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Figure 5. The Consequences of DNA
Damage in Aging and Neurodegeneration
Left: erroneous repair of DNA damage can lead to
the formation of mutations, which are irreversible
and perturb tissue homeostasis in the nervous
system by essentially promoting the formation of
mosaics. Occasionally, mutations could occur in
DNA repair factors (such as FUS, see text) and
this can manifest in profound neurodegeneration
(red arrow). Middle: in contrast, although revers-
ible, the accumulation of unrepaired lesions due to
decreased DNA repair activities can block the
transcription of genes encoding for critical neural
functions and downregulate their activity, leading
to cognitive decline. Right: DNA damage also
affects the epigenetic landscape. DNA damage-
induced epigenetic changes can accrue over time
as “epimutations” and affect gene expression. In
addition, the redistribution of epigenetic modula-
tors, such as SIRT1, can trigger global changes
to the chromatin architecture, leading to large-
scale transcriptional deregulation of their normally
repressed targets, such as major satellite repeti-
tive DNA.



Gene regulation and DNA damage
in the ageing human brain

Tao Lu', Ying Pan', Shyan-Yuan Kao', Cheng LI, Isaac Kohane’,

NATURE | VOL 429 | 24 JUNE 2004 | www.nature.com/nature

Jennifer Chan® & Bruce A. Yankner'
<42 versus > 73
c 254 ® Downregulation
; a 160-
20 @ Upregulation 140- W Microarray
’ = 120, O QRT-PCR
8 ¢ = 100{ - L
£ 2 804
= 8
— a 60+
2 101 @ 40-
o 20-
,\\@0} 060\\ o\o R o <~ ‘3\ S \o& o« \«
¥ >R O'a\ o
0 - © ey
‘ fF O N @ & PSSR
(&) o & g o . (8]
\ﬂf"\ Q%Q ‘b\\\ \'\}&\ o(\&\ @Q &Q (.\\'2"”\ Oc}\% &\o(‘ "\Q\\ Young L Aged o
PP FEF & SE b - - -
_ 8 P
& P 60‘} & Q QQQ <&‘Q Calmodulin 1 — —— —
AR PN o "
&Y O ‘}yg & _(@',\‘ Ty —= o s oa@® - — —
< ‘.9\\ ‘x\\\"}\ GIuR1=—--—————_

EAAT? (N G (I S I -~ = .-

[ImHUBLIIT —— = — o e



Synaptic function
Synaptic transmission

Ca”"' homeostasis/signaling

CAMP signalling

Protein kinase C

G protein signalling

MAP kinase cascades

CaKs

GluR1

NMDA receptor 2A

GABA A receptor 33

GABA A receptor 3

Serotonin receptor 2A

Voltage-gated Na channel Il 3 (SCN2B)
Voltage-dependent calcium channel 2
Neurexin 1

Synaptobrevin 1 (VAMP1)

Synapsin Il b

~SNAP

aSNAP

RAB3A

SNAP23

Synaptophysin-like protein

Camodulin 1

Calmodulin 3

Calbindin 1 (28 kD)

Calbindin 2 {29 kD, calretinin)

CaM kinase ll

CaM kinase IV

Calcineurin B «

ATPase, Ca” ' -transporting, plasma membrane 2 (ATP2B82)
ATPase, Ca”'-transporting, plasma membrane 2 (ATP2A2)
Regucalcin (senescence marker protein)
Phospheodiesterase 4D

Adenylyl cyclase associated protein 2
PKC31

PKCy

PKCt

Rap2A

Regulator of G protein signalling 4

G protein, q polypeptide (GNAQ)
MAPK1

MAPKS

MAPKK4

Ras-GNRF

MAPKKS

14-3-3t

p21 activated protein kinase (PAK1)
CdKs5, regulatory subunit 1 {o35)

Gene regulation and DNA damage
in the ageing human brain

Tao Lu’, Ying Pan', Shyan-Yuan Kao', Cheng LI°, Isaac Kohane®,
Jennifer Chan® & Bruce A. Yankner'

NATURE | VOL 429 | 24 JUNE 2004 | www.nature.com/nature

Vesicular transport

Microtubule cytoskeleton

Kinesin 1B

Sortilin 1

Dynein (DNCHT1)

Dynamin 1-like

Trans Gelgi network protein 2

Goigi reassembly stacking protein 2
Phosphotidylincsitol transfer protein 8
Clathrin, light polypeptide

Knesin 2

VAMP3

MAP1B

MAP2

Tau

RAN binding protein 9



Gene regulation and DNA damage
in the ageing human brain

Tao Lu', Ying Pan', Shyan-Yuan Kao', Cheng LI°, Isaac Kohane®,
Jennifer Chan® & Bruce A. Yankner'

NATURE | VOL 429 | 24 JUNE 2004 | www.nature.com/nature

Stress response
Anticxidant Nenselenium glutathione peroxidase
Selencprotein P
Paraoxonase 2
Cystathionine-beta-synthase
DNA repair 8-oxoguanine DNA glycosylase
rac’-DNA glycosylase
opoisomerase | binding protein

Topoisomerase |l 3
FK506 binding protein 12-rapamycin associated protein 1

Stress Heat sheck 70 kD protein 2
Crystaiin, alpha B
Hypeoxia inducible factor 1 « (HIFT )
HIF-1 responsive RTP801
Transgiutaminase 2
053 binding protein 2
Retincblastoma-associated protein 140
Retincblastoma-like 2 {p130)
Stress 70 protein chaperone

Metal ion homeostasis Metallothionein 1G
Metallothionein 1B
Metallothionein 2A
Haem binding protein 2
Haemcglobin B
Hephaestin

1«

Inflammation
TNF-«
C type lectin
H factor {complement)-1
nterferon, gamma-inducible protein 16
nterferon regulatory factor 7
ntegrin ad
ntegrin 81



The genetics of early
telencephalon patterning:
some assembly required

Hébert J, Fishell C Nat Rev Neurosci

NATURE | VOL 429 | 24 JUNE 2004 | www.nature.com/nature

2008 vol. 9 (9) pp. 678-85

O Fetal DNA + fpg
W Fetal DNA + H,0./Fe + fpg

)

-
N
=1

Intact DNA (%)
[=2]
=]

b

26 yr ATPSAT( 77 yr ATPS5AT1a

]
o

—a— Control
—s— fpg cleavage

—a— Control
—a— fpg cleavage

Fluorescence
=3

0 0
ao 02 A N 0
o g R 0 20 40
c.a\ﬂ‘od . Ga\b‘“d o Cycle Cycle
c
g i Ca-ATPase ATP5A1a
§1 20| Calmodulin 1 120 120
5 80 80 80
§ 40 40 . 40
0% 40 B0 80 J00 120 20 40 60 B0 foo 120 020 40 60 80 100 120
Age (yr) Age (yr) Age (yr)
— "
€,20] SCN2B 120 VAMP1 120 Sortilin
g 80 80 80
B
£ a0 40 40
0 Fo &0 B0 oo 0 020 40 60 80 Joo 120 20 40 60 B0 100 120
Age (yr) Age (yr) Age (yr)
d f
5 12 =
2 "014 _ Young Aged
g s 8 g ‘ t~ > < >
= n
g T n=8 g PUL A" SN (D 6N 0 GuR G0 B
n=8 - —
< A B 08 $ Brono-dG | 1 1 e -
[a) © .
0 IgG . ME b m‘

Stable Down Upregulated.

Figure 3 DNA damage In the ageing human cortex. a, Genomic DNA from fetal cortex
does not exhibit significant DNA damage. DNA damage to the promoter regions of the
indicated genes was assayed by cleavage with the endoglycosidase FPG and quantitative
PCR. Intact DNA is the percentage detected by PCR following FPG cleavage relative to that
in uncleaved DNA. b, Ageing increases oxidative DNA damage to the mitochondrial
ATP synthase o (ATPSA 1) promoter, Shown are real-time fluorescence PCR curves from
26- and 77-year-old frontal cortical samples. Note the marked shift in PCR cycle number
following FPG cleavage of 77 yr old DNA. Values in a and b represent the mean =+ s.d.
¢, Time course of DNA damage in the ageing frontal cortex. DNA damage was assayed in
the promoters of age-downregulated genes (calmodulin 1, Ca-ATPase, ATPSA 1,
sodium channel 28 (SCN2B), VAMP1, and sortilin) in cortical samples from 26- to 106-
year-old cases and normalized to the 26-year-old value (100%). Values represent the
mean = sd.; n= 3. Asterisks indicate intracortical biopsy samples. d, DNA damage to
promoters of genes that are stably expressed, downregulated or upregulated in the aged
cortex. Shown is the fold increase in promoter DNA damage in aged cases (=70 years
old) relative to the youngest, 26-year-old case. Each point represents a gene (see ‘'DNA
damage assay' in Supplementary Methods for gene identities). Asterisk indicates

P < 0.001 relative to age-stable genes by analysis of variance (ANOVA) with post-hoc
Student-Newman-Keuls test. e, Oxidative damage to gene promoters in the aged cortex.
Shown is the fold increase in 8-oxoguanine (8-ox0-dG) incorporation into promoters of
age-stable (GAPDH, 8-tubulin and synaptojanin 2), age-upregulated (S100), and age-
downregulated genes (calmodulin 1 (CaM1), calbindin 1 (Calb1), calbindin 2 (Calb2),
sortilin and PKCry). Asterisks indicate P < 0.05 relative to GAPDH. Values represent the
mean * s.e.m.; n= 4. f Chromatin immunoprecipitation of the caimodulin 1 promoter
with a monoclonal antibody to 8-oxoguanine in aged (=73-year-old) and young (<40-
year-old) cortical samples. Input DNA and non-specific 1gG (IgG) controls are shown.
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Figure 5. The Consequences of DNA
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Left: erroneous repair of DNA damage can lead to
the formation of mutations, which are irreversible
and perturb tissue homeostasis in the nervous
system by essentially promoting the formation of
mosaics. Occasionally, mutations could occur in
DNA repair factors (such as FUS, see text) and
this can manifest in profound neurodegeneration
(red arrow). Middle: in contrast, although revers-
ible, the accumulation of unrepaired lesions due to
decreased DNA repair activities can block the
transcription of genes encoding for critical neural
functions and downregulate their activity, leading
to cognitive decline. Right: DNA damage also
affects the epigenetic landscape. DNA damage-
induced epigenetic changes can accrue over time
as “epimutations” and affect gene expression. In
addition, the redistribution of epigenetic modula-
tors, such as SIRT1, can trigger global changes
to the chromatin architecture, leading to large-
scale transcriptional deregulation of their normally
repressed targets, such as major satellite repeti-
tive DNA.
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The Swedish mutation, which is located just outside the N-terminus of the AR domain of APP, favors B-secretase cleavage in vitro and is associated with an increased level and deposition of
AB1-42 in AD brain. The Dutch and lowa mutations, which are located in the AR domain of APP, accelerate AB1-40 fibril formation in vitro. The Dutch mutation is associated with
cerebrovascular AB deposition—that is, CAA, resulting in cerebral hemorrhages and dementia in patients with AD, whereas the lowa mutation is associated with severe CAA, widespread
neurofibrillary tangles, and unusually extensive distribution of AB1-40 in plaques in AD brain. The Arctic mutation, which is also located inside the AB domain, makes APP less available to a-
secretase cleavage and increases B-secretase processing of APP thus favoring intracellular A production in vitro. The Arctic mutation is associated with severe CAA in the absence of
hemorrhage, abundant parenchymal AB deposits, and neurofibrillary tangles in AD brain. The London mutation, which is located in the transmembrane domain of APP, as well as the PS1 and
PS2 mutations alter y-secretase cleavage and increase the AB1-42 level and/or the AB1-42/AB1-40 ratio in vitro. The London mutation is associated with extensive parenchymal AB deposition
and abundant senile plaques and neurofibrillary tangles, as well as moderate CAA in AD brain. The Indiana mutation, which is also located in the transmembrane domain of APP, is associated
with large number of neurofibrillary tangles and senile plaques, as well as mild CAA in AD brain.33 The Florida mutation, which is also located in the transmembrane domain of APP, affects y-

secretase cleavage causing an increased AB1-42 concentration and AB1-42/AB1-40 ratio in vitro.
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Figure 5 Acetylation of p53, a SIRT1 substrate, in p25 transgenic mice reversed by resveratrol. (A) Upregulation of p53 in p25 transgenic mice
(n=4) detected by immunoprecipitation followed by Western blot. Densitometry analyses of p53 levels are shown on right. (B) Acetylation
of p53 at lysine 382 in p25 transgenic mice (n = 3) detected by immunoprecipitation, followed by Western blot. * Indicates nonspecific band.
(C) P53 knockdown in p25-expressing primary hippocampal neurons rescues p25 neurotoxicity by 25%. **P(T<t) two tails: 0.001.
(D) Efficient knockdown of p53 by RNAI in cell line transfected with p53. (E) Reduced acetylation of p53 at lysine 382 and downregulation
of p53 in p25 transgenic mice (n=3) treated with resveratrol. Densitometry analyses of acetylated p53 levels is shown in the bottom panel.
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Figure 7. Schematic Model

Proposed model for p25-mediated cell death involving inhibition of HDAC1
activity, which leads to double-strand DNA breaks and aberrant cell-cycle
activity. Neurotoxic stimuli such as ischemia result in p25 accumulation. This
accumulation results in interaction with and inhibition of multiple aspects of
HDAC1 activity, as shown in Figure 4, in a manner that is dependent on
Cdk5, as shown in Figure 4E. Inhibition of HDAC1 results in DNA damage
and aberrant expression of cell-cycle genes, which is likely associated with lo-
cal histone deacetylation (Figure 4G; Figure 5; Figure S7) and which ultimately
leads to neuronal death (Figure 3). The neurotoxic effects of p25 accumulation
and downstream effects appear to be reversible before a certain period of
induction (Figure 3C). Circles labeled “N” represents nucleosomes; “A” repre-
sents acetylation of histone tails. The nucleosomes with “A" represent acety-
lated nucleosomes and open chromatin loci, while the nucleosome at the far
right represents a deacetylated nucleosome and closed chromatin locus.
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