

DELTA

Greek letter, ∆ By Herodotus, BC 5th Century From similarity of morphology of Nile. A discrete shoreline protuberance formed at a point where a river enters an ocean or other large body of water.

An irregular progradation of the shoreline directly fed by a river

Sediment supply from rivers seaward shoreline migration

Sediment supply	•	Acc. space	Qs – Qrs		Sediment dispersal/removal
Qs		Qac		Qrs	
Qs		Qac	<	Qrs	Shoreline migration Landward ESTUARY
Qs		Qac	>	Qrs	Shoreline migration Seaward DELTA
Accomm	odati	on space			Sea level 2 Sea level 1 Sea level 1

Megadelta	Area km ²	Population 2000	Population 2015	Increase (%)
Indus	19800	3058500	4425100	+45
GBM	115600	129931100	166217000	+28
Irrawaddy	31500	10591700	12163600	+15
Chao Phraya	11600	11485600	16487900	+44
Mekong	37900	15754200	19039800	+21
Song Hong (Red)	9900	13293900	16063400	+21
Pearl	5900	9846400	27166900	+176
Changjiang	15600	25945700	33147500	+28
Huanghe	25100	14060400	16614100	+18
[Jiangsu]	30300	19930700	14978400	-25
TRUCK AND AND TRACTORY CONSISTS OF	lain has been deten	nined from gridded pop	ulation cell count, and is	only approximate
Note: Area of delta p as it does not take into Total	population	are covered by water, in 254 M	Cluding major distributat	ries.
Note: Area of delta p as it does not take into Total	account areas that population Delta globally:	are covered by water, in 254 M 500 M	326 M	ries.

Timing and magnitude of the sea-level jump preluding the 8200 yr event Geology, 2010

ABSTRACT AISTRACT Evidence from terrestrial, glacial, and global climate model reconstructions suggests that a sca-level jump caused by meltwa-ter release was associated with the triggering of the 8.2 ka cool-ing event. However, there has been no direct measurement of this jump using precise sea-level data. In addition, the chronology of the meltwater pubse is based on marine data with limited dating accuracy. The most plausible mechanism for triggering the cool-ing event is the sudden, possibly multistaged drainage of the Lau-entide proglacial Lakes Agassiz and Ojibway through the Hudson Strait into the North Atlantic ca. 8470 ± 300 yr ago. Here we show with detailed sca-level data from Rotterdam, Netherlands, that the sca-level rise commenced 8450 ± 44 yr ago. Our timing consider-ably narrows the existing age of this drainage event and provides support for the hypothesis of a double-staged lake drainage. The jump in sca level reached a local magnitude of 2.11 ± 0.830 m within 200 yr, in addition to the ongoing background relative sca-level rise (1.95 ± 0.74 m). This magnitude, observed at considerable distance sup 6.4.1 Å m). The discregancy suggests either a coeval Antarectic contribution or, more likely, a previous underestimate of the total American lake drainage.

The shoreline was in Cambodia during the Mx transgression, early-middle Holocene

Morphological map Nguyen et al., 2000 After Ta et al., 2002

9.0(8.8) to 8.2 ka:

a rapid sea-level rise

Followed by delta progradation (MFS & Delta initiation: 8.0-8.2 ka) Makong River, Red River and Yangtze River deltas

Recent changes: delta collapse

Reduction of sediment discharge

Relative sea-level rise

Sediment dis	scharge in Mi	t/y	
	1950–1960	~2000–	
Yellow	1300	148	
Yangtze	480	146	
Pearl	80	38	
Red	130	52	
Mekong	160	160	
ChaoPhraya	25	2	
Irrawaddy	260	260	
G-B	1100	1100	
Godavari	170	57	
Indus	250 <mark>50</mark>	<mark>%</mark> 13	20%
Total	3955	1976	

Impacts of sediment reduction on delta

Yellow River (Huanghe) delta

Yangtze River (Changjiang) delta

Upper Gulf of Thailand

WG-2: IPCC AR4 2007

Some systems and sectors are very vulnerable. Some regions will be more affected than others

()

• The Arctic

IPCC 4AR 2007

- Sub-Saharan Africa
- Small islands

Asian megadeltas

Monthly change Water discharge Sediment discharge Sediment discharge (Decadal)

Nageswara 2010. ESPL