
TWO TOPICS IN NONCOMMUTATIVE GEOMETRY

HENRI MOSCOVICI

My lectures were devoted to two topics in Noncommutative Geometry on which I
have been working in the last several years. The common thread between them
resides in a specific feature of noncommutative symmetry, which underlies both
themes, albeit in a different manner.

1. Hopf algebra cohomology and Diff-equivariant characteristic
classes

The geometric significance of Hopf algebras as well as the Hopf algebra version
of cyclic cohomology emerged from the work of A. Connes and myself on the lo-
cal index formula for transversely elliptic operators on foliations [2, 3]. While the
transverse characteristic classes of foliations are well described in terms of Gelfand-
Fuks Lie algebra cohomology, in the K-homological context the appropriate tool
turned out to be the Hopf cyclic cohomology. Moreover, the Hopf-algebraic ap-
proach widens the scope of reachable applications, as illustrated by our work on
modular Hecke algebras [4], which revealed hidden geometric structures underlying
classical constructs in the theory of modular forms.
After a brief review of the above mentioned origins and motivation for the subject,
I outlined the subsequent progress made in my joint work with B. Rangipour.
In [9] we have extended the construction of the Hopf algebra Hn associated to the
general pseudogroup of local diffeomorphisms of Rn to all infinite primitive Lie-
Cartan pseudogroups of local diffeomorphisms. The Hopf algebra HΠ associated
to such a pseudogroup Π is essentially a “repackaging” of the infinite-dimensional
Lie algebra of Π. Like Hn it arises naturally through its tautological action on
the étale groupoid associated to Π. On the other hand, HΠ can be reconstructed
by a “bending mechanism” out of the Lie algebra of Π, in the form of a bicrossed
product of two Hopf algebras of classical type – the universal enveloping algebra of
a finite-dimensional Lie sub algebra and the Hopf algebra of regular functions on a
formal pronilpotent group.
The bicrossed product realization played a critical role in the explicit determina-
tion of the Hopf cyclic cohomology of these Hopf algebras. In our paper with A.
Connes [3], the cyclic cohomology of the Hopf algebra Hn was shown to be isomor-
phic to the Gelfand-Fuks cohomology, bypassing any direct computation (except
for n = 1). To gain more insight into the computational aspects, in the work with
B. Rangipour [8, 9, 10] we relied on the bicrossed product construction in order to
disassemble the original cyclic bicomplex defining the Hopf cyclic cohomology of the
Hopf algebras HΠ and then reassemble it into a series of progressively more man-
ageable quasi-isomorphic cohomological models. These are bicocyclic bicomplexes
which mix Lie algebra cohomology with coefficients and coalgebra cohomology with
coefficients, with the essential distinction (by comparison with Lie algebra coho-
mology) that the coefficients always “act back”. The refinement of the Hopf cyclic
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cohomological apparatus allowed us to explicitly identify, as a Hopf cyclic complex,
the image of the canonical homomorphism from the Gelfand-Fuks complex to the
Bott complex of Diff-equivariant cohomology.
Relying on the latter implementation of the Hopf cyclic complex for the Hopf alge-
bra Hn, I have recently succeeded to construct explicit representative cocycles for all
the classes in the periodic Hopf cyclic cohomology of Hn as well as in its cohomology
relative to the Lie subalgebras on and gln. I concluded my exposition by showing
how this concrete realization of the universal Hopf cyclic characteristic classes of
foliations can be essentially “imported” from the Bott-Chern-Weil construction of
characteristic classes of foliations in terms of Diff-equivariant cohomology.

2. Spectral functionals and the geometry of noncommutative tori

In Noncommutative Geometry the paradigm of space as a manifold formed of points
labeled by numerical coordinates is replaced by one of a much more general nature,
in which the coordinates are operator-valued and not required to commute, as
in quantum physics. The general topological content of such a space resides in
its representation as a C∗-algebra, while the extra refinement of a topo-geometric
structure is captured, in Connes’ spectral triple template, by adding to the datum of
the Hilbert space, in which the algebra of coordinates A is represented by bounded
operators, that of an unbounded self-adjoint operator D playing the role of the
inverse line element, i.e. of the Dirac operator, and having bounded commutators
with the operator-valued coordinates. For the global treatment of these spaces there
are well-developed algebraic and analytic tools available, having been successfully
adapted and upgraded from their classical topological context. On the other hand
the local geometric concepts are much less transparent, inasmuch as they can only
be accessed via spectral functionals related to the high frequency behavior of the
spectrum of D coupled with the action of the algebra of coordinates (as illustrated
for example by the local index formula [2]). In particular the notion of intrinsic
curvature, which lies at the very core of Geometry, remains quite difficult to grasp.
As the most primary form of classical curvature arises for Riemann surfaces, it was
natural to look first at noncommutative 2-tori, the simplest and best understood
examples of noncommutative manifolds.
The setup for the computation of the scalar curvature of the noncommutative 2-
torus T2

θ, θ /∈ Q, equipped with a translation-invariant conformal structure was
developed in the work of Connes-Tretkoff [6], initiated in late 1980’s. They proved
the analogue of the Gauss-Bonnet formula for the conformal metric, which required
only the total integral of the curvature. The full calculation of the curvature was
completed in [5] with the assistance of Mathematica software, and was indepen-
dently checked in [7] using a different software. The curvature formulae involve
second order (outer) derivatives of the Weyl factor, and as a new and crucial ingre-
dient they also involve the modular operator of the non-tracial weight associated
to the Weyl factor.
In my talks I briefly reviewed Connes’ pseudodifferential calculus for C∗-dynamical
systems [1], which is the main analytical tool behind the curvature computation. I
then proceeded to present the main new results obtained in our joint paper [5]. First
of all, we succeeded to express by a closed formula the Ray-Singer log-determinant
of D2, issue which was left open in [6]. The gradient of the log-determinant func-
tional was then shown to coincide with the local curvature, which arises as a sum of
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two terms, each involving two functions in the modular operator, of one and respec-
tively two variables. Computing the gradient by two different methods led to the
proof of a deep internal consistency relation between these two distinct constituents,
and at the same time elucidated the meaning of the intricate two operator-variable
function. As a third fundamental result, we established the analogue of the clas-
sical result which asserts that in every conformal class the maximum value of the
determinant of the Laplacian for metrics of a fixed area is uniquely attained at
the constant curvature metric. The key ingredient for the proof is the positivity of
a certain operator-valued function. Restricted to real scalars this is a generating
function for Bernoulli numbers, known to play a prominent role in the theory of
characteristic classes of deformations, where it is merely used however as a formal
power series.
In the last part of my exposition I outlined an extension of Connes’ pseudodiffer-
ential calculus, obtained in joint work with M. Lesch, adapted to incorporate the
Morita equivalence, a purely noncommutative feature. This should allow to extend
the Ray-Singer log-determinant functional to Heisenberg bimodules over pairs of
Morita equivalent noncommutative tori, and relate it to the Yang-Mills functional of
Connes-Rieffel in order to show that its extreme values occur only at the Hermitian
metrics of constant curvature.
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