality.” (H. Poincaré, La logique et l’intuition, 
1889; cited by P. Gallison, 2003)

The ultimate products of mathematics are so 
tightly constrained by the pre-existing structure 
of our mental representations that they appear to 
us as a rigid body of absolute truths.



Mathematical reality 
from a cognitive neuroscience 

perspective:
« unreasonable effectiveness »

Mathematicians constantly create new mathematical 
“objects”, many of which are not adapted to the external 
physical world
Some are adapted, however, because
– They are founded on basic representations which have proven 

useful during evolution (e.g. sense of number, space, time)
– Mathematicians and physicists keep selecting them for their 

explanatory adequacy
"There is nothing mysterious, as some have tried to maintain, about 

the applicability of mathematics. What we get by abstraction from 
something can be returned." (R.L. Wilder)



The Distance Effect in number comparison
(first discovered by Moyer and Landauer, 1967)
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Dehaene, S., Dupoux, E., & Mehler, J. (1990). Journal of Experimental Psychology: Human Perception and Performance, 16, 626-641.
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Previous studies of number sense and 
the horizontal segment of the intraparietal sulcus (HIPS)
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HIPS

Axial slice

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). 
Cognitive Neuropsychology

• All numerical tasks activate this region
(e.g. addition, subtraction, comparison, approximation, digit detection…)

• This region fulfils two criteria for a semantic-level representation:
-It responds to number in various formats (Arabic digits, written or spoken words), more than to 
other categories of objects (e.g. letters, colors, animals…)
-Its activation varies according to a semantic metric (numerical distance, number size)



Lesions causing acalculia in adults

Parietal dysfunction causes impairments in number sense

Dyscalculic adults born pre-term 
show missing gray matter in the 
intraparietal sulcus, compared to 
non-dyscalculic pre-term controls.

(Isaacs et al., 2001)

Turner’s syndrome (monosomy 45-X) is frequently 
associated with dyscalculia. We found that a group 

of Turners girls showed both structural and 
functional alterations in the intraparietal sulcus

(Molko et al., 2003)

Anomalies correlated with developmental dyscalculia in children



Manual tasks
(grasping, pointing) Visuo-spatial tasks

(pointing, grasping, 
saccades, attention 

Grasping

Saccades

Calculation only

Numerical and visuo-spatial maps in the parietal lobe
(Simon et al., Neuron 2002, Neuroimage 2004)

Monkey brain

V6a



Number neurons in the monkey
(Nieder, Freedman & Miller, 2002; Nieder & Miller, 2003, 2004, 2005)

Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297(5587), 1708-1711.
Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude. Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149-157.

Anatomy

Proportion of 
numerosity-

related neurons

1 2 84 16…

Internal logarithmic scale : log(n)

The Dehaene-Changeux (1993) model:
Coding by Log-Gaussian numerosity detectors

Task:
same-different judgement
with small numerosities

(log scale)
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Stimulus of numerosity n

Internal logarithmic scale : log(n)

1. Coding by Log-Gaussian numerosity detectors
1 2 84 16…

2. Application of a criterion and formation of two pools of units
Criterion c

Pool favoring R1 Pool favoring R2

3. Computation of log-likelihood ratio by differencing
Pool favoring R2

Pool favoring R1
- LLR for R2 over R1

4. Accumulation of LLR, forming a random-walk process

Trial 1 Trial 2 Trial 3

Mean Response Time

Starting
point of 

accumulation

Decision
threshold for R2

Time

Decision
threshold for R1

From numerosity detectors to 
numerical decisions:

Elements of a mathematical
theory

(S. Dehaene, Attention & Performance,
2006, in press)

Response in simple arithmetic tasks:
-Larger or smaller than x?
-Equal to x?



Example: Which of two numerosities is the larger?
Data from Cantlon & Brannon (2006)

Crucial hidden variable:

Amount of information 
accumulated per unit of 
time

Varies linearly with the 
difference in the logarithm
of the two numbers

difference in the logarithm of the two numbers

Subjects = monkeys
Stimuli = sets of dots



Regions responding to a change in number

L R

Does human IPS contain number neurons?
fMRI adaptation reveals Log-Gaussian turning

in the human intraparietal sulcus
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A basic dorsal-ventral organization for shape vs number

L R

L R

Shape change > Number change

Number change > Shape change

Improved FMRI adaptation design by 
Cantlon, Brannon et al. (PLOS, 2006)

This organization is already present
in four-year-olds



4

Do infants show numerosity adaptation and recovery? 
(Izard, Dehaene-Lambertz & Dehaene, submitted)
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1500 ms

2 x 2 design : numerosity and/or object change

3 pairs of numerosities:
4 vs 8  ;   4 vs 12  ;  2 vs 3

Twelve 3-4 month-old infants in each group



Number Change Object Change
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A basic dorsal / ventral organization in 3-4 month old infants:

Right parietal response to number, left temporal response to objects

Left temporal



left hemisphere right hemisphere

quantity
representation

quantity
representation

visual
form

verbal
code

visual
form

high-level
control

high-level
control

Attaching symbols to quantities:
The triple-code model of number processing

3/three/
Arabic code

Arabic reading and writing 
multidigit calculations

Quantity code
Number comparison; Proximity judgment; Approximation 

Quantity manipulations (e.g. subtraction)

Verbal code
Spoken comprehension and production 

rote tables (e.g. multiplication)



An fMRI study of cross-notation adaptation 

Deviants in 
different notation

Deviants in same
notation 18
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• Do the same neurons code for the symbol 20 and for twenty dots?
Piazza, Pinel and Dehaene, Neuron 2007



The numerosity representation may be changed by learning symbols

They cease to increase in width with number

After learning, in the same neurons…

Non-symbolic input Symbolic input

The numerosity tuning curves become narrower

Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. 
J Cogn Neurosci, 16(9), 1493-1504.



Which of two Arabic numerals is the larger?

52
84

31
99

larger or 
smaller

than 65 ?

smaller larger

Subjects = humans
Stimuli = Arabic numerals

linear difference between the two numbers Amount of information 
accumulated per unit of time

linear difference
between the two numbers

Performance depends on the linear
difference of the two numbers



Non-symbolic and symbolic comparison within the same subjects

Non-symbolic comparison Symbolic comparison

Standard 25

Standard 55

Standard 25

Standard 55

10 human adults compared sets of dots or Arabic numerals to a fixed reference, either 25 or 55

Conclusion

The number representation
is profoundly different for 
symbolic and non-symbolic
numbers:

-Exact, not approximate
representation

-Linear, not logarithmic
representation

Amount of information accumulated per unit of time

Amount of information accumulated per unit of time



Development of the linear understanding of number
(Siegler & Opfer, 2003)

1 100

Do children know how 
numbers map onto space?

« Thermometer » tasks:

Where should number n go? 

Stimulus number

Position 
selected

Linear in
6th graders 
and adults

Logarithmic in 
2nd and 4th graders

A major change occurs during
mathematical education : switch

from a logarithmic to a linear
understanding of number



Numerical cognition 
without words in the 

Munduruku
Pica, Lemer, Izard, & Dehaene, Science, 2004

pug ma = one
xep xep = two
ebapug = three
ebadipdip = four
pug põgbi = one hand
xep xep põgbi = two hands
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ade/ade ma = many, really many
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Success in approximate addition and comparison

Pica, Lemer, Izard, & Dehaene, Science, 2004

All Munduruku

French subjects

Distance between numbers
(Ratio of n1+n2 and n3)

Percent success
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Failure in 
exact subtraction of 

small quantities

Pica, Lemer, Izard, & Dehaene, Science, 2004

Magnitude of n1

Percent success
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Logarithmic Number-Space mapping in the Munduruku

The Munduruku do not have 
any measuring system.

-Can they do the 
thermometer task?

- Would they show a 
logarithmic bias even in the 

range 1 through 10?



Core knowledge of geometry

Stanislas Dehaene, Véronique Izard, 
Pierre Pica, Elizabeth Spelke

Core knowledge of geometry in an 
Amazonian indigene group

Science, January 2006

Is geometry
also part of our evolutionary heritage,

much like number sense is?
Place cells

Head direction cells

Grid cells

Animal navigation abilities











Core concepts of geometry are available to uneducated, monolingual Munduruku indians

Convex shape

Geometrical figures (79% correct)

Quadrilateral Right-angled
triangle

CircleEquilateral
triangle

SquareRectangleParallelogramTrapezoid

Alignment of points in lines

Euclidean geometry (84% correct)

Straight line Right angleCurve Parallel lines Secant lines

Topology (76% correct)

HolesConnexityClosureInside

Symmetrical figures (67% correct)

Vertical axis Horizontal axis Oblique axis

Chiral figures (56% correct)

Vertical axis (88% correct) Oblique axis (23% correct)

Center of 
circle

Distance

Metric properties (62% )

Middle of
segment

Center of
quadrilateral

Equidistance Increasing
distance

Fixed proportion

Geometrical transformations (35%)

Translation Point symmetrySymmetry (horizontal, vertical or oblique) RotationHomothecy
(fixed orientation)

Homothecy
(fixed size)
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Environment

hidden object

Colored box 
(landmark)

1

2

White 
box

White 
box

The Munduruku can use geometrical relations in a « map »

72.6% 
Rotated

70.6% 
Allocentric

71.0% 
Egocentric
Success regardless of map orientation

2: landmark, isosceles

4: no landmark, isosceles3: no landmark, rectangle 

82.8% 

51.6% 

48.4% 

1: landmark, rectangle 

81.7% 

67.7% 

67.7% 

91.4% 

61.3% 

51.6% 

71.0% 

74.2% 

64.5% 
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The geometrical intuitions of Munduruku indians correlate with
those of American children and adults



Is our core knowledge of geometry inherently Euclidean?

Or is Euclidean geometry just more ‘convenient’?

A B

C

A B

C
“Through natural selection, our mind 
has adapted to the conditions of the 
external world, […] it has adopted 
the geometry most advantageous to 
our species; or, in other words, the 
most convenient.”
Henri Poincaré, La science et 
l’hypothèse

Are the Munduruku’s geometrical intuitions Euclidean?
• Euclid included in his geometry an ‘ugly’ fifth postulate, which boils down to stating 
that in any triangle, the sum of the angles is always π or 180°.

• Saccheri (1733), Lobatchevsky (1829), Bolyai (1832), and Gauss explored the 
‘imaginary geometry’ obtained by contradicting Euclid’s fifth postulate

• Riemann, Beltrami, Poincaré finally proved that this ‘non-Euclidean’ geometry is 
consistent by providing simple models of hyperbolic and elliptic geometry.



This is a place where the land is very flat.
You can see two villages. From this village here, you can see two paths.



One of the paths leads straight to the other village.



At the other village too, there are two paths. The two green paths go straight to 
another village. I would like to tell me where those two paths lead. Show me where is
the other village. Also show me how the two paths look like at this village.



This is a place where the land is very curved and round.
You can see two villages. From this village here, you can see two paths.



One of the paths leads straight to the other village.



At this village too, there are two paths.



The two green paths go straight to another village. I would like to tell me where those
two paths lead. Show me where is the other village. Also show me how the two paths
look like at this village.



Two response
modes

-indicate angle with
the two hands 
(angle measured by 
the experimenter)

-indicate the angle 
directly by 
manipulating the 
goniometer



Sum of angles 
reported by the 

Munduruku

Plane trials Sphere trials

Sum of angles predicted by non-Euclidean geometry
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mean =
3.22

mean =
3.06

overall
mean =

3.14 ≈ π !

Report with hands

Report with goniometer

Conclusion:

• Once presented with
the appropriate
‘mental model’, we
all have intuitions of 
both Euclidean and 
non-Euclidean
geometries.

• However, intuitions 
of Euclidean
geometry seem to be
more immediate



Conclusion:
Mathematics is a cultural 
construction based on a 

universal biological
endowment

The foundations of any mathematical
construction are grounded on 
fundamental intuitions such as notions 
of set, number, space, time or logic, 
deeply embedded in our brains.

Mathematics can be characterized as 
the progressive formalization of these
intuitions. 

Its purpose is to make them more 
coherent, mutually compatible, and 
better adapted to our experience of the 
external world.

Children come to school with strong 
mathematical intuitions that can be 
used as a support for learning of more 
advanced material


