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System model: a shared platform

• A platform runs programs from multiple stakeholders
• Isolation mechanism isolates these programs

• The platform optionally supports communication between these programs

• Many systems are such shared platforms:
• Cloud

• Mobile

• Desktop

• A variety of isolation mechanisms is used to limit interference between 
code from different stakeholders
• Process isolation, virtual machines, enclaved execution, software-based isolation, …

• You have seen examples of such isolation mechanisms in an earlier lecture
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processor

Victim
Program

Attacker
Program

Microarchitectural attacks

• Attacker code and victim code run on the same computing platform
• They are architecturally isolated from each other (e.g., process isolation)

• But they share microarchitectural resources
• Architectural state: state as defined in the ISA spec (memory, registers, …)

• Microarchitectural state: additional state in the processor implementation, e.g., for 
performance improvements (caches, branch predictors, various CPU buffers, …)
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Relevant for security-critical software for a 
long time
• Instances of microarchitectural side-channel attacks have been known 

for 15+ years
• E.g., cache timing attacks that were covered in an earlier lecture
• Ge et al., A survey of microarchitectural timing attacks and countermeasures on 

contemporary hardware, J. Cryptographic Engineering, 2018

• The crypto community has developed solid countermeasures
• E.g., constant-time programming
• Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016
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Transient execution attacks changed the game

• Spectre, Meltdown and Foreshadow (all publicly disclosed in 2018) 
showed how speculative and out-of-order execution significantly 
amplified the problem of microarchitectural attacks
• Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

• Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security 2018

• Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution, USENIX Security 2018

• Many other variants followed: RIDL, ZombieLoad, Fallout, LVI, …
• https://mdsattacks.com/

• https://cpu.fail/

• Strong academic and industry impact
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Many variants

• Classification tree from:
• Canella et al., A Systematic 

Evaluation of Transient Execution 
Attacks and Defenses, Usenix
Security 2019.

• Further extended and 
maintained at:
• https://transient.fail/
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Academic and industry impact

• 30+ CVE’s in the 2017-2021 timeframe

• Significant efforts by technology giants to mitigate the risks
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Towards a principled understanding

• Both the discovery of vulnerabilities as well as the development of 
countermeasures has been a productive but chaotic process
• Academics compete for finding issues first
• Companies protect their customers through embargos and ad-hoc countermeasures

• But this class of vulnerabilities is important enough to deserve a systematic 
foundational study
• How should we model processors to reason about microarchitectural vulnerabilities, 

attacks and countermeasures? What is the exact security objective?
• This seminar will follow the language-based approach, of which many instances 

exist: 
• Mcilroy et al., Spectre is here to stay: An analysis of side-channels and speculative execution,arXiv 2019.
• Disselkoen et al., The Code That Never Ran: Modeling Attacks on Speculative Evaluation, IEEE S&P 2019.
• Cauligi et al., Constant-time foundations for the new Spectre era, PLDI 2020.
• Guanciale et al., InSpectre: Breaking and Fixing Microarchitectural Vulnerabilities by Formal Analysis, CCS 2020.
• Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021.
• (this list is not complete)
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A simple Instruction Set Architecture (ISA) model

Example program:
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A simple Instruction Set Architecture (ISA) model

Example program:
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Memory:
a 0

i 0

sum 0

r0 0

pc=0
Registers:

…

1: 4

0: 5



Base semantics

Program:
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…
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Architectural isolation

• We think of architectural state as securely partitioned
• Programs by different stakeholders are (architecturally) isolated from one 

another

• At the level of abstraction of the ISA, no information leaks between ISA 
programs of different stakeholders

Victim
Program,
Memory,
Registers

Attacker
Program,
Memory,
Registers

Shared microarchitectural resources:
caches, branch predictors, …
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Out-of-order and speculative execution

• Transient execution attacks exploit processor features called out-of-
order and speculative execution

• The basic idea is:
• Rather than executing one instruction at a time, fetch many instructions into 

a buffer of in-flight instructions

• Execute instructions from this buffer, possibly out-of-order 
• This avoids having to wait while, for instance a slow memory load is happening

• Commit the effect of the instructions to the architectural state in order

• Prediction and speculation are used to speed things up
• For instance, fetching instructions beyond a branch requires prediction
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Out-of-order and speculative execution
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* * *

* * * *

correct
prediction

incorrect
prediction
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Predictions and scheduling

• The semantics requires the processor to make choices, for instance 
for predicted values
• These happen based on heuristics and observing past behavior

• Hence, they can also be influenced by an attacker
• E.g., “training the branch-predictor”

• How should we model this influence of the attacker?
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Attacker model

• Transient execution attacks build on:
• Classic microarchitectural side-channel and covert-channel attacks, 

• For instance, cache attacks, but there are many more

• The fact that the attacker can influence the speculative and out-of-order execution
• For instance, by “training” the branch predictor, but there are many other ways

• To make reasoning about these attacks manageable yet secure, we 
overapproximate and simplify
• The “constant-time leakage model” models what an attacker can learn through 

classic side-channels
• We give the attacker full control over predictions and scheduling
• Note that this significantly simplifies attack examples!

• Doing the example attacks we will discuss on a real system can be very labor-intensive
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• Extend base semantics to specify what leaks at each step:

The constant time leakage model
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…
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Leak gadgets

• In later attacks, we rely on code snippets that leak secrets through a 
microarchitectural side-channel
• A wide variety of such snippets exist

• In some scenarios, the attacker can construct them, in other scenarios the 
attacker has to find them in victim code

• For simplicity, we will define:

(where secret is the name of a register containing the secret to be leaked, and dummy is an 
otherwise unused register)
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Attacker influence on the execution

• Prediction and scheduling choices can be done by the attacker within constraints 
defined in the semantics, e.g.:
• Fetch is only possible if the reorder buffer has room
• Executing an instruction in the reorder buffer is only possible if its dependencies are satisfied
• Commit is only possible for the oldest instruction in the reorder buffer, and only after it has 

fully executed
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Modeling transient execution attacks

• We have seen that instructions can execute transiently

• This impacts security in two ways:
• Transiently executed instructions can also leak information to the attacker

• On rollback, architectural effects are discarded, but microarchitectural effects remain

• Transiently executed instructions can access information expected to be 
inaccessible
• Because the information is protected by software -> “Spectre”-style attacks

• Because it is in another hardware protection domain -> “Meltdown”-style attacks
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Spectre examples

• We will discuss a couple of Spectre examples

• In each example:
• There is code operating in a program state containing secrets

• According to the base ISA semantics, the code does not leak these secrets
• Even taking into account “classic” side-channels

• For instance, all the examples satisfy the constant-time coding discipline

• Yet, because of speculation and out-of-order execution, the secrets do leak
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Example 1: Spectre v1 (Spectre-PHT)
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*
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pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



Example 2: Spectre v2 (Spectre-BTB)
Memory:

1234: 0

… …

8: 20

7: 1234

… …

0: 0

pc=0

fptr 0

r0 0

rob

*

29

pc=1
access @3
pc=0

access @1234
pc=1

…

fptr 0

r0 0

rob

*

fptr 0

r0 1234

rob

*

fptr 0

r0 0

rob

*



Example 3: Spectre v4 (Spectre-STL)
Memory:

1234: 0

… …

7: 1234

… …

0: 0

pc=0

r0 0

rob

*
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pc=1
access @7
pc=1

access @1234
pc=1

…

r0 0

rob

*

r0 0

rob

*

r0 0

rob

*



Transient execution attacks

• These were a couple of simplified
Spectre attacks
• See https://transient.fail/ for more variants 

and more details

• Note the devastating nature of this kind 
of attack on software-enforced 
confidentiality properties
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Meltdown example: faulting loads

• Surprisingly, memory loads that raise a fault (e.g., page fault or 
protection fault) still execute transiently (on some processors)

• The essence of Meltdown:

• Later papers have shown that faulting loads (or loads that receive 
“microcode assists”) compute transiently on all kinds of potentially 
sensitive data
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See again transient.fail for an overview

33



General transient execution attack structure

1. Prime the micro-architectural state

2. Trigger transient execution (misprediction or fault)

3. Send on the covert channel

4. CPU flushes architectural effects of transient execution

5. Read from the covert channel

Source: Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, A systematic 
evaluation of transient execution attacks and defenses, Usenix Security 2019

34



Overview

35

• Introduction

• A simple Instruction Set Architecture (ISA) model

• Out-of-order and speculative execution

• Modeling the attacker

• Transient execution attacks by example

• Towards defenses

• Conclusions



Defenses

• Defenses are being investigated at multiple levels:
• Hardware mitigations 

• For instance, do not forward values from faulting loads to subsequent instructions

• Mitigations in the Operating System
• For instance, do not place the kernel in the same virtual address space as user code

• Mitigations in the compiler
• For instance, insert instructions to stop out-of-order execution, or rewrite code to 

remove the vulnerability

• Meltdown-style vulnerabilities are being addressed in hardware

• For Spectre-style vulnerabilities, good defenses are still the subject of 
ongoing research
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Security objective of defenses

• Transient execution attacks cause unexpected information flows, and 
hence the security of a program against these attacks can be defined 
using techniques from information flow security

• We define a policy as an equivalence relation over program states
• The intuition is that the policy relates states that should be indistinguishable

to an attacker. Typically, one defines a policy by marking secrets, and two 
states are equivalent if they only differ in secrets.

• A program P is secure on hardware H if executing P on H starting from 
any two equivalent initial states will produce identical observations 
for the attacker
• Security can be achieved by software mitigations, or by hardware mitigations, 

or by a combination of both
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Reconsider the Spectre v1 example:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*
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pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



A hardened version of the program is secure:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*
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access @0
pc=0

a 1

len 0

i 2

r0 0

rob

*

access @1
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

…

len:



Hardening with speculation barriers
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*
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a 1
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i 2
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*

pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 2

i 2

r0 0

rob

*

pc=6

…

access @0
pc=0

len:



Different scenarios for defenses

• Attacks can be decomposed in two steps:
1. Accessing the secret
2. Leaking it through a microarchitectural channel

• Three scenarios:
• Access and leak are both non-transient

• This is a classic side-channel attack, and it can be defended, e.g., with CT programming
• Access is non-transient, leak is transient

• The “secure programming” scenario, for instance cryptographic code
• Can we extend the CT programming discipline to also close these leaks?

• Both access and leak are transient
• The “sandboxing” scenario: victim host program executes attacker code using software-based 

isolation
• Typical example: a browser running WebAssembly code

• Sufficient condition for security: hardware ensures that transiently accessed data does not 
leak
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Conclusions

• Transient execution attacks are a fundamentally new class of attacks:
• That break many important security mechanisms
• That are not easy to defend against

• Short-term defenses have been useful but ad-hoc

• Long-term defenses are the subject of current research
• Pure software defenses against Spectre will remain important for the foreseeable 

future and are the subject of active research. 
• For a recent survey, see:

• Cauligi et al., SoK: Practical Foundations for Software Spectre Defenses, IEEE S&P 2022

• Hardware/software co-designs can offer better security/performance trade-offs
• Excellent starting point for reading more:

• Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021
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