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Sirtuins functions in metabolism and DNA repair. A diagram depicting the different functions for the mammalian sirtuins in cellular metabolism (red) and
DNA repair (blue). Specific targets and biological roles are summarized.
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Figure 2. The Regulation of Learning and Memory by Sirtuin 1

In the hippocampus, SIRT1 affects synaptic plasticity via a repressor complex
containing the transcription factor YY1, which regulates microRNA-134 (mIR-
134). This brain-specific microRNA regulates cAMP response binding protein
(CREB) and brain-derived neurotrophic factor (BDNF) expression (Gao et al.,
2010). These proteins are important for synapse formation and long-term
potentiation. SIRT1 knockout mice have impaired hippocampal-dependent
memory that is associated with decreased long-term potentiation in the CA1

region of the hippocampus (Gao et al., 2010; Michan et al., 2010).
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Figure 2. SRT1720 Improves the Quality of Life of SD-Fed Mice

(A) Cataract formation as assessed by lens opacity classification.

(B) Oral glucose tolerance test with area under the curve (inset).

(C) The homeostatic model assessment calculation of insulin resistance
(HOMA-IR) and serum biochemical markers.
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Figure 3. Sirtuin1 and Hypothalamic
Function

The hypothalamus regulates physiology and
behavior by coordinating neuroendocrine re-
sponses that modulate appetite, temperature,
circadian control, and hormonal release to main-
tain homeostasis (Coppari, 2012). In the ventro-
medial hypothalamic nucleus, SIRT1 increases
energy expenditure and protects against diet-
induced obesity under fed high-fat diets (Ram-
adori et al., 2010, 2011). SIRT1 also regulates
activity and body temperature in the dorsomedial
and lateral hypothalamus (Satoh et al., 2010). In
arcuate nucleus, SIRT1 modulates appetite and
adaptive immunity (Dietrich et al., 2010; Matarese
et al., 2013). In the supraschiasmatic nucleus of
the hypothalamus, SIRT1 levels decrease with
aging, affecting the activity pattern and circadian
period. Overexpressing brain SIRT1 activates the
transcription of BMAL and CLOCK proteins,
enabling animals to be protected from aging-
related changes to the central circadian clock
(Chang and Guarente, 2013).
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Figure 1. Non-visual photoreceptors in the vertebrate brain.

The parapineal and similar pineal-associated structures are only found in some fish, amphib-
ians and reptiles, although the pineal itself is photoreceptive in all non-mammalian vertebrates.
The iris is intrinsically photoreceptive in these groups as well and perhaps in some mammals.
The putative locations of non-visual photoreceptors (shown in yellow) in the deep brain varies
among the non-mammalian vertebrates. The adult mammalian pineal is not photoreceptive
although it contains opsin. The only non-visual photoreceptors in mammals are intrinsically
photosensitive ganglion cells in the retina. (Figure courtesy of |. Provencio.)
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The NAD™ salvage pathway and its control by the circadian clock. The
biosynthesis of NAD™ follows a circadian pattern, which is caused by the
circadian expression of NAMPT, a rate-limiting enzyme in the NAD*
biosynthetic salvage pathway. The Nampt gene contains E-boxes in its
promoter, leading to direct transcriptional control by the dimer
CLOCK:BMALI1. The fluctuating levels of NAD* modulate the activity of
SIRT1 which in turn regulates the transcriptional activity of
CLOCK:BMAL1 on their targets genes. During the aging the levels of
NAD™ decreases and might alter the circadian rhythms of clock-
controlled genes (CCGs)
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Aging alters mitochondrial homeostasis. During aging the NAD*
synthesis decreases and consequently impairs the sirtuins activity,
which have two consequences in the mitochondrial function: (a) The
reduction of SIRT1 activity provokes the activation of HNF1« which in
turn inhibits the transcription factor cMYC necessary to activate the
transcription of Tfam which regulates the expression of mitochondrial
genes. (b) Reduction of SIRT3 activity alters the function of
mitochondrial proteins.
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Table 1
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Nutrient sensors linking the clock system to the aging process

Protein Circadian function Aging phenotype Reference
SIRT1 Regulates the circadian clock by BMAL1 and PER2 Modulates mitochondrial function through NAD* levels [7,8,33°%,37*]
deacetylation. Activates BMAL1 and CLOCK in the in young mice
SCN in young mice
SIRT3 Modulates the circadian activity of the mitochondria by In stems cells reverts the effect of aging-oxidative [40°*,417]
rhythms in the acetylation and activation of oxidative stress in mitochondria activating the anti-oxidative
enzymes defense system

mTOR Modulates rhythmically the translational control in
circadian genes through 4E-BP1

AMPK Phosphorylates and destabilizes CRY1 altering the
circadian rhythms in mice

Its inhibition extends lifespan in mice [24,45°,49]

Activated under low ATP levels, inhibits mTOR, and its
pharmacological activation extend lifespan in mice

[52,55]

Nutrient sensors ‘sense’ the environmental conditions that modulate the
circadian clock and the aging process. Healthy environment, such as
enough sleeping time and low caloric diet/scheduled feeding, modulates
nutrient sensors localized in the brain and peripheral tissues. These in
turn synchronize the circadian clocks. As a consequence, the activation
of anti-aging mechanisms improves the homeostasis at different levels
promoting healthy aging. The different physiological conditions might
decelerate or accelerate aging.
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Rapamycin: One Drug, Many Effects Cell Metabolism
2014 vol. 19 (3) pp. 373-379
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Figure 1. The Two mTOR Complexes and the Regulation of Key Cellular Processes

mTOR exists in two functionally distinct complexes, termed mTORC1 and mTORC2. mTORCH1 integrates multiple signals from growth factors, oxygen, energy
levels, and nutrients such as amino acids to promote cell growth and proliferation by activation of anabolic processes such as protein, lipid, and nucleotide
synthesis; stimulation of energy metabolism such as glycolysis and glutaminolysis; and inhibition of catabolic process such as autophagy. Unlike mTORC1,
mTORC2 only responds to growth factors and regulates actin/cytoskeleton organization and cell survival through the pathways as shown above. Rapamycin
acutely inhibits mMTORC1, whereas chronic exposure to rapamycin can also inhibit mMTORC2.
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Figure 4. Major Targets and Mechanisms of SIRT1 in Mouse Models of Neurodegenerative Disease

Alzheimer's disease (highlighted in red). In Alzheimer's disease, SIRT1 has been shown to promote nonamyloidogenic APP-processing pathway by decreasing
levels of ROCK1 kinase (Qin et al., 2006). SIRT1 also targets the retinoic acid receptor B, which activates ADAM10 to facilitate processing of APP along a
nonamyloidogenic pathway (Donmez et al., 2010). SIRT1 has also been shown to directly deacetylate tau in several tauopathy models enabling ubiquitin ligases to
promote clearance of this protein (Cohen et al., 2011; Min et al., 2010).

Parkinson’s disease (highlighted in blue). SIRT1 has been shown to deacetylate HSF, which induces transcription of molecular chaperones that promote protein
folding (Donmez et al., 2012; Raynes et al., 2012; Westerheide et al., 2009). In addition to its effects on the heat shock response, SIRT1 may also function to
regulate autophagy and mitophagy, which may affect a-synuclein toxicity in the context of PD (Sampaio-Margues et al., 2012; Wu et al., 2011). There is also
evidence that PGC1x may be a relevant target in mouse models of PD (Mudo et al., 2012).

Huntington's disease (highlighted in green). Several different molecular mechanisms account for the protective effect of SIRT1 overexpression against mutant
huntingtin toxicity (Jeong et al., 2012; Jiang et al., 2012). Mutant huntingtin protein was found to inhibit the enzymatic activity of SIRT1 during HD pathogenesis.
One proposed mechanism is that SIRT1 deacetylates TORC1, facilitating BDNF transcription through CREB (Jeong et al., 2012). An alternate explanation for the
protective effect of SIRT1 in HD mice was that this protein might maintain TrkB signaling and DARPP32 levels as HD progresses. Foxo3a deacetylation was
another SIRT1 target implicated in promoting cell survival in the HD models (Jiang et al., 2012).

Amyotrophic lateral sclerosis (highlighted in beige). The propesed mechanism for SIRT1’s activity in Amyotrophic lateral sclerosis parallels one of the pathways
observed in PD. SIRT1 has been shown to deacetylate HSF1, which increases transcription of molecular chaperones including HSP70 and HSP25 that help to
maintain intracellular protein homeostasis, reducing toxicity to motor neurons (Han et al., 2012; Raynes et al.,, 2012; van Ham et al., 2008; Westerheide
et al., 2009). SIRT1 has also been shown to affect mitochondrial biogenesis in cell culture models of ALS and this may be due to deacetylation of PGC1« (Wang
et al., 2011).
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SIRT1 Mediates Central Circadian Control
in the SCN by a Mechanism that Decays
with Aging

D wrt BSKO

CELL

2013 vol.

153 (7) pp. 1448-60

E

.-—_'._ﬂt - :—“:-.__ S . e ==
EAuER . . g T = s s =. == = == — o =
LD - EE L B | W =D OE T
b — - —.'_—L‘ —— Gt of [ - - f TS tg-_— L B —: —-..‘7 gl — — - —_:_‘zzr'.- “ _‘=-:.—::—_?— :“;:-“ 1
L = = 22 == = .. e
e L e Lo ‘& f F. L o+ ==, == ==
pp | =22 A ([o=Ero=ml v S =
o SHEEE . : - eI R T = .=
S PRt S YR - L e=
"3 by - WY | = s -2 - .
DO B e v | lEe B B B B B £
LD __;_m._._ ’.'_,‘____:"'_'"'_z__._ ._-.":‘__ :..;___f:é-‘___:: _E...__- ~';,'_ ...E.:A_-_ i 4
= e [T TLE I i & R F R N
=== == L ERE TFS 2 f FEEL | PR Y 4 . ' _E
— H - - * e 2. = 2 ¢ ror - LS . . -
e e . i e - EE =5 — y Ny

E 242 24,27
24.0 A 24.01

§ 236 A § 23.6- .

= = ok

$ 232 1 $ 2321
23.0 23.0-

WT BSKO

WT Sir2d BSTG

— —_
o O O B
fl 1 L 1

Wheel revolutions x 1

%%

WT BSKO

000/da

WT Sir2d BSTG



SIRT1 Mediates Central Circadian Control CELL
in the SCN by a Mechanism that Decays 2013 vol. 153 (7) pp. 1448-60
with Aging

Chang H, Guarente L

A 6 month old 21 month old

WT BSKO WT BSTG

B C
10 - 10 - .25 - 25 -
©
Ry
< 81 84 L g20{ =% 20 - .
E —
5 6' 6" * R ;15' 15"
o *% <
3 T £ %k
2 4 4] 3 104 2 104
> >
= e
02l iy 24 < 5- 54
]
i =
0 0 =0 0
WT BSKO WT BSTG WT BSKO WT BSTG

6 month old 21 month old 6 month old 21 month old



SIRT1 Mediates Central Circadian Control
in the SCN by a Mechanism that Decays
with Aging

Chang H, Guarente L

CELL

2013 vol. 153 (7) pp. 1448-60

ZT0 = lumiere

A Bmal1 Clock Cryt
o 0.4 0.2
3
< 0.3
% 0.2 ¢ 0.1
x , .
2 0.1
o PR T S S
& 0.0 + - . . - 0.0 v . v v 3 0.0 te==ir 3 3
2 6 10 14 18 22 2 6 10 14 18 22 6 10 14 18 22
ZT time(hr) ZT time(hr) ZT time(hr)
” Per2 Rev-Erbo Roro.
°
3
<
z > >
% 3 2
I Gmmbmam=ad ) N e 2 2
io.o% Y oogoTHS=0e=t ) ] ok e B E 2
2 6 _10 14 18 22 2 6 _10 14 18 22 6 _10 14 18 22 K K
ZT time(hr) ZT time(hr) ZT time(hr) : 3 - = 5 5 - %
[——BSTG ——wWT -<--BSKO | ZT time(hr) ZT time(hr) ZT time(hr)
A C57BL/6
1 5. BMAL1 PER2 5. SIRT1
:a" ’ * - ke
(7]
c
9L 1.0 2.
| -
- *k
0>J *k " *
2 05 1)
% *k
*k
@ 0.0 . . 01
E O - O E O - O E O - O
X g - X ; - X g —
° 3 8 2 & 4 > @ 0
@) @) @)




SIRT1 Mediates Central Circadian Control
in the SCN by a Mechanism that Decays

with Aging
Chang H, Guarente L

CELL
2013 vol. 153 (7) pp. 1448-60

Senescence

Herskovits AZ, Guarente L

Neuron

SIRT1 in Neurodevelopment and Brain

2014 vol. 81 (3) pp. 471-483

Time post serum shock (hr)

shSirt1

Time post serum shock (hr)

WT

24 30 36 42 24 30 36 42

SIRT1

BMAL1

CLOCK

PER2

REV-ERBu

ACTIN

A

®» 20 20 -CY1

o

g 15 15 4 Z

£ L et

o

> 05 0.5 1

g ol

&’ 0.0 + T T v v 00 + v v v v J 0.0 v N v V
24 28 32 36 40 44 24 28 32 36 40 44 24 28 32 36 40 44
Time post serum shock (hr) Time post serum shock (hr) Time post serum shock (hr)
Per2 Rev-Erbo

n 20

o

g 15

4 1.0

E

2 0.5

o

& 00+ . ' . 0.0 + : ' . 0.0 ' v .
24 28 32 36 40 44 24 28 32 36 40 44 24 28 32 36 40 44

Time post serum shock (hr)
—— WT ==+ shSirt1 |

Time post serum shock (hr)

BMAL1

CLOCK il

-

PER, CRY
NAMPT

RORa, PGC1a

Pgc-1a (0.5 ug)

A o _ 24hrpost serum shock
8 O Vector
S 5 1|mshsit o Sirtt
i @sh Pge-1o B Pge-1a
2841
©
2383 "
x 2 .
Ez, |
28 .
5 1
o
0 -
Bmal1 Clock Cry1
6 - 36 hr post serum shock
8 O Vector
€ 5 1|mshsitt @ Sitt
g+ @sh Pge-1o B Pge-Ta
2841
©
233
Bz,
28
0 B
Bmal1 Clock
B Bmall-Luc
-Lu
35 -
g
£ 30
©
25
@ -
g 20 .
€ 15
2
° 10
2
= 05 H - -
]
2 o0 mETE Hel
5 =99 2%
E @ 5 g w0
> 53 @3
- E § 3
t 5 -
3
&

Ty

Per2  Rev-Erba

Per2  Rev-Erbo.

Relative luciferase activity

o a4
(<)

o

el g
o

o o o

(<)

Per2-Luc

Vector

Roro.

Roro.

Sirt1 Pgc-1a

Sirt1 Pgc-1a

g% 2979
n v o
‘\Io‘g"‘!d
c & a0 g ©
S &g
5 52
5 &
s @




SIRT1 Mediates Central Circadian Control
in the SCN by a Mechanism that Decays
with Aging

Chang H, Guarente L

CELL
2013 vol. 153 (7) pp. 1448-60

Circadian clock: linking epigenetics to

Orozco-Solis R, Sassone-Corsi P

Current Opinion in Genetics & Development

2014 vol. 26C pp. 66-72

Aging

NAD+

Salvage
Pathway

NAM —D NMN

Current Opinion in Genetics & Development

A Primer

Set1 Set 2 3UTR

> €> €« >«
Bmal1
) Bmalt | f——
RORE
B 0.05,24 hr post serum shock 0.03 26 hr post serum shock EN2A
' ' [ N2A_shSirt1
5 004 B N2A_shPgc-1a
3 0.02
P 0.03
[}
2 0.02
o 0.01
& 0.01
0.00
WG @SRT1aPGC1a 196 @SIRTI @PGCla G eSIRT1 a-PCC-1a 196 @SIRT1 @PGC1a 196 a-SIRTI «-PGC-1e g6 @SIRT1e-PGC-1a
Set 1 Set 2 3'TUR Set 1 Set 2 3'TUR
C 24 hr post serum shock 36 hr post serum shock D 24 hr post serum shock 36 hr post serum shock
0.08 0.08 "
-1 5
a 0.06 a 0.06
€ £
i) e
o 0.04 o 0.04
2 2
@ LY
o) [0)
&’ 0.02 & 0.02
0.00 19G  @-SIRT1 I9G  ¢-SIRT1 0.00 19G «-PGC-1ax 19G 0-PGC-1a
Set 2 Set 2 Set 2 Set 2

[On2A BIN2A St [JN2A_Sitt+shPge-ta

(ON2a BIN2A_Pgo-to [IN2A_Pge-farshSitt

—>
o7 Norpt R
¥ TN

NAD"* ¢— l:NamﬂZI

E-box

Aging

1

Short circadian period
Enhanced physiological activity
Rapid response to re-entrainment




Minireview: The PGC-1 Coactivator Networks:
Chromatin-Remodeling and Mitochondrial Energy
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Figure 1. PGC-1a and PGC-1p Regulate Genes of the ROS Defense System

(A) 10T1/2 cells were infected with RNAi against PGC-1a. or with scrambled controls. After 3 days, cells were treated with 1 mM H,O, for 2 hr followed
by a recovery period of 2 hr. Cells were then harvested for RNA isolation, and relative expression of PGC-1s and uncouplers as well as mitochondrial,
cytoplasmic, and peroxisomal ROS-detoxifying enzymes was measured by real-time PCR. In this and all other figures, error bars represent means +
SEM.n=3.

(B) 10T1/2 cells were infected with RNAi against PGC-1p or with scrambled controls. Cells were treated and analyzed as described above.

(C) 10T1/2 cells were infected with RNAi against both PGC-12 and PGC-1 or with scrambled controls. Cells were treated and analyzed as described
above.

(D) The relative expression of various components of the ROS defense system were determined by real-time PCR analysis in the brain of PGC-1a. null
mice compared with WT controls. n = 3-4. * denotes statistical significance compared with WT controls.
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Figure 3. The PGC-1a Promoter Is Regulated by CREB in the Presence of H,0,

(A) 10T1/2 cells were transfected with the 2 kb PGC-1a promoter linked to a luciferase reporter gene harboring no mutations (2 kb) or mutated at the
MEF, NRF2, or FOXO3A sites. Cells were treated with vehicle or 1 mM Hz0,, and luciferase activity was measured 24 hr after transfection. The
luciferase activity was normalized to the level of B-galactosidase and to the activity of an empty pGL3basic reporter gene vector. n = 4.

(B) 10T1/2 cells were transfected with the 2 kb PGC-7« promoter linked to a luciferase reporter gene harboring no mutations (2 kb) or a CRE site
deletion (2 kb CREA) in the presence or absence of vector expressing dominant-negative CREB (CREB DN). As a control, pGL3basic (empty vector)
was transfected. Cells were treated and analyzed as described in (A).

(C) Electrophoretic mobility shift assays were performed with nuclear extracts from 10T1/2 cells treated with or without 1 mM H,0,, for 16 hr and radio-
labeled probe encoding the CRE-binding site from the PGC-1a promoter. Antibodies against CREB were used to test the specificity of the interaction.
(D) Chromatin immunoprecipitation was performed with nuclear extracts from 10T1/2 cells treated with or without H,O, for 4 and 16 hr. Antibody
against phospho-CREB was used to precipitate DNA/protein complexes. Specific primers encompassing the CRE-binding site in the PGC- 1. pro-
moter were used to analyze specific binding to the promoter.

(E) 10T1/2 cells were treated with or without 1 mM H,0,, for 2 hr followed by 2 hr recovery or treated with 1 mM H,0, for 16 hr without recovery. Cell
lysates were then analyzed using immunoblotting analysis to test for CREB and phosphorylated CREB protein levels. Expression of a-tubulin was
used as loading control.
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