

Politiques d'encouragement à l'émergence des nouvelles technologies (Thomas Sterner)

Les scénarios comme outils pour la négociation internationale sur le climat Patrick Criqui, Grenoble

> Thomas Sterner Chaire Développement durable - Environnement, énergie et société

RESEARCH

A Second Market Failure!

Est-ce que vous seriez riches ?

CO₂

1. Ship off-loads iron

2. Iron causes growth of phytoplankton, which capture CO₂

Dead plankton sink

4. Some reach depths where carbon may stay for 100 years or more

MASDAR O-carbon and O waste city.

WHAT TYPE OF CELL?

Feed-In tariffs?

"Ordinary Cleaning"

Masdar City

- O-carbon and O waste city.
- \$22 billion city, covers 6 sq kilometres,
- Solar, wind & other renewables.
- Motor vehicles banned.
- 1,500 companies; transparent laws business-friendly atmosphere.

Abu Dhabi: Statistics

- Population/capita >3
- Price of Energy ~ 0
- Price of Labour ~ 0
- Price of Money ~ 0

But we all live in Masdar...

- Prices Wrong --> Market undersupplies R&D
- How are you deciding 2/3 glass window? Next car?
- Subsidize R&D but....
- Put billions into research \rightarrow articles.
- HOW get technologies that are useful for a shadow price of say 75\$/ton CO2?

2 Market Failures:

- Price on carbon
 - And
- Subsidies to R&D
- Or Deployment policies:
- Overcome pathdependency, LBD, scale issues, network externalities
- Risk

Climate Policy, Prudence & Innovation

Carolyn Fischer and Thomas Sterner RFF and U. of Gothenburg

Introduction

- Uncertainties about damages
- Many solutions for abatement: solar, nuclear, efficiency, CCS
- R&D can lower costs

Uncertainties

- Climate sensitivity °C/*2 CO₂
- Feedback (clouds, CH₄, albedo..)
- Feedback (Soc.-pol:conflict/wars)
- \rightarrow Uncertain TARGET

2 strategies for now:

Abatement, reduce future effort to meet target

• R&D: lower cost of future abatement

• Effect of <u>target uncertainty</u> ?

General Model

• 2-period model

- (uncertainty resolved in 2)

• Certain cost for techn. i

-Increasing in abatement $A = c^i(A_t^i, K_t^i)$

– Decreasing in knowledge stock K

Uncertain benefit of cum. abatement B
→ uncertain target

$$T = \sum_i (A_1^i + A_2^i)$$

Uncertainties

- Focus on uncertainty in climate
- Not uncertainty in R&D

Marginal cost of climate abatement

Marginal cost of climate abatement

Marginal cost of climate abatement

How model Gains to Additional First-Period Abatement?

How model Gains to Additional First-Period Abatement?

Gains to R&D

But our interest is still more complex: We are interested in uncertainty in the target!

Gains to Additional First-Period Abatement (No Backstop)

Gains to Additional First-Period Abatement (No Backstop)

Gains to Abatement Cost Reductions (No Backstop)

Role of technology is different!

- With A1, there is symmetry w r t uncertainty. If benefits are uncertain → might be bigger /smaller but change is symmetric →EV unchanged.
- Investments in R&D, MAC at time 2 is lowered This is more important if B bigger than expected
- More uncertainty more R&D!
- But not more abatement

With backstop technology...

- Benefits of conventional abatement truncated in high-cost scenarios
- Uncertainty not an argument for R&D in conventional technology nor abatement.
- Uncertainty → more backstop R&D

Gains to Early Abatement with Backstop

Gains to Cost Reductions in Regular Technology

Nouvelles technologies

BloombergBusiness	$[\sim]$	News	Markets	Insights	Video	
Fossil	F	uel	s Ju	ist L	ost the	
Race A	40	air	nst F	Ren	ewables	
This is the begi	nnir	ng of th	e end.			
by Tom Randall						

April 14, 2015 - 10:27 PM CEST

The battle is over ?

Net electricity generating installations in the EU, 2000-2014

Finow Tower I&II, Tyskland

Global solar and wind capacity

BnetzA

Shares of Electricity production

• Wind 42 % Denmark

Solar 8% Germany

- Vindkraft Danmark 42% 2015 (ca 20% 2012)
- July 25th PM renewable 78% German demand

Blade runner

Installed wind capacity, gigawatts

Economist.com

Symbols: Solar airplanes, Superbowl?

In Bangladesh, one solar rooftop is installed every minute!

Solar bids now within range of Coal fired in India.

Solar PV Capacity Growth

Estimates of cost of lithium-ion batteries for use in electric vehicles

Instruments

Fischer Make instr. as direct as possible. Subsidy for technology motivated by techn spillover & incomplete intellectual property rights. But Pr of Carbon still wins.

	Emissions	Tradable	Output tax	Renewables	Renewables	Renewables
	price	emissions	on fossil	portfolio	production	research
		perform. std.	generation	standard	subsidy	subsidy
Reduce emissions intensity of fossil fuels	Yes	Yes	No	No	No	No
Energy conservation (via electricity price increase)	Yes	It depends	Yes	It depends	No	No
Subsidy for renewable energy output	No	Yes (implicit)	No	Yes (implicit)	Yes	No
Subsidy for R&D	No	No	No	No	No	Yes

Table 1. Incentives from alternative policies

Dong FIT vs. RPS

- The more market the better ... RPS
- The Weitzman PvsQ MC flat so RPS better
- FIT reduces uncertainty much more for wind producer. Certificates not accepted by banks ...
- Dong finds more wind cap with FIT (2GW)
- Yes this was CSTS with 50 + countries.

Most Important PV Incentives

- Upfront costs:
 - Government rebates of 30% upfront cost down to 10% starting in 2016
 - State and local incentives
- Solar generation:
 - Net Energy Metering: Utilities pay customers retail rates for their solar generation in excess of their consumption - "run the meter backwards"

Net Energy Metering (NEM)

 Pay for net load (blue area), receive retail prices for excess generation (dark green area)

kWh/month

- Paid for excess generation at marginal block rates
- > High energy users benefit most from NEM

Benefit = avoided rate + payment for excess

Highest benefit when solar generated at peak times

PV at Odds with Utilities

- NEM allows customers to reduce their contribution to fixed cost recovery
- Shifts costs to non-NEM customers

Utilities are beginning to worry about the impacts of NEM as PV shares increase

What are utilities proposing?

- Higher fixed charges
- Solar-specific fixed charges
 - Arizona Public Service: monthly \$0.70/kW of installed capacity
- Minimum bill charges
 - Massachusetts (not passed by legislature), Virginia (passed)
- Value of Solar Tariff
 - Minnesota: proposed a method for each utility to calculate true value of solar to replace NEM
 - Austin Energy Value of Solar Tariff: \$0.11/kWh

Value of Solar Tariff

- Alternative compensation mechanism for generation
 - Fixed payment per kWh generated over the lifetime of the system
- Intended to reflect the average value of each kWh to system and environment
 - May decrease as more PV comes online
- Customer pays for what she consumes
 - Conservation signal maintained
 - Contribution to utility fixed cost recovery may be higher

Why do utilities care about DG expansion?

• With an expansion of solar, peak may shift into evening

Solar Energy Is Cheapest Source of Power in Chile, Deutsche Says

by Vanessa Dezem

November 4, 2015 - 10:13 PM CET

Green Energy Boom Helps Chile Contain Surging Power Prices

by Philip Sanders ar	nd Vanessa Dezem
----------------------	------------------

January 28, 2016 - 10:00 AM CET

f 🍠

- Chile leads Latin America in installation of solar power
- Success achieved without the help of government incentives

f y

- Prices in sunny province approach cost of fossil fuels
- Winning bids range from 4.34 to 4.36 rupees/kilowat

£3 993

2.3K

...