
Transient execution attacks and 
defenses

Frank Piessens

Seminar for the Software Security course

21/04/2022

1



Overview

2

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



System model: a shared platform

• A platform runs programs from multiple stakeholders
• Isolation mechanism isolates these programs

• The platform optionally supports communication between these programs

• Many systems are such shared platforms:
• Cloud

• Mobile

• Desktop

• A variety of isolation mechanisms is used to limit interference between 
code from different stakeholders
• Process isolation, virtual machines, enclaved execution, software-based isolation, …

• You have seen examples of such isolation mechanisms in an earlier lecture

3



processor

Victim
Program

Attacker
Program

Microarchitectural attacks

• Attacker code and victim code run on the same computing platform
• They are architecturally isolated from each other (e.g., process isolation)

• But they share microarchitectural resources
• Architectural state: state as defined in the ISA spec (memory, registers, …)

• Microarchitectural state: additional state in the processor implementation, e.g., for 
performance improvements (caches, branch predictors, various CPU buffers, …)

4

Shared microarchitectural resources:
caches, branch predictors, …

ISA specification



Relevant for security-critical software for a 
long time
• Instances of microarchitectural side-channel attacks have been known 

for 15+ years
• E.g., cache timing attacks that were covered in an earlier lecture
• Ge et al., A survey of microarchitectural timing attacks and countermeasures on 

contemporary hardware, J. Cryptographic Engineering, 2018

• The crypto community has developed solid countermeasures
• E.g., constant-time programming
• Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016

5



Transient execution attacks changed the game

• Spectre, Meltdown and Foreshadow (all publicly disclosed in 2018) 
showed how speculative and out-of-order execution significantly 
amplified the problem of microarchitectural attacks
• Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

• Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security 2018

• Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution, USENIX Security 2018

• Many other variants followed: RIDL, ZombieLoad, Fallout, LVI, …
• https://mdsattacks.com/

• https://cpu.fail/

• Strong academic and industry impact

6

https://mdsattacks.com/
https://cpu.fail/


Many variants

• Classification tree from:
• Canella et al., A Systematic 

Evaluation of Transient Execution 
Attacks and Defenses, Usenix
Security 2019.

• Further extended and 
maintained at:
• https://transient.fail/

7



Academic and industry impact

• 30+ CVE’s in the 2017-2021 timeframe

• Significant efforts by technology giants to mitigate the risks

8



Towards a principled understanding

• Both the discovery of vulnerabilities as well as the development of 
countermeasures has been a productive but chaotic process
• Academics compete for finding issues first
• Companies protect their customers through embargos and ad-hoc countermeasures

• But this class of vulnerabilities is important enough to deserve a systematic 
foundational study
• How should we model processors to reason about microarchitectural vulnerabilities, 

attacks and countermeasures? What is the exact security objective?
• This seminar will follow the language-based approach, of which many instances 

exist: 
• Mcilroy et al., Spectre is here to stay: An analysis of side-channels and speculative execution,arXiv 2019.
• Disselkoen et al., The Code That Never Ran: Modeling Attacks on Speculative Evaluation, IEEE S&P 2019.
• Cauligi et al., Constant-time foundations for the new Spectre era, PLDI 2020.
• Guanciale et al., InSpectre: Breaking and Fixing Microarchitectural Vulnerabilities by Formal Analysis, CCS 2020.
• Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021.
• (this list is not complete)

9



Overview

10

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



A simple Instruction Set Architecture (ISA) model

Example program:

11



A simple Instruction Set Architecture (ISA) model

Example program:

12

Memory:
a 0

i 0

sum 0

r0 0

pc=0
Registers:

…

1: 4

0: 5



Base semantics

Program:

Memory:

a 0

i 0

sum 0

r0 0

pc=0

a 0

i 0

sum 0

r0 1

pc=1

a 0

i 0

sum 0

r0 1

pc=2

a 0

i 0

sum 0

r0 5

pc=3

a 0

i 0

sum 5

r0 5

pc=4

a 0

i 1

sum 5

r0 5

pc=5

a 0

i 1

sum 5

r0 5

pc=0

a 0

i 1

sum 5

r0 1

pc=2

a 0

i 1

sum 5

r0 4

pc=3

a 0

i 1

sum 9

r0 4

pc=4

a 0

i 2

sum 9

r0 4

pc=5

a 0

i 2

sum 9

r0 4

pc=0

a 0

i 2

sum 9

r0 0

pc=1

a 0

i 2

sum 9

r0 0

pc=6

…

1: 4

0: 5

a 0

i 1

sum 5

r0 1

pc=1

13

…



Architectural isolation

• We think of architectural state as securely partitioned
• Programs by different stakeholders are (architecturally) isolated from one 

another

• At the level of abstraction of the ISA, no information leaks between ISA 
programs of different stakeholders

Victim
Program,
Memory,
Registers

Attacker
Program,
Memory,
Registers

Shared microarchitectural resources:
caches, branch predictors, …

14

ISA specification



Overview

15

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Out-of-order and speculative execution

• Transient execution attacks exploit processor features called out-of-
order and speculative execution

• The basic idea is:
• Rather than executing one instruction at a time, fetch many instructions into 

a buffer of in-flight instructions

• Execute instructions from this buffer, possibly out-of-order 
• This avoids having to wait while, for instance a slow memory load is happening

• Commit the effect of the instructions to the architectural state in order

• Prediction and speculation are used to speed things up
• For instance, fetching instructions beyond a branch requires prediction

16



Out-of-order and speculative execution

i 0

n 0

r0 0

rob

pc=0

*

17

i 0

n 0

r0 0

rob

pc=0

i 0

n 0

r0 0

rob

pc=0

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1



* * *

* * * *

correct
prediction

incorrect
prediction

18

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 7

r0 1

rob

pc=3

i 4

n 7

r0 1

rob

pc=3

i 17

n 7

r0 1

rob

pc=6

i 4

n 7

r0 1

rob

pc=4



Predictions and scheduling

• The semantics requires the processor to make choices, for instance 
for predicted values
• These happen based on heuristics and observing past behavior

• Hence, they can also be influenced by an attacker
• E.g., “training the branch-predictor”

• How should we model this influence of the attacker?

19



Overview

20

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Attacker model

• Transient execution attacks build on:
• Classic microarchitectural side-channel and covert-channel attacks, 

• For instance, cache attacks, but there are many more

• The fact that the attacker can influence the speculative and out-of-order execution
• For instance, by “training” the branch predictor, but there are many other ways

• To make reasoning about these attacks manageable yet secure, we 
overapproximate and simplify
• The “constant-time leakage model” models what an attacker can learn through 

classic side-channels
• We give the attacker full control over predictions and scheduling
• Note that this significantly simplifies attack examples!

• Doing the example attacks we will discuss on a real system can be very labor-intensive

21



• Extend base semantics to specify what leaks at each step:

The constant time leakage model

Program:

Memory:

a 0

i 0

sum 0

r0 0

pc=0

a 0

i 0

sum 0

r0 1

pc=1

a 0

i 0

sum 0

r0 1

pc=2

a 0

i 0

sum 0

r0 5

access @0
pc=3

a 0

i 0

sum 5

r0 5

pc=4

a 0

i 1

sum 5

r0 5

pc=5

a 0

i 1

sum 5

r0 5

pc=0

a 0

i 1

sum 5

r0 1

pc=2

a 0

i 1

sum 5

r0 4

access @1
pc=3

a 0

i 1

sum 9

r0 4

pc=4

a 0

i 2

sum 9

r0 4

pc=5

a 0

i 2

sum 9

r0 4

pc=0

a 0

i 2

sum 9

r0 0

pc=1

a 0

i 2

sum 9

r0 0

pc=6

…

1: 4

0: 5

a 0

i 1

sum 5

r0 1

pc=1

22

…



Leak gadgets

• In later attacks, we rely on code snippets that leak secrets through a 
microarchitectural side-channel
• A wide variety of such snippets exist

• In some scenarios, the attacker can construct them, in other scenarios the 
attacker has to find them in victim code

• For simplicity, we will define:

(where secret is the name of a register containing the secret to be leaked, and dummy is an 
otherwise unused register)

23



Attacker influence on the execution

• Prediction and scheduling choices can be done by the attacker within constraints 
defined in the semantics, e.g.:
• Fetch is only possible if the reorder buffer has room
• Executing an instruction in the reorder buffer is only possible if its dependencies are satisfied
• Commit is only possible for the oldest instruction in the reorder buffer, and only after it has 

fully executed

24

i 0

n 0

r0 0

rob

pc=0

*

i 0

n 0

r0 0

rob

pc=0

i 0

n 0

r0 0

rob

pc=0

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

fetch

fetch
execute 0
execute 1

fetch
commit
execute 1

fetch (predict taken) 
fetch (predict not taken)
execute 0



Overview

25

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Modeling transient execution attacks

• We have seen that instructions can execute transiently

• This impacts security in two ways:
• Transiently executed instructions can also leak information to the attacker

• On rollback, architectural effects are discarded, but microarchitectural effects remain

• Transiently executed instructions can access information expected to be 
inaccessible
• Because the information is protected by software -> “Spectre”-style attacks

• Because it is in another hardware protection domain -> “Meltdown”-style attacks

26



Spectre examples

• We will discuss a couple of Spectre examples

• In each example:
• There is code operating in a program state containing secrets

• According to the base ISA semantics, the code does not leak these secrets
• Even taking into account “classic” side-channels

• For instance, all the examples satisfy the constant-time coding discipline

• Yet, because of speculation and out-of-order execution, the secrets do leak

27



Example 1: Spectre v1 (Spectre-PHT)
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

28

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



Example 2: Spectre v2 (Spectre-BTB)
Memory:

1234: 0

… …

8: 20

7: 1234

… …

0: 0

pc=0

fptr 0

r0 0

rob

*

29

pc=1
access @3
pc=0

access @1234
pc=1

…

fptr 0

r0 0

rob

*

fptr 0

r0 1234

rob

*

fptr 0

r0 0

rob

*



Example 3: Spectre v4 (Spectre-STL)
Memory:

1234: 0

… …

7: 1234

… …

0: 0

pc=0

r0 0

rob

*

30

pc=1
access @7
pc=1

access @1234
pc=1

…

r0 0

rob

*

r0 0

rob

*

r0 0

rob

*



Transient execution attacks

• These were a couple of simplified
Spectre attacks
• See https://transient.fail/ for more variants 

and more details

• Note the devastating nature of this kind 
of attack on software-enforced 
confidentiality properties

31

https://transient.fail/


Meltdown example: faulting loads

• Surprisingly, memory loads that raise a fault (e.g., page fault or 
protection fault) still execute transiently (on some processors)

• The essence of Meltdown:

• Later papers have shown that faulting loads (or loads that receive 
“microcode assists”) compute transiently on all kinds of potentially 
sensitive data

32



See again transient.fail for an overview

33



General transient execution attack structure

1. Prime the micro-architectural state

2. Trigger transient execution (misprediction or fault)

3. Send on the covert channel

4. CPU flushes architectural effects of transient execution

5. Read from the covert channel

Source: Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, A systematic 
evaluation of transient execution attacks and defenses, Usenix Security 2019

34



Overview

35

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Defenses

• Defenses are being investigated at multiple levels:
• Hardware mitigations 

• For instance, do not forward values from faulting loads to subsequent instructions

• Mitigations in the Operating System
• For instance, do not place the kernel in the same virtual address space as user code

• Mitigations in the compiler
• For instance, insert instructions to stop out-of-order execution, or rewrite code to 

remove the vulnerability

• Meltdown-style vulnerabilities are being addressed in hardware

• For Spectre-style vulnerabilities, good defenses are still the subject of 
ongoing research

36



Security objective of defenses

• Transient execution attacks cause unexpected information flows, and 
hence the security of a program against these attacks can be defined 
using techniques from information flow security

• We define a policy as an equivalence relation over program states
• The intuition is that the policy relates states that should be indistinguishable

to an attacker. Typically, one defines a policy by marking secrets, and two 
states are equivalent if they only differ in secrets.

• A program P is secure on hardware H if executing P on H starting from 
any two equivalent initial states will produce identical observations 
for the attacker
• Security can be achieved by software mitigations, or by hardware mitigations, 

or by a combination of both

37



Reconsider the Spectre v1 example:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

38

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



A hardened version of the program is secure:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

39

access @0
pc=0

a 1

len 0

i 2

r0 0

rob

*

access @1
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

…

len:



Hardening with speculation barriers
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

40

a 1

len 0

i 2

r0 0

rob

*

pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 2

i 2

r0 0

rob

*

pc=6

…

access @0
pc=0

len:



Different scenarios for defenses

• Attacks can be decomposed in two steps:
1. Accessing the secret
2. Leaking it through a microarchitectural channel

• Three scenarios:
• Access and leak are both non-transient

• This is a classic side-channel attack, and it can be defended, e.g., with CT programming
• Access is non-transient, leak is transient

• The “secure programming” scenario, for instance cryptographic code
• Can we extend the CT programming discipline to also close these leaks?

• Both access and leak are transient
• The “sandboxing” scenario: victim host program executes attacker code using software-based 

isolation
• Typical example: a browser running WebAssembly code

• Sufficient condition for security: hardware ensures that transiently accessed data does not 
leak

41



Overview

42

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Conclusions

• Transient execution attacks are a fundamentally new class of attacks:
• That break many important security mechanisms
• That are not easy to defend against

• Short-term defenses have been useful but ad-hoc

• Long-term defenses are the subject of current research
• Pure software defenses against Spectre will remain important for the foreseeable 

future and are the subject of active research. 
• For a recent survey, see:

• Cauligi et al., SoK: Practical Foundations for Software Spectre Defenses, IEEE S&P 2022

• Hardware/software co-designs can offer better security/performance trade-offs
• Excellent starting point for reading more:

• Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021

43


