Reading in the brain

2. Masking, subliminal reading, and the mechanisms of conscious access

Stanislas Dehaene

Collège de France, and INSERM-CEA Cognitive Neuroimaging Unit NeuroSpin Center, Saclay, France www.unicog.org

Image by Claire Sergent

The visual word form area

A subpart of the occipitotemporal visual system that systematically responds to written words.

A hierarchically organized region

False Font	Infrequent Letters	Frequent Letters	Frequent Bigrams	Frequent Quadrigrams	Words
ารน≁น⊻	JZWYWK	QOADTQ	QUMBSS	AVONIL	MOUTON

A short demonstration of digit masking

Two central issues in consciousness research

1. The depth of subliminal processing

- How deeply can subliminal stimuli be processed into the visual system?

2. The nature of conscious access

- What prevents subliminal stimuli from becoming conscious?
- What processes occur when a stimulus is consciously accessed, and when do conscious and non-conscious processing diverge?

Our research strategy

- The contrastive method: « ... contrasting pairs of similar events, where one is conscious but the other is not. » (Baars, 1989)
- The primacy of the subjective: « ...the first crucial step is to take seriously introspective phenomenological reports. (...) They constitute primary data that need to be measured and recorded along with other psychophysiological observations » (Dehaene & Naccache, 2001)

In summary, look for: *objective* neurobiological correlates of *subjective* processes

Part I. The fate of a non-conscious stimulus

- Masked words and digits elicit activity at a series of hierarchical levels, including visual, semantic and motor stages.
- fMRI priming can help decipher how information is coded in a given region.

Making a word invisible: the masking paradigm

Dehaene et al., Nature Neuroscience, 2001

Invariance for case in the visual word form area

Dehaene et al, Nature Neuroscience, 2001; Psychological Science, 2004

Left fusiform (-44, -52, -20)

fMRI priming

Case-invariant priming independent of letter similarity

Left fusiform -48, -52, -12

What are the coding units underlying orthographic priming?

Single letter? Bigram?

Morpheme or whole word?

fMRI : location-specific priming

Dehaene et al., Psychological Science, 2004

fMRI : location-independent priming

Left middle fusiform (y=-48)

LARGER UNIT (WHOLE WORD?)

Dehaene et al., Psychological Science, 2004

LETTERS AT ANY LOCATION

Local combination detectors: A model of invariant visual word recognition

Priming within and across scripts in Japanese subjects

Design:

- Targets and primes can appear in Kanji or in Kana
- Task = semantic classification (natural/man-made)

Nakamura, Dehaene et al., JOCN, 2005

Repetition priming in Japanese

Within and cross-script priming in response times

Repetition priming with Kanji primes and Kanji targets

Nakamura, Dehaene et al., JOCN, 2005

Evidence for extensive subliminal processing using fMRI priming

Orthographic priming

Dehaene, 2001)

Semantic priming

al, 2005)

al, 2005)

al., 1998)

Motor priming

Left fusiform gyrus (Dehaene et al, 2001; Devlin et al, 2004)

Semantic proximity of words in left

Amygdala activation by masked

Bilateral motor areas (Dehaene et

intraparietal sulci (Naccache and

middle temporal gyrus (Devlin et al, 2004; Nakamura, Dehaene et

emotional words (Naccache et

Numerical proximity in bilateral

Visual word form area

bilateral intraparietal sulci

Left middle temporal gyrus

Motor lateralized readiness potential

Part II. The nature of conscious access

• Conscious access is associated with a sudden activation of a distributed parieto-prefrontal network

Making a word visible again

Making a word visible again

Dehaene et al., Nature Neuroscience, 2001

Consciousness correlates with -Local amplification in the relevant processors -Global parieto-frontal activity

(Dehaene et al, Nature Neuroscience 2001)

masked words

Baar's (1989) theory of a conscious global workspace:

An architecture mixing parallel and serial processing

What is the neural basis of the global workspace?

...the intellectual activity, the will and self-consciousness... are the result of a combined action of a large number of mnemonic spheres

(Ramon y CAJAL, Histologie, p.878)

Prefrontal cortex and temporo-parietal association areas form long-distance networks

Von Economo (1929): Greater layer II/III thickness

Guy Elston (2000) Greater arborizations and spine density

PFC

esal dendritic field area (x 10³ µm)

┨_┺╂┠┨┨┨┨┨

IIIIIIIIIIIIIIIIIIIIIII.

Pat Goldman-Rakic (1980s): long-distance connectivity of dorsolateral prefrontal cortex

The global neuronal workspace model

Dehaene, Kerszberg & Changeux, *PNAS*, 1998 Dehaene & Changeux, *PNAS*, 2003; PLOS, 2005 inspired by Mesulam, Brain, 1998

Detailed simulations of the global neuronal workspace using a semi-realistic network of spiking neurons (Dehaene et al., PNAS 2003, PLOS Biology, 2005)

Contrast between conscious and subliminal processing

T1 versus T3 : unmasked versus masked stimuli (both attended)

DIGIT MASKING PARADIGM

Antoine Delcul

Exploring the cerebral mechanisms of the non-linear threshold in conscious access (Delcul and Dehaene, PLOS Biology 2007)

Logic = Use this sigmoidal profile as a « signature » of conscious access. Which ERP components show this profile?

Predictions of the global neuronal workspace model

Brain mechanisms of masking

Conclusions:

-Masking leaves the P1a and N1 essentially intact (except at the shortest SOA) -Masking reduces the P1b (less inter-hemispheric transfer)

-Masking interrupts the N2 -As the masking delay increases

-target activation become increasingly stronger and longer lasting

-Mask activation

decreases

correspondingly

 Only the P3 shows a nonlinearity similar to behavioral report

P3: sudden non linear divergence around 270 ms

A second independent criterion for conscious access: Only the amplitude of the P3 distinguishes seen versus not-seen trials at a fixed delay (50 ms) (9 subjects only)

A late non-linearity underlying conscious access during masking

(Delcul et Dehaene, PLOS Biology 2007)

Conscious access and non-conscious processing during the attentional blink

Sergent, Baillet & Dehaene, Nature Neuroscience, 2005

Time course of scalp-recorded potentials during the attentional blink

Sergent et al., Nature Neuroscience, 2005

Test of the theory 3. with two competing stimuli during PRP

Pashler's « central bottleneck » model of the psychological refractory period

Sigman and Dehaene, PLOS Biology, 2005

Pashler's central bottleneck model

Event-related potentials dissociate parallel and serial stages during dual-task processing

Event-related potentials dissociate parallel and serial stages during dual-task processing

Functional MRI can be sensitive to small delays, in the order of a few hundreds of milliseconds

Sigman, M., Jobert, A., LeBihan, D., & Dehaene, S. (2006). Parsing a sequence of brain activations at psychological times using fMRI. *NeuroImage, 2006*

Separating parallel and serial stages during dual-task processing with high temporal resolution fMRI

Locating the sites of processing bottlenecks: parieto-prefrontal networks

Dux, Ivanoff, Asplund & Marois, Neuron, 2007

Conclusion: Towards a neuronal understanding of consciousness

- Non-conscious processing is extensive in the human brain
- Brain activity can remain non-conscious for at least two reasons:
 - bottom-up strength is insufficient (e.g. masking)
 - Top-down attention is distracted (e.g. attentional blink)
- A representation becomes conscious whenever it wins the central competition and ignites a distributed, self-sustained assembly of neurons in prefrontal, cingulate and other cortical association areas
- Conscious access corresponds to a sharp and relatively late (~270 ms) dynamical phase transition in neural network activity.
- Although I have only talked about access to consciousness, changes in viligance (intransitive consciousness) relate to neuromodulation of the same network (S. Laureys, P. Maquet).

Vegetative state

Coma

Slow-wave sleep

General anesthesia