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Evolution of the neocortex: a
perspective from developmental
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Development and evolution of Cell
the human neocortex

Lui JH, Hansen DV, Kriegstein AR
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Figure 1. Progenitor Cell Expansion Can Underlie Neocortical
Enlargement

Neuronal number is a key determinant of neocortex size and shape. Neurons
are produced from a lineage of radial glia (RG) stem cells (red) and transit-
amplifying intermediate progenitor (IP) cells (green). Expansion in one or both
cell populations has been proposed as potential mechanisms that underlie
neocortical expansion. Expansion of the founder RG cell population prior to the
onset of neurogenesis (A) predicts a large ventricular zone (VZ). Expansion in
the number of transit-amplifying divisions (B) predicts a large subventricular

zone (SVZ).
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Figure 4. Contrasting Rodent and Human Neocortical Development
(A) Current views of rodent corticogenesis are illustrated. Radial glial (RG) cells most often generate intermediate progenitor (IP) cells that divide to produce
pairs of neurons. These neurons use RG fibers to migrate to the cortical plate. The historical view of neocortical development was that RG and neuronal progenitor
cells were lineally distinct and that RG did not have a role in neurogenesis. Our current appreciation of the lineage relationship between RG cells, IP cells, and
neurons has revised this view. The recent observation that small numbers of outer subventricular zone radial glia-like (0RG) cells exist in the mouse is also

illustrated.

(B) We highlight the lineage of oRG cells, IP cells, and migrating neurons (red to green) present in the human outer subventricular zone (OSVZ) and the increased
number of radial fibers that neurons can use to migrate to the cortical plate. The number of ontogenetic “units” is significantly increased with the addition of oRG
cells over ventricular RG (VRG) cells. Maintenance of oRG cells by Notch and integrin signaling is shown. Short neural precursors (SNP), a transitional cell form
between RG and IP cells, are also depicted in (A) and (B). For simplicity, we do not illustrate all of the cell types described in Figure 2E.
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OSVZ progenitors of human and
ferret neocortex are epithelial-
like and expand by integrin
signaling
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Development and evolution of Cell
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