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Summary of preceding talks:
The brain mechanisms of reading

and elementary arithmetic
• Human cultural inventions are based 

on the recycling (or reconversion) of 
elementary neuronal mechanisms 
inherited from our evolution, and 
whose function is sufficiently close to 
the new one.

• Why are we the only primates capable 
of cultural invention?
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A classical solution: new « modules »
unique to the human brain

• Michael Tomasello (The cultural origins of human cognition, 2000)
« Human beings are biologically adapted for culture in ways that other primates 

are not. The difference can be clearly seen when the social learning skills of 
humans and their nearest primate relatives are systematically compared. The 
human adaptation for culture begins to make itself manifest in human 
ontogeny at around 1 year of age as human infants come to understand other 
persons as intentional agents like the self and so engage in joint attentional
interactions with them. This understanding then enables young children to 
employ some uniquely powerful forms of cultural learning to acquire the 
accumulated wisdom of their cultures »

• “Theory of mind” and “language” abilities certainly play an important role in 
our species’ pedagogical abilities, and therefore the transmission of culture

• However, they do not begin to explain our remarkably flexible ability for 
cultural invention cutting across almost all cognitive domains. Another 
design feature is needed.



The theory of a global workspace

• In addition to the processors that we inherited from our primate evolution, 
the human brain may possess a well-developed non-modular global 
workspace system, primarily relying on neurons with long-distance axons 
particular dense in prefrontal and parietal cortices

• Thanks to this system, 
- processors that do not typically communicate with one another can 

exchange information

- information can be accumulated across time and across different processors
- we can discretize incoming information arising from analog statistical inputs
- we can perform chains of operations and branching

• The resulting operation may (superficially) resemble the operation of a 
rudimentary Turing machine



The Turing machine:
a theoretical model of mathematical operations

• We may compare a man in the process of computing a real number to 
a machine which is only capable of a finite number of conditions q1, 
q2, … qR which will be called « m-configurations ». 

• The machine is supplied with a « tape » (the analogue of paper) running 
through it, and divided into sections (called « squares ») each capable of 
bearing a « symbol ».

• At any moment, there is just one square, say the r-th, bearing the 
symbol S(r), which is « in the machine ». We may call this square the  
« scanned square ». The symbol on the scanned square may be called
the « scanned symbol ». The « scanned symbol » is the only one of 
which the machine is, so to speak, « directly aware ». (...)

• The possible behaviour of the machine at any moment is determined by 
the m-configuration qn and the scanned symbol S(r). [This behaviour is
limited to writing or deleting a symbol, changing the m-configuration, 
or moving the tape.]

• It is my contention that these operations include all those which are 
used in the computation of a number.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., 42(230-265).
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The essential features of the Turing machine

Turing makes a number of postulates concerning the human brain.
• Mental objects are discrete and symbolic
• At a given moment, only a single mental object is in awareness
• There is a limited set of elementary operations (which operate 

without awareness)
• Other mental operations are achieved through the conscious

execution of a series of elementary operations (a serial algorithm)

The Church-Turing thesis:
• Any function that can be computed by a human being can be 

computed by a Turing machine

During his career, Turing himself kept a distanced attitude with this thesis :
• On the one hand, he attempted to design the first “artificial intelligence” programs (e.g. 

the first Chess program) and suggested that the behavior of a computer might be 
indistinguishable from that of a human being (“Turing test”).

• On the other, he did not exclude that the human brain may possess “intuitions” (as 
opposed to mere computing “ingenuity”) and envisaged an “oracle-machine” that would 
be more powerful that a Turing machine
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The fate of the computer metaphor 
in cognitive science and neuroscience

• The concepts of Turing machine and of information processing have played a 
key role at the inception of cognitive science

• Since the sixties, cognitive psychology has tried to define the algorithms used by 
the human brain to read, calculate, search in memory, etc.

• Some researchers and philosophers even envisaged that the brain-computer 
metaphor was the “final metaphor” that “need never be supplanted”, given that 
“the physical nature [of the brain] places no constraints on the pattern of thought”
(Johnson-Laird, Mental models, 1983)

• However, the computer metaphor turned out to be unsatisfactory:
– The most elementary operations of the human brain, such as face recognition 

or speaker-invariant speech recognition, were the most difficult to capture by a 
computer algorithm

– Conversely, the most difficult operations for a human brain, such as computing 
357x456, were the easiest for the computer.



The human brain:
A massively parallel machine

~10      neurons

~10      synapses

11

15



For basic perceptual and motor operations,
computing with networks and attractors

provides a strong alternative to the computer metaphor

Model of written word recognition
(McClelland and Rumelhart, 1981)

Model of face recognition
(Shimon Ullman)

- Mental objects are coded as graded activation levels, not discrete symbols
-Computation is massively parallel



The Distance Effect in number comparison
(first discovered by Moyer and Landauer, 1967)

52
84

31
99

larger or 
smaller

than 65 ?

smaller larger

Dehaene, S., Dupoux, E., & Mehler, J. (1990). Journal of Experimental Psychology: Human Perception and Performance, 16, 626-641.
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Even mathematical operations – the very domain that inspired Turing –
do not seem to operate according to classical computer algorithms



Do Turing-like operations bear no relation 
to the operations of the human brain?

This conclusion seems paradoxical, given the wide acceptance of the Church-
Turing thesis in mathematics.

However...
• When we perform complex calculations, our response time is well predicted 

by the sum of the durations of each elementary operation, with appropriate 
branching points

• In some tasks that require a conscious effort, the human brain operates as a 
very slow serial machine.

• In spite of its parallel architecture, it presents a « central stage » during which 
mental operations only operate sequentially.



On the impossibility of executing two tasks at once
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Pashler (1984) :
-only « central operations » are serial

- perceptual and motor stages run in parallel

Target T2
2

P2

timeStimuli 1 and 2

P1 C1 M1

Response
1

M2

Response
2

slack time

Task 2

Task 1

Target T1

Target T2

Response 1

Response 2
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Slowing the P stage 
by presenting
numerals in Arabic
or in verbal notation

Sigman and Dehaene, PLOS Biology, 2005



Event-related potentials dissociate parallel and serial 
stages during dual-task processing

Subjects were engaged in a 
dual-task:

-number comparison of a visual
Arabic numeral with 45, 
respond with right hand

-followed by pitch judgment on 
an auditory tone, respond with
left hand
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Locating the sites of processing bottlenecks:
parieto-prefrontal networks

Dux, Ivanoff, Asplund & Marois, Neuron, 2007

PRP

VSTM/MOT

Att. Blink

Marois & Ivanoff, TICS, 2005
review of imaging studies of bottleneck tasks



Target T1

P1 C1 M1

When both T1 and T2 are briefly presented and 
followed by a maks, participants who perform a 
task on T1 may fail to report or even perceive
the presence of T2.

Task 1

C2P2 M2X Percentage of perceived stimuli

Time interval between stimuli

Target T2 (masked)

The central stage is associated with conscious processing

The « attentional blink » phenomenon

J. Raymond, K. Shapiro, J. Duncan, C. Sergent



Conscious access and non-conscious processing
during the attentional blink

Sergent, Baillet & Dehaene, Nature Neuroscience, 2005
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Sergent et al., Nature Neuroscience, 2005
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Timing the divergence between seen and not-seen trials
in the attentional blink (Sergent et al., Nature Neuroscience 2005)
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The cerebral mechanisms of this central limitation:
a collision of the N2 and P3 waves

Dehaene, Baillet et Sergent, Nature Neuroscience 2005
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Sources of the difference between seen and unseen trials
Middle temporal

Inferior frontal

Dorsolateral prefrontal

seen
not seen

t = 300 ms

t = 436 ms

Activation in event-related potentials:
Sergent, Baillet & Dehaene, Nature Neuroscience, 2005

seen
not seen
absent

fMRI activation to a seen or unseen
stimulus during the attentional blink

Marois et al., Neuron 2004



Phase synchrony in MEG:
Gross et al, PNAS 2004

Sources of the difference between seen and unseen trials
Middle temporal

Inferior frontal

Dorsolateral prefrontal

seen
not seen

t = 300 ms

t = 436 ms

Activation in event-related potentials:
Sergent, Baillet & Dehaene, Nature Neuroscience, 2005



An architecture mixing parallel and serial processing:

Baar’s (1989) theory of a conscious global workspace



processors
mobilized
into the

conscious
workspace

hierarchy of modular
processors

The global neuronal workspace model 
(Dehaene & Changeux)

Dehaene, Kerszberg & Changeux, PNAS, 1998
Dehaene & Changeux, PNAS, 2003; PLOS, 2005
inspired by Mesulam, Brain, 1998
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Prefrontal cortex and temporo-parietal association areas 
form long-distance networks

V1

TE

PFC

Pat Goldman-Rakic
(1980s):

long-distance 
connectivity of dorso-

lateral prefrontal cortex

Guy Elston (2000)
Greater arborizations and spine density

Von Economo (1929):
Greater layer II/III thickness





Dehaene, Sergent, & Changeux, PNAS, 2003

Detailed simulations of the global neuronal workspace
using a semi-realistic network of spiking neurons

(Dehaene et al., PNAS 2003, PLOS Biology, 2005)
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Is the brain an analogical or a discrete machine?
A problem raised by John Von Neumann

•Turing assumed that his machine processed discrete symbols

• According to Von Neumann, there is a good reason for computing with discrete symbols, and 
it also applies to the brain:
« All experience with computing machines shows that if a computing machine has to handle as 
complicated arithmetical tasks as the nervous system obviously must, facilities for rather high 
levels of precision must be provided. The reason is that calculations are likely to be long, and in 
the course of long calculations, not only do errors add up but also those committed early in the 
calculation are amplified by the latter parts of it » (…)
« Whatever the system is, it cannot fail to differ considerably from what we consciously and 
explicitly consider as mathematics » (The computer and the brain, 1958)
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Why and how does the brain discretize incoming analog inputs?
The answer given by... Alan Turing

The decision algorithm by stochastic accumulation designed by Turing at Bletchley Park
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Stimulus of numerosity n

Internal logarithmic scale : log(n)

1. Coding by Log-Gaussian numerosity detectors
1 2 84 16…

2. Application of a criterion and formation of two pools of units
Criterion c

Pool favoring R1 Pool favoring R2

3. Computation of log-likelihood ratio by differencing
Pool favoring R2

Pool favoring R1
- LLR for R2 over R1

4. Accumulation of LLR, forming a random-walk process

Trial 1 Trial 2 Trial 3

Mean Response Time

Starting
point of 

accumulation

Decision
threshold for R2

Time

Decision
threshold for R1

From numerosity detectors to 
numerical decisions:

Elements of a mathematical
theory

(S. Dehaene, Attention & Performance,
2006, in press)

Response in simple arithmetic tasks:
-Larger or smaller than x?
-Equal to x?



Fixed threshold
Decision

Accumulation 
at a 
variable
speed

A fronto-parietal network might implement stochastic accumulation

Kim & Shadlen, 1999

•Neurons in prefrontal and parietal 
cortex exhibit a slow stochastic 
increase in firing rate during 
decision making

•Stochastic accumulation can be 
modeled by networks of self-
connected and competing neurons

Simulated neuronal activity:

Wong & Wang, 2006



Hypothesis: there is an identity between the stochastic
accumulation system postulated in 

and the central system postulated in PRP models
Task 1

Task 2

RT2 Distribution

RT1 Distribution

Motor stage (M)

Central Integration (C)Perceptual stage (P)

Wait period (W)

Δ

Stimulus 1 Response 1

Stimulus 2 Response 2
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M
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W

0 1000 2000
ms

Sigman and Dehaene (PLoS 2005, PLoS 2006)

The accumulation of evidence
required by Turing’s algorithm
would be implemented by the 
recurrent connectivity of a 
distributed parieto-frontal 
system.



Central Integration (C)
Motor stage (M)

Perceptual stage (P)

RT Distribution

Target T2 Response
P

C

M

This model makes very specific predictions about 
the source of variability in response time:

- Factors that affect the P or M stages should
add a fixed delay

- number notation (digits or words)
- Motor complexity (one or two taps)

- Factors that affect C should
increase variance

- Numerical distance

Sigman & Dehaene, PLOS: Biology, 2004

P factor P factor

C
factor

C
factor

M factor M factor

Is a stochastic random walk constitutive of the « central stage »?



• Categorical representation of visual
stimuli in the primate prefrontal cortex 
(Freedman, Riesenhuber, Poggio & Miller, 
Science, 2001).

Prefrontal and parietal cortices may contain a general
mechanism for creating discrete categorical representations

•Parietal representations can also be 
categorical (Freedman & Assad, Nature 2006)

“Whereas the rest of cortex can be characterized 
as a fundamentally analog system operating on 
graded, distributed information, the prefrontal 
cortex has a more discrete, digital character.”
(O’Reilly, Science 2006)
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Exploring the cerebral mechanisms
of the non-linear threshold in conscious access

(Del Cul and Dehaene, submitted)

Subjective visibility Objective performance
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Latency Amplitude
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become increasingly
non-linear with time
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A late non-linearity underlying conscious access during masking
(Del Cul et Dehaene, submitted)
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A hypothetical scheme for the « human Turing machine »

Sigman & Dehaene, PLOS:Biology, 2005time

• The workspace can perform complex, consciously controlled operations by 
chaining several elementary steps
•Each step consists in the top-down recruitment, by a fronto-parietal network, of a 
set of specialized processors, and the slow accumulation of their inputs into 
categorical bins, which allows to reach a conscious decision with a fixed, 
predefined degree of accuracy.



Chance level

Subliminal Performance 
on non-conscious trials

Consciousness is needed for chaining of two operations
(Sackur and Dehaene, submitted)

•Presentation of a masked digit (2, 4, 6, ou 8) just below threshold
•Four tasks
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Conclusions
• Turing proposed a minimal model of how mathematical operations unfold in the 
mathematician’s brain
• We now know that the Turing machine is not a good description of the overall
operation of our most basic processors
• However, it might be a good description of the (highly restricted) level of serial 
and conscious operations, which occur within a « global neuronal workspace »
• The global neuronal workspace may have evolved to
- achieve discrete decisions by implementing Turing’s stochastic accumulation 
algorithm on a global brain scale
- broadcast the resulting decision to other processors, thus allowing for serial 
processing chains and a « human Turing machine »
- thus giving us access to new computational abilities (the « ecological niche » of 
Turing-like recursive functions)
• By allowing the top-down recruitment of specific processors, the global 
workspace may play an important role in our cultural ability to « play with our
modules » and to invent novel uses for evolutionary ancient mechanisms
• Very little is know about the human Turing machine:

- How does the brain represent and manipulate discrete symbols?
- What is the repertoire of elementary non-conscious operations?
- How do we « pipe » the result of one operation into another?


