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Revolutions in our understanding of cognitive development
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Infants selectively encode the goal object
of an actor’s reach
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Taking the intentional stance at 12 months of age
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Social evaluation by preverbal infants
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The Social Sense: Susceptibility to Others' Beliefs in Human Infants
and Adults
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How do scientists learn?

¢ Scientists learn from statistical evidence

e Scientists’ beliefs affect their interpretation of statistical evidence
¢ Scientists distinguish genuine causes from spurious associations
¢ Scientists selectively explore ambiguous or confounded evidence

e Scientists introduce unobserved variables to explain data otherwise
anomalous with respect to their prior beliefs

¢ Scientists’ generalizations depend on how evidence is sampled

¢ Scientists infer the relative probability of competing hypotheses and
choose interventions most likely to achieve desired outcomes

e Scientists isolate variables to distinguish competing hypotheses

e Scientists evaluate expert knowledge and decide whether to learn from
instruction or exploration




How do children learn?

¢ Children learn from statistical evidence

e Children’s beliefs affect their interpretation of statistical evidence
¢ Children distinguish genuine causes from spurious associations

¢ Children selectively explore ambiguous or confounded evidence

¢ Children introduce unobserved variables to explain data otherwise
anomalous with respect to their prior beliefs

e Children’s generalizations depend on how evidence is sampled

¢ Children infer the relative probability of competing hypotheses and
choose interventions most likely to achieve desired outcomes

¢ Children isolate variables to distinguish competing hypotheses

e Children evaluate expert knowledge and decide whether to learn from
instruction or exploration




Appendix A

Bayesian Model

Bayesian inference provides a rational account of how children
should go about combining theory and evidence. It can also be
used to make precise quantitative predictions as to whether con-
clusions are justified by the observation of data, given a set of
assumptions about the constraints provided by naive theories. In
Experiment 1, children are asked, “Why does [character] have
[symptom]? Is it because of [A] or because of [B]?" We model the
probability that children choose explanation A as

P(Explanation A|D)
P(Explanation A[D) + P(Explanation B|D) @

This directly contrasts the two possible explanations given the data
observed (a similar expression applies in Experiment 2, contrasting
the three possible explanations). The probability of each candidate
explanation being selected given the data is computed by summing
over all possible causal models that are consistent with the expla-
nation. This is formalized as,

P(Explanation A|D) = EP(Expl:malion AlnP(hD) (3)

Mt

where / is a hypothesis as to the underlying causal structure, and
H is the space of all hypotheses.

We represent hypotheses using causal graphical models (Pearl,
2000; Spirtes, Glymour, & Scheines, 1993), where nodes corre-
spond to variables, arrows from cause to effect represent relation-
ships between variables, and a set of conditional probability dis-
tributions captures the probability that each variable takes on a
particular value given the values of its causes. We assume that the
probability of a cause being sel 1 as an exp ion given a
particular causal structure / is 1/k, where k is the size of the set of
candidate causes that are p and p a causal relationship
with the effect in &, and where the proposed explanation is a
member of this set. The probability of a particular causal structure
given the data is obtained via Bayes's rule (Equation 1), using a
prior P(h) and likelihood P(DIh) derived from a causal theory.

As proposed by Tenenbaum and Niyogi (2003), Griffiths
(2005), and Tenenbaum et al. (2007), we model the framework
theory that guides children’s infi ¢s as a simple scheme for
generating causal graphical models. In this scheme, we allow
for different domains, Causal variables have relationships with
effect variables; causes are likely to have relationships to ef-
fects within their domain, however, there is also a small prob-
ability that a cause from one domain can lead to an effect in
another domain.

The prior probability associated with each model is simply its
probability of being generated by the theory. The process of
generating a causal graphical model from this theory breaks down
into three steps. First, we identify the nodes (causes and effects) in

the model. In our case, the nodes simply correspond to the set of
causes and effects that appear in the story. Second, we generate the
causal relationships between these nodes. If cause and effects are
within domain, then the probability a relationship exists is rela-
tively high and given by p. If the link between two variables
crosses domains, then a relationship is unlikely and is given a
lower probability, g. With n causes, there are 2" possible causal
models. Assuming that each relationship is generated indepen-
dently, we can evaluate the prior probability of cach of these
models by multiplying the probabilities of the existence or non-
existence of the causal relationships involved. The particular val-
ues of the probabilities p and ¢ depend on the child's theory. Such
theories might change with age and experience; that is, younger
children might think cross-domain events are more or less proba-
ble than older child: We that children think the proba-
bility of cross-domain events is low (but not extremely low) by
setting ¢ = .1, and by setting a higher within-domain probability
p= 4

Finally, we specify the conditional probability of the effect
given the causes present in the causal model. This allows us to
evaluate the probability of a specific model, &, generating the data
observed on the mth day, P(d,,lh). These data consist of the values
taken on by all variables on that day—the presence or absence of
the causes and effects. We assume that the probability of each
cause being present or absent is constant across all of the causal
models and the only difference is in the probability they assign to
the occurrence of the effect on that day. We then take the condi-
tional probability of the effect given the set of causes to be 1 if any
cause that influences the effect is present, and £ otherwise, corre-
sponding to a noisy-OR parameterization (Pearl, 2000), where
each cause has a strength of 1 and the background has a strength
of €. We assumed that the probability of an effect in the absence
of any causes was low, with € = .001. The probability of the full
set of data, D, accumulated over the course of the story is given by

P(D|h) = 11_P(d,|h) 4)

where the data observed on each day are assumed to be generated
independently.

As can be seen comparing the results predicted by the Bayesian
model in Figure Al with the 4-year-olds’ responses in Experi-
ments | and 2, our model accurately predicted the responses of the
oldest children, with a Pearson product-moment correlation coef-
ficient of n(9) = .85. The model gives correct relative weights to
the variables at baseline in both the within-domain and cross-
domains conditions. Critically, the model predicted the increased
A responses after evidence in all conditions, while still capturing
the more subtle graded interaction between theory and evidence.
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As proposed by Tenenbaum and Niyogi (2003), Griffiths
(2005), and Tenenbaum et al. (2007), we model the framework
theory that guides children’s inferences as a simple scheme for
generating causal graphical models. In this scheme, we allow
for different domains, Causal variables have relationships with
effect variables; causes are likely to have relationships to ef-
fects within their domain, however, there is also a small prob-
ability that a cause from one domain can lead to an effect in
another domain.

The prior probability associated with each model is simply its
probability of being generated by the theory. The process of
generating a causal graphical model from this theory breaks down
into three steps. First, we identify the nodes (causes and effects) in

the model. In our case, the nodes simply correspond to the set of
causes and effects that appear in the story. Second, we generate the
causal relationships between these nodes. If cause and effects are
within domain, then the probability a relationship exists is rela-
tively high and given by p. If the link between two variables

Kaelbling, 1993; Kang et al, 2009; McClure, Daw, & Read
Montague, 2003; Sutton & Barto, 1998). Although many
of these studies have focused not on richly structured cau-
sal domains, but on arbitrary reinforcement learning prob-
lems (e.g., multi-armed bandit tasks, stacked card decks,
maze-running tasks with hidden rewards, etc.), computa-
tional models of the expected information gain associated
with different actions establish an important starting point
for the current work.

It is optimal (in a decision-theoretic sense) to maximize
the expected information gain of an action (see Oaksford &
Chater, 1994); in particular, it is optimal to choose the ac-
tion that will most decrease the uncertainty over the cau-
sal structure that relates the variables of interest. Formally,
the information gain from observing data D after taking ac-
tion A can be represented by:

I;(D,A) = I(P(H|D, A)) - I(P(H)), 1)
where I(p) represents the Shannon-Wiener information
(Shannon and Weaver, 1948; Wiener, 1948) of distribution
p: I(p) = - Zplog,(p;). The expected information gain from
taking action A is then:

Elg(A) = Z,P(D;|A)lg(D;.A), (2)
where the probability of an observation given an action is:
P(Di|A) = ZkP(D;|A, Hi)P(Hy). 3)

In choosing the action which maximizes the expected
information gain there are thus two main contributing fac-
tors: P(H) and P(D|A, H). These describe where in the sys-
tem there is information to be learned and how that
information can be gathered. The prior distribution P(H)
will capture effects of prior knowledge (such as baserates)
and earlier evidence (such as confounded observations). As
noted, previous research (Gweon & Schulz, 2008; Schulz &
Bonawitz, 2007) has indeed shown that children explore a
causal system more when there is information to be
gained.

The second term influencing optimal information gain
describes how actions give rise to observed data, given
the causal structure hypothesis. Typically this is assumed
to be a simple, direct function: for each object there is an
action (e.g. putting it on the detector) that will lead to data
that reflects the causal status of that object (e.g. the detec-
tor activates if the object is a ‘blicket’). Under this assump-
tion, there is no interesting contribution from the P(D|A, H)
term; actions will be taken on the objects about which
there is the greatest uncertainty.

However, real world scientific situations, and many sit-
uations facing children, have a much more complex rela-
tionship between available actions and the causal
variables of interest. Designing an experiment is often
harder than merely choosing what one should try to leam.
For instance, if there is not a one-to-one relationship be-
tween actions and objects then P(D|A H) can reflect an
inability to isolate some causal variables. In our first exper-
iment, we set up a situation in which there are four objects
of uncertain causal status, but only three actions: two
which will lead to evidence about two objects individually,
and one which leads to (confounded) evidence about a pair
of objects. Thus while the contribution of P(H) to El, sup-

ports exploration of all four objects equally, the incorpora-
tion of P(D|A, H) leads to preferential exploration with the
separable objects. We test this prediction in Experiment 1.

Perhaps more than any other claim about causal rea-
soning in young children, the idea that children might be
capable of selectively performing informative interven-
tions puts the analogy between children and scientists to
the test. This is the claim we investigate here. We hypoth-
esize that when the probability of information gain is high,
preschoolers will exploit available affordances to isolate
and test causal variables consistent with their folk theories
about plausible mechanisms.

By suggesting that preschoolers selectively perform
informative interventions, we mean both something more
than the idea that children learn through exploratory play
and something less than the idea that children explicitly
understand and apply principles of experimental design.
We believe children’s spontaneous experimentation can
be distinguished from trial and error learning or “mere”
exploratory behavior by its selectivity. That is, we predict
that children will be more likely to perform actions that
isolate relevant variables when the probability of informa-
tion gain is high than when it is low, and that children will
be specifically likely to perform actions that isolate rele-
vant variables (rather than simply acting more in general).
Children’s spontaneous experimentation can be distin-
guished from a meta-cognitive understanding of experi-
mental design both by its noisy implementation and its
fragility. We do not predict that children will perform only
informative experiments, that they will perform informa-
tive experiments in preference to other playful actions, or
that they will perform informative experiments methodi-
cally (without redundancy or interruption). Additionally,
we believe that children’s ability to generate informative
actions can be easily compromised by other task demands
(e.g., by increasing the number of variables involved or
changing the status of those variables with respect to the
children’s prior beliefs). We presume that bringing the
ability to generate informative interventions to bear on
tasks of arbitrary complexity requires formal science
education.

Here we look at children’s ability to design interven-
tions in a simple toy world. We give children base rate
information about candidate causes, showing them either
that 4 of 4 beads (the All Beads condition) or 2 of 4 beads
(the Some Beads conditions) activate a toy when the beads
are placed, one at a time, on top of the toy. We then show
both groups of children two pairs of beads. All children
learn that one of the bead pairs can be pulled apart into
two individual beads, while the other pair is glued to-
gether. Finally, children learn that both bead pairs activate
the toy (see Fig. 1).

Although in prindiple only one bead in each pair might
be causally effective, the evidence about the bead pair
should be relatively unambiguous for children in the All
Beads condition; the base rate information strongly sup-
ports the hypothesis that both beads in both pairs activate
the toy. By contrast, the evidence about the bead pairs is
genuinely ambiguous for children in the Some Beads condi-
tions; the evidence fails to distinguish which bead works
(or whether both do). Put another way, when All Beads
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Bayesian Model

As discussed in the main text, the joint dependence between S
(sampling process) and T (property extension) can be described as
asimple Bayesian network (Fig. 1). The leamer’s goal isto predict Y,
which depends directly on 7, not § or D. However, inferences about
T from D must take into account the different possible values of S:
formally, our Bayesian analysis must integrate out S in scoring each
value of 7. Because the data are inconsistent with hypothesis £, only
two hypotheses for T"are relevant; £3 predicts that yellow balls squeak
whereas #; predicts that they do not. Following Tenenbaum and
Griffiths (1), the evidence for one of these hypotheses over the other
can be measured by the likelihood ratio

_ P(Dlts) _ P(nits, B)

P(D|ty) — P(n|t,B)
We posit that children’s exploratory behavior—how much they
squeeze the yellow ball, expecting asqueak—will be monotonically
related to L (Fig. 34). This analysis makes predictions that are
independent of the prior probabilities children assign to t, or t3,
removing a degree of freedom that would otherwise need to be
measured or fit empirically to their behavior. These likelihoods
can be computed by integrating out the sampling process:

P(nlt,p) = X P(nlt.s, B)P(s).
n€es

L

To evaluate these likelihoods we need the following four con-
ditional probabilities*:

P(npl.sl.ﬂ) =]

P(nlty,s2,p) = p"
P(nlt3,s51,p) = p"
P(nlt3,s2,) = p".

be distinguished from trial and error learning or “mere”

26a aal. 2oes That fn coin ammdiae

Let a denote the prior probability P(s;) that the experimenter is
sampling from just the squeaky balls: P(s;) = 1 — a. We then
have

P(nlty, p) = Zes P(nlty,s, B)P(s)

= P(nlty,s1,B)P(s1) + P(n|t;,s2, B)P(s2)
=a+p"(1-a)
P(nlts, p) = Zc-s P(nlt;,s,B)P(s)
5

= P(nts,51.p)P(s1) + P(nlts,s2, B)P(s2)
=Pa+p(l-a)
=p".
The likelihood ratio, measuring the evidence in favor of the
proposition that yellow balls squeak, is then

_ Plnlis, p)
P(nlt,p)
ﬂ"

“a+ pr(l—a)
By setting the parameter « to 0, we can model the possibility that
infants expect that evidence is sampled randomly; by setting the
parameter « to 1, we can model the possibility that infants expect
that evidence is sampled selectively (Fig. 3 B and C).




How do children learn?

¢ Children learn from statistical evidence

e Children’s beliefs affect their interpretation of statistical evidence
¢ Children distinguish genuine causes from spurious associations

¢ Children selectively explore ambiguous or confounded evidence

¢ Children introduce unobserved variables to explain data otherwise
anomalous with respect to their prior beliefs

e Children’s generalizations depend on how evidence is sampled

¢ Children infer the relative probability of competing hypotheses and
choose interventions most likely to achieve desired outcomes

¢ Children isolate variables to distinguish competing hypotheses

e Children evaluate expert knowledge and decide whether to learn from
instruction or exploration




How do children learn?

e Children learn from statistical evidence

e Children’s beliefs affect their interpretation of statistical evidence
¢ Children distinguish genuine causes from spurious associations

¢ Children selectively explore ambiguous or confounded evidence

¢ Children introduce unobserved variables to explain data otherwise
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e Children infer the relative probability of competing hypotheses and choose
interventions most likely to achieve desired outcomes

* Children isolate variables to distinguish competing hypotheses

¢ Children evaluate expert knowledge and decide whether to learn from
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Today’s talk

e Children’s generalizations depend on how
evidence is sampled

e Children infer the relative probability of
hypotheses and choose interventions
most likely to achieve desired outcomes.

e Children isolate variables to distinguish
competing hypotheses

e Children evaluate expert knowledge to decide
whether to learn from instruction or ‘
exploration




Today’s talk

e Children’s generalizations depend on how
evidence is sampled




Generalizing from samples

[

e Science requires generalizing properties from a small
sample to a population.

e Can use feature similarity and category membership to
infer that things that look alike or belong to the same
category will share properties.

e [f you know that this sample of Martian rocks has a high
concentration of silica, may infer that other Martian rocks
have a high concentration of silica.

e [f you know that this sample of needles from a Pacific
silver fir lie flat on the branch, may infer other Pacific silver
fir needles lie flat on the branch.




Generalizing from samples

e But as scientists we may know something about the sampling
process that affects our inferences.

e Do all Martian rocks have high concentrations of silica or only
dusty rocks on the surface?

¢ Do all Pacific silver fir needles lie flat or just those low on the
canopy?

e How far we extend our generalizations depends on whether we
think the sampling process was random or selective.

¢ Do infants’ generalizations also take the sampling process into
account?




Mostly Blue Mostly Yellow
B:Y = 3: B:Y =3:

Consistent with sampling Unlikely to have been
from the whole box sampled from the whole box
more likely to have been sampled
selectively

Prediction:
(I) many children
should try squeezing

(2) and should
squeeze often

Prediction:
(1) fewer children
try squeezing

(2) squeeze less
often







Results

n = 15/condition, mean: 15 months, 15 days, range 13-18 months

4.5 |

Mean number of squeezes

Gweon, Tenenbaum, & Schulz, 2010 PNAS




..not an improbable sample. Could
have been generated by sampling
randomly from the whole box.

Prediction:
(I) many children
should try squeezing

(2) and should
squeeze often

Unlikely to have been sampled
from the whole box
more likely to have been sampled
selectively

Prediction:

(1) few children try
squeezing

(2) squeeze less

often




Results

n = 16/condition, mean: 15 months, 15 days, range 13-18 months

Gweon, Tenenbaum, & Schulz, 2010 PNAS




Mean number of squeezes

4.5 |

o
o

g

Likelihood Raio (L)
- s

gb‘

r=.0.98, p<0.005

Blue Yellow | Yellow Yelow Yallow | Yelow
3balls  3balls | 1ball 1ball 3balls | 2balls
Extended (rep)

Exp. 1 Exp. 2 Exp. 3

Gweon, Tenenbaum, & Schulz, 2010 PNAS




What if...

Explicit cue for random
sampling process

Gweon, Tenenbaum, & Schulz, 2010 PNAS




Results

n = 16/condition, mean: 15 months, 15 days, range 13-18 months

4.5
)
Q
D
330 * [ * I
o I' |
& I I
O
|
= o |
& 0 =
Q y
s
‘O
L
000 000

**p < 0.005
Gweon, Tenenbaum, & Schulz, 2010 PNAS




Generalizing from samples S

¢15-month-olds’ generalizations take into
account more than category membership
and the perceptual similarity of objects.

e|nfants make graded inferences that are
sensitive to both the amount of evidence
they observe and the process by which
the evidence is sampled.




Today’s talk

e Children infer the relative probability of
hypotheses and choose interventions
most likely to achieve desired outcomes.




Can 16-month-olds...
— use minimal statistical data to make appropriate causal attributions?

— rationally choose to seek help vs. explore based on these inferences?

?1%H@
#*@%&!

It's THE
e
(object)

Approach Another Agent Approach Another Toy

It's ME
(agent)




Look T ,
f,feszt Distribution of successes and failures
| . . .
o within & between different agents
DEMONSTRATION ATTRIBUTION ACTION
4 N
Within Agents
El E1l It’s probably th Changethe :
succeeds fails fails succeeds
SIS 4
N J
Go ahead
4 N\ |
Between-Agents Change the and P'av-i
E1 - - E1 “It’s probably Agent

succeeds fails fails succeeds

Se—a—-a="

Gweon & Schulz, 2011, Science










Results

Histogram showing number of infants performing each action first in each condition
N = 36 infants, mean: 16 months; range: 13-20 months

Within-Agent

Between-Agent

’

El El BEZN RES

succeeds fails fails succeeds

@-f’@—@-ﬁ—a

\

El E2 EZ El

succeeds fails fail succeeds

o woeoe)

Change Agent
B Change Obiect

N=12

N

13

G
-

* difference between conditions,
p < .05 Fisher’s exact test

Gweon & Schulz, 2011, Science




Rational causal inference in infants

e 16-month-olds...

—track the statistical dependence between agents,
objects, and outcomes

— can use minimal data to make rational attributions
about the cause of failed goal-directed actions

e These distinct explanatory attributions (self vs.
world) help them choose between two different
strategies for learning

* seeking instruction from others

e self-guided exploration




Today’s talk

e Children isolate variables to distinguish
competing hypotheses




Children selectively engage in exploratory play when
evidence fails to distinguish competing hypotheses
(e.g., when evidence is confounded)

Schulz & Bonawitz, 2007, Developmental Psychology










n = | 6/condition
four & five-year-olds
mean: 57 months

Training

Test

Results

mdmde

Confounded

mdmdnin

o €

mJundnu

Unconfounded Unconfounded

(No Independent Play) (Trials Matched) (Effects Matched)

mdndndnd

Unconfounded

_ Individuals'
Average Time  Playtime First
Playing (secs) Preference  Reach

Old Toy New Toy

Legend

T Lever not
pressed

ﬂ Child
activated

Experimenter
! activated

Study |

Schulz & Baraff Bonawitz, 2007, Developmental Psychology




Children assigned to one of two training conditions

(DD IO C D
CDAED )

D)

all beads condition some beads condition

Cook, Goodman, & Schulz, 2011, Cognition




All children given the same test condition

o) o)

) D D D

stuck pair separable pair

afloragdrcadn digipgition

Some Beads B
Some Beads AB

Cook, Goodman, & Schulz, 2011, Cognition




Histogram showing number of children generating each action in each condition
n = 20/condition, mean: 53 months; range: 46-63 months

20
18 - .
@ Did not test

o 10 - individual
§ 14 - beads
= 12 -
: MW Tested
E 10 individual
g g - beads

6 .
Z,

4 .

2 .

0 -

All Beads

Condition

** difference in responding between All and Some Beads conditions,

p < .01 Fisher’s exact test N
Cook, Goodman, & Schulz, 2011, Cognition




Children assigned to one of two training conditions

& Ch) C D
(DO @ C )

D

all beads condition some beads condition

Cook, Goodman, & Schulz, 2011, Cognition




All children given the same test condition

5
)

stuck pair

Cook, Goodman, & Schulz, 2011, Cognition







All children given the same test condition

V C@ some beads condition

stuck pair

Cook, Goodman, & Schulz, 2011, Cognition




All children given the same test condition

some beads condition

4

stugKk pair

Cook, Goodman, & Schulz, 2011, Cognition




Histogram showing number of children generating each outcome
n = 20/condition, mean: 54 months; range: 46-64 months

20
18 -
B Did not test

: 16 - by varying
5 14 - contact
= 12 -
et W Tested by
© 10 - varying
5 contact
£
Z,

e N S L~ T
I

All Beads Some Beads B
Condition

** difference in responding between All and Some Beads conditions,

p < .01 Fisher’s exact test N
Cook, Goodman, & Schulz, 2011, Cognition




Conclusions

¢ Preschoolers can use information about the base rate of
candidate causes to distinguish the relative ambiguity of
evidence.

® Given ambiguous evidence, children select -- and design
-- potentially informative interventions that isolate relevant
causal variables.




Today’s talk

e Children evaluate expert knowledge to decide
whether to learn from instruction or ‘
exploration




Rational pedagogy

 If you assume that an adult is helpful and
knowledgeable ...

— Can assume that evidence they show you is not
only true

— But helps distinguish the target hypothesis from
other hypotheses.

Bonawitz, Shafto, Gweon, Spelke, & Schulz, 2011, Cognition




Rational pedagogy

* Thus for instance, if a knowledgeable teacher shows

you n properties of a toy, should assume that there
are notn + 1.

* |If the same evidence is demonstrated by a naive

learner (or discovered by the child herself), should
be much less likely to make this assumption (could
well be more than n).

 Pedagogy strengthens the inference that absence of
evidence is evidence of absence.

Bonawitz, Shafto, Gweon, Spelke, & Schulz, 2011, Cognition




Learning from instruction and
exploration

e |f a knowledgeable teacher
demonstrates properties of a toy,
children should not engage in additional
exploration.

e |f a nalve learner demonstrates the same
properties, children should make no
such assumption and should explore
broadly.

Bonawitz, Shafto, Gweon, Spelke, & Schulz, 2011, Cognition




PEDAGOGICAL ACCIDENTAL NO DEMO INTERRUPTED

“Watch this, I'm going “Look at this neat toy “Look at this neat Identical to Pedagogical
to show you my toy.” | found here.” toy that | have.” except interrupted
[intentionally pull tube] [accidentally pull tube] [rotate toy for child]  immediately after
“Wow, see that?” “Wow, see that?” “Wow, see that?” “Wow, see that?”

* Four interesting properties

squeaker
mirror




Peda_ggical Condition

) ! L =
-, ‘ i i B
| ‘f,.. - = :
. .Y




# Different Actions Performed During Play

Direct Baseline Accidental Intentional Interrupted
Instruction
# Functions Discovered During Play
1.5
*
1
0.5 ‘ 1

Drct. Instr. Baseline Accidental  Intentional Interrupteg
* p<.05




Knowing when learning from others

- Y/
isn’t enough...
e When a teacher provides
. . . . . Function 3?
insufficient information .... O\
— do children recognize “sins of omission” as failures? Function 2? Function 42

— do sins of omission affect children’s judgements of teachers?

— do children modulate their behavior depending on their evaluation of the
teacher?

e (Caveat: there are many good reasons for a teacher to provide
insufficient information ...
— the evidence supports generalization

— exhaustive evidence is too complicated or too extensive for the learner to
handle.

 Providing limited information is not always a sin of omission. Here we

are going to focus on cases where it is and ask whether children
recognize it as such.




Exp 1. Design & Procedure

4 )
1. Explore

I Teach1of 1 |

One-Function Toy

wind-up
mechanism

The toy does
one thing!

| Teach 1 0of 4

Four-Function Toy

N=40,6-7yrs(M=6.94)

A > . Q
) The toy does

four things!

Gweon, Pelton, & Schulz, 2011, Cog Sci, and in prep




Exp 1. Design & Procedure

I Teach1of 1 |

One-Function Toy

wind-up
mechanism

wind-up
mechanism

N=40,6-7vyrs (M=6.94)

[

2. Observe

\_

This is how my toy
works! (teach the
wind-up mechanism)

1. TOY TEACHER

3

STUDENT

Gweon, Pelton, & Schulz, 2011, Cog Sci, and in prep




Exp 1. Design & Procedure

I Teach1of 1 |

One-Function Toy

wind-up
mechanism

wind-up
mechanism
N=40,6-7yrs(M=6.94)

This is how my toy
works! (teach the
wind-up mechanism)

1. TOY TEACHER

R

“how helpful was
the teacher?”

STUDENT
Gweon, Pelton, & Schulz, 2011, Cog Sci, and in prep




* Exclusion criteria

“how helpful was

the teacher?” CORRECT TEACHER INCORRECT TEACHER

— Correct Teacher < Incorrect Teacher (N=4)

— No significant difference between conditions; mean: 14.9 (Correct) vs. 3.4
(Incorrect)

* Prediction

— Although the teachers provide identical demonstrations in both
conditions, children should rate the teacher lower in the “Teach
1 of 4” condition

Gweon, Pelton, & Schulz, 2011, Cog Sci, and in prep




Ratings for Toy Teacher

1

* k

“how helpful was
the teacher?” O Teach 1 of 1

Teach 1 of 4

**: p <0.01 (Mann-Whitney U)




We want the truth....

?’66\ ‘6\-6‘ B o
&o& \ol \
A1 = > 2
L 2. | §
...and the whole truth.
Teach all there is Leave out a few..

Does children’s evaluation of teachers affect
how they learn from them?




Exp 2. Design & Procedure

Teach 4 of 4

Four-Function Toy

Now, here’s
another toy!
I’ll show you

This is
how my
toy
works!

Free Play

=4 &

STUDENT
6-year-olds (M = 6.45 yrs) N=20 per condition Gweon, Pelton, & Schulz, 2011, Cog Sci, and in prep




Teach1of1

Exp 2. Predictions

Teach 1 of 4

One- Four-
Function Function

Toy Toy
“the toy probably “the toy probably
does ONE thing”

Constrained
Exploration

does MORE THAN ONE thing”

Exploration

Teach 4 of 4

Four-
Function Toy

”they probably “the toy probably
does ONE thing” does FOUR things”

Broader
_ Exploration

Constrained
Exploration




Free Play with the 2"d Toy

1 OO % time spent on the demonstrated part (squeaker)
during the first 30 seconds of free play

60 -
40 -
20 -

squeaker

% %k *

constrained
exploration

0 Teach 1 of 1 Teach 1 of 4 Teach 4 of 4

Pairwise comparisons
* p< 0.05, ** p< 0.005 Mann-Whitney U




Function 1

, e S
* When the teacher provides “ép@ Function 37

“Not Enough Information” .... [ runction2e Function 47

‘/ — do children recognize “sins of omission” as failures?
‘/ — evaluate others accordingly?

‘/ — modulate their learning based on such evaluations?

— i.e. more self-guided exploration when in doubt

Learn from Learn from
Exploration ‘ Others
\ )
A~
.
\ _/

Piaget (1971) Vygotsky (1978)




Today’s talk

e Children’s generalizations depend on how
evidence is sampled

e Children infer the relative probability of
hypotheses and choose interventions
most likely to achieve desired outcomes.

e Children isolate variables to distinguish
competing hypotheses

e Children evaluate expert knowledge to decide
whether to learn from instruction or ‘
exploration




How do children learn?

¢ Children learn from statistical evidence

e Children’s beliefs affect their interpretation of statistical evidence
¢ Children distinguish genuine causes from spurious associations

¢ Children selectively explore ambiguous or confounded evidence

¢ Children introduce unobserved variables to explain data otherwise
anomalous with respect to their prior beliefs

e Children’s generalizations depend on how evidence is sampled

¢ Children infer the relative probability of competing hypotheses and
choose interventions most likely to change target outcomes

¢ Children isolate variables to distinguish competing hypotheses

¢ Children rely on expert knowledge and trade-off instruction and
exploration




“There Is something fascinating about science, one gets such
wholesale returns of conjecture out of such a trifling investment in
fact” ( Mark Twain, 1883)
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