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•  Thermopower and Entropy (cont’d) 
•  Thermodynamics of thermoelectrics; 

Efficiency (cont’d) 
•  Kubo formula for Onsager coefficients 



Excerpt from abstract: 

Séminaire – 17 avril 2013 



1. Thermopower and Entropy 
(continued from lecture 3) 



The Heikes and Shastry-Kelvin 
approximations to the 
thermoelectric power 



Key point: why transition-metal 
compounds (e.g. oxides) may be good ? 
à Benefit from the large number of degrees of freedom 

- hence large entropy -  
(spin, orbitals: 10-fold in a d-shell) 

 
- These degrees of freedom ar fully quenched  

in the metallic regime for T<T* 
 

-  They get gradually unquenched at higher-T when  
Electrons can be considered more localized 

(à Relevance of Heikes estimates in this regime) 
 

- Frustration helps 



Heikes, multi-orbital: 
Hi-T (T>U): 

T<U, integer filling N 

T<U, mixed valence N<n<N+1 
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To visualize spin/orbital entropic contribution, look at filling 
N+1/2 in each case where the Heikes factor ln[x/(1-x)]=0 



Semi-conducting oxides 
for which  

Heikes analysis  
works  





A case where Heikes works 
qualitatively, but not 

quantitatively:  
La/SrVO3 [d2/d1] 





Qualitatively quite similar  
to Hubbard model  
calculations above  
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y=-86.3*ln(3*x/(2*(1-x))) (0.05-0.8,200) (T<J<CF)
y=-86.3*ln((4+x)/(2-x)) (0.05-0.8,200) 
y=-86.3*ln((8+x)/(2-x)) (0.05-0.8,200) (J<CF<T<U)
y=0 (0.05-0.8,200)
y=-86.3*ln(5*x/(2*(1-x))) (0.05-0.8,200) (J<T<CF)



Thermopower and Entropy: Cuprates 

Loram, Cooper et al. 





Obertelli,  
Cooper, 
Tallon 
PRB 46 
R14928 
(1992) 
 



Honma and Hor PRB 2008 



2. EFFICIENCY OF 
ENERGY CONVERSION 

  Application to thermoelectrics 
(continued from lecture 2…) 



Maximum theoretical efficiency: 
the Carnot reversible engine 

Carnot efficiency: 

Since it corresponds to a reversible,  
quasi-static and hence infinitely slow process,  

a Carnot engine delivers ZERO POWER !  



Carnot cycle : 



Efficiency at maximum power, 
according to: 

Chambadal-Novikov 
(Curzon-Ahlborn), 

Endoreversible engines, 
« Finite-Time Thermodynamics » 



TC TH 

TiH  TiC  

QC,KC QH,KH 

W 

An endoreversible engine 

Chambadal-Novikov 
Efficiency 

½ of Carnot for small ΔT 



Key coupling constant characterizing 
energy conversion : 



Entropy and heat production rates 



Entropy and heat production rates 

T 
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3. Onsager coefficients  
from Kubo formula 

•  G.D. Mahan, Many-Particle Physics Sec. 3.8-3.9 
•  R. Kubo J.Phys Soc Jpn 12, 570 (1957) 
•  J.M. Luttinger Phys Rev 135, A1505 (1964) 
•  MR Peterson and BS Shastry PRB 82, 195105 (2010) 
•  Detailed derivation of simplifications in DMFT: Paul and 

Kotliar PRB 67, 115131 (2003) 

I will skip most details, just emphasizing some key  
(and sometimes subtle…) points 

 
Formal aspects only,  

à several concrete applications in lectures 5-6 next week  



3.1 Kubo, electrical conductivity 
-  Linear response to a small perturbing field. 
-  Two strategies: 
-  a) Time- (and space-) dependent vector 

potential to generate electric field: σ(q,ω) 
-  b) Gradient of scalar potential (Luttinger) 
à Caution: dont want to just generate a carrier-
density profile which adapts to potential, want to 
generate current 

  à Branch on potential in an adiabatic, time -
 dependent manner 



Result of first approach: 

Conductivity is related to the retarded current-current  
correlation function 



Fast limit: first take q à 0, THEN ω à 0  
Spectral (Lehmann) representation: 



Second approach, for static (ω=0) conductivity: introduce  
adiabatically a scalar potential 

s: small; qà0 first, then sà0 

Mixes real and imaginary time; extra integration 

From spectral representation, one can show that this expression  
Is actually identical to the previous one  



Perturbing term in Hamiltonian:  



Currents and conjugate forces: 

Linear response:  

Onsager symmetry is manifest on this form 


