Magnetic response of a Hund's metal within DMFT: Sr₂RuO₄

Hugo U. R. Strand

June 11 (2019) Collège de France, Paris

SIMONS FOUNDATION

Collaborators

Manuel Zingl

Nils Wentzell

Antoine Georges

Olivier Parcollet

Spin Fluctuations in Sr_2RuO_4

Existence from temperature dependence

Theoretical prediction

Experimental verification

Spin Fluctuations in Sr_2RuO_4

Existence from temperature dependence

 Nuclear Magnetic Resonance (NMR) Imai et al. PRL 81 3006 (1998)

Theoretical prediction

Experimental verification

Spin Fluctuations in Sr_2RuO_4

Existence from temperature dependence

Nuclear Magnetic Resonance (NMR)
 Imai et al. PRL 81 3006 (1998)

Theoretical prediction

- Density Functional Theory (DFT)
 Mazin & Singh PRL 82 4324 (1999)
- Strong incommensurate spin-response $\chi(\mathbf{Q}_{IC})$ at $\mathbf{Q}_{IC} \approx (1/3, 1/3, 0)$

Experimental verification

FIG. 1. Calculated bare susceptibility for Sr₂RuO₄.

Spin Fluctuations in Sr_2RuO_4

Existence from temperature dependence

Nuclear Magnetic Resonance (NMR)
 Imai et al. PRL 81 3006 (1998)

Theoretical prediction

- Density Functional Theory (DFT)
 Mazin & Singh PRL 82 4324 (1999)
- ► Strong incommensurate spin-response χ(Q_{IC}) at Q_{IC} ≈ (1/3, 1/3, 0)

Experimental verification

Inelastic Neutron Scattering (INS)

Sidis et al. PRL 83 3320 (1999)

FIG. 1. Calculated bare susceptibility for Sr₂RuO₄.

${\rm Sr}_2{\rm RuO}_4$ atomic & electronic structure

- Planar perovskite (La₂CuO₄ type)
- BC-tetragonal sg-139, I4/mmm
- Three bands with Ru(4d)-t_{2g} symmetry and 4 electrons
- ► xy (quasi-2D)
- ▶ xz, yz (quasi-1D)
- Strong correlations ARPES & dHvA

${\rm Sr}_2{\rm RuO}_4$ atomic & electronic structure

- Planar perovskite (La₂CuO₄ type)
- BC-tetragonal sg-139, I4/mmm
- Three bands with Ru(4d)-t_{2g} symmetry and 4 electrons
- ► xy (quasi-2D)
- ▶ xz, yz (quasi-1D)
- Strong correlations ARPES & dHvA

Fermi Surfaces

- $\blacktriangleright \ \alpha \ \& \ \beta$ sheets, mixtures of xz and yz
- $\blacktriangleright \gamma$ sheet, dominantly xy

Tamai, et al., PRX 9 021048 (2019)

Fermi Surfaces

- $\blacktriangleright \ \alpha \ \& \ \beta$ sheets, mixtures of xz and yz
- $\blacktriangleright \gamma$ sheet, dominantly xy

 Correlation effects from DMFT Mravlje, et al. PRL 106, 096401 (2011) Zhang, et al. PRL 116, 106402 (2016) Kim, et al. PRL 120, 126401 (2018)

Tamai, et al., PRX 9 021048 (2019)

Fermi Surfaces

Fermi Surface Nesting

- Nesting vector (red)
- Bare susceptibility $\chi^{(0)} = G_0 * G_0$

Mazin & Singh PRL 82 4324 (1999)

Inelastic Neutron Scattering (INS)

P. Steffens, et al., PRL 122, 047004, (2019)

400 (d)

What is the effect strong correlations on the magnetic susceptibility in Sr_2RuO_4 ?

What is the effect strong correlations on the magnetic susceptibility in Sr_2RuO_4 ?

dea:

Compute the DMFT magnetic susceptibility and find out!

Software

TRIQS

Toolbox for Research on Interacting Quantum Systems github.com/TRIQS/triqs

TRIQS/cthyb

Continous Time Hybridization Expansion Quantum Monte Carlo *(CTHYB)* github.com/TRIQS/cthyb

► TRIQS/tprf

Two-Particle Response Function *(TPRF)* toolbox github.com/TRIQS/tprf

Python, Numpy, Scipy, Matplotlib

Computing susceptibilities in DMFT

There are two approaches

- 1. Static suseptibilities $\chi(\mathbf{Q})$ from DMFT calculations in applied field
 - $\blacktriangleright \ \ \mathsf{Possible for a single } \mathbf{Q} \ \mathsf{vector at a time}$
 - Non-zero Q requires super-cell calculations
- 1. Dynamical susceptibilities $\chi(\mathbf{Q},i\omega)$ from the Bethe-Salpeter Equation (BSE)
 - Requires two-particle response functions
 - Requires solving large matrix-equations (BSE)

Consider the single-band Hubbard model on the square lattice with nearest neighbour hopping at half-filling with t = 1, U = 10, $\beta = 1$.

1. DMFT calculations in applied field

- Many self-consistent DMFT calculations
- Sweeping the applied magnetic field B
- Measure the induced magnetization M(B)
- A homogeneous B field gives the Q = 0 response as

$$\chi_{\text{Field}} = \chi(\mathbf{0}) = \left. \frac{dM}{dB} \right|_{B \to 0} \approx 0.3479$$

For technical details see TRIQS/tprf tutorial

2. DMFT susceptibilities from the Bethe-Salpeter Equation

Compute the impurity two-particle $(G^{(2)})$ and single-particle (G) Green's functions

$$G_{abcd}^{(2)}(\omega,\nu,\nu') \equiv \langle \mathcal{T}c_a^{\dagger}(\nu)c_b(\omega+\nu)c_c^{\dagger}(\omega+\nu')c_d(\nu')\rangle, \quad G_{ab}(\nu) \equiv -\langle \mathcal{T}c_a(\nu)c_b^{\dagger}\rangle,$$

where *abcd* are spin-orbital indices and ω , ν and ν' are Matsubara frequencies. Here we will sample both using **TRIQS/cthyb**.

From $G^{(2)}$ and G construct the full χ and bare $\chi^{(0)}$ generalized susceptibilities

$$\chi_{abcd}(\omega,\nu,\nu') = G_{abcd}^{(2)}(\omega,\nu,\nu') - \beta \delta_{0,\omega} G_{ba}(\nu) G_{dc}(\nu') ,$$

$$\chi_{abcd}^{(0)}(\omega,\nu,\nu') = -\beta \delta_{\nu,\nu'} G_{da}(\nu) G_{bc}(\omega+\nu) .$$

Tools for constructing χ and $\chi^{(0)}$ are available in **TRIQS/tprf**.

2. DMFT susceptibilities from the Bethe-Salpeter Equation

Solve the Bethe-Salpeter Equation (BSE) for the impurity vertex function Γ

$$\chi = \chi^{(0)} + \chi^{(0)} \Gamma \chi \quad \Rightarrow \quad \Gamma_{AB}(i\omega) = [\chi^{(0)}(\omega)]_{AB}^{-1} - [\chi(\omega)]_{AB}^{-1}$$

by matrix inversion with index grouping $\chi_{abcd}(\omega,\nu,\nu') = \chi_{\{\nu ab\}\{\nu' dc\}}(\omega) = \chi_{AB}(\omega)$.

Example: Hubbard model on square lattice using TRIQS/cthyb and TRIQS/tprf.

2. DMFT susceptibilities from the Bethe-Salpeter Equation Lattice susceptibility from the BSE in TRIQS/tprf

$$\chi(\mathbf{Q},\omega) = \left[\mathbf{1} - \Gamma(\omega)\chi^{(0)}(\mathbf{Q},\omega)\right]^{-1}\chi^{(0)}(\mathbf{Q},\omega),$$

using the DMFT local vertex $\Gamma(\mathbf{Q}, \omega) \approx \Gamma(\omega)$.

- Linear convergence with N_{ν}
- Extrapolate to $1/N_{\nu} \rightarrow 0$
- Compare with applied field
 Q Q = 0

 $\chi_{\rm BSE}(\mathbf{0}) \approx 0.3472$ $\chi_{\rm Field}(\mathbf{0}) \approx 0.3479$

- Quantitative agreement
- Thermodynamic consistency

Hafermann et al. PRB 90 235105 (2014)

Application to magnetic susceptibility of Sr_2RuO_4

- DFT + Wannierization
- Three band effective t_{2g} model
- Kanamori interaction U=2.3eV, J=0.4eV
- Dynamical Mean-Field Theory (DMFT)
- Applied field in super-cells 1×1 , $\sqrt{2} \times \sqrt{2}$, $\sqrt{2} \times \sqrt{5}$
- \blacktriangleright Dynamical vertex corrections $\Gamma_{abcd}(i\omega,i\nu,i\nu')$
- ▶ Lattice susceptibility $\chi_{abcd}(\mathbf{Q})$ from BSE

arXiv:1904.07324

Application to magnetic susceptibility of Sr_2RuO_4

- DFT + Wannierization
- Three band effective t_{2g} model
- ► Kanamori interaction U=2.3eV, J=0.4eV
- Dynamical Mean-Field Theory (DMFT)
- Applied field in super-cells $1 \times 1, \sqrt{2} \times \sqrt{2}, \sqrt{2} \times \sqrt{5}$
- \blacktriangleright Dynamical vertex corrections $\Gamma_{abcd}(i\omega,i\nu,i\nu')$
- ▶ Lattice susceptibility $\chi_{abcd}(\mathbf{Q})$ from BSE
- arXiv:1904.07324

Application to magnetic susceptibility of Sr_2RuO_4

- DFT + Wannierization
- Three band effective t_{2g} model
- Kanamori interaction U=2.3eV, J=0.4eV
- Dynamical Mean-Field Theory (DMFT)
- Applied field in super-cells $1 \times 1, \sqrt{2} \times \sqrt{2}, \sqrt{2} \times \sqrt{5}$
- \blacktriangleright Dynamical vertex corrections $\Gamma_{abcd}(i\omega,i\nu,i\nu')$
- Lattice susceptibility $\chi_{abcd}(\mathbf{Q})$ from BSE

arXiv:1904.07324

Spin susceptiblitiy $\chi_{S_z S_z}(\mathbf{Q})$

HURS, Zingl, Wentzell, Parcollet, Georges arXiv:1904.07324

Spin susceptiblitiy $\chi_{S_zS_z}(\mathbf{Q})$

- Incommensurate (IC) & ridge response
- Quasi Local/Ferromagnetic Background response (red)
 >50% of Q-average (stars)
- ► $\chi(\mathbf{Q}_{\Gamma}) > \chi(\mathbf{Q}_{X})$ (green)
- Lower temperature $(T\downarrow)$
 - Background \uparrow
 - Local response ↑
 - $\blacktriangleright \ \chi(\mathbf{Q}_{\Gamma})/\chi(\mathbf{Q}_X) \sim 4/3$

Comparison to simpler approximations

- DMFT lattice susceptibility: χ DMFT
- Bare DFT bubble: χ⁽⁰⁾ DFT (Density Functional Theory)
- Bare DMFT bubble: $\chi^{(0)}$ DMFT
- Random Phase Approximation: χ RPA
- Only χ DMFT reproduces experiment $\chi(\mathbf{Q}_{\Gamma}) > \chi(\mathbf{Q}_X)$
- DMFT dynamical vertex Γ(ω, ν, ν') effects are essential!

SIMONS FOUNDATION Role of Hund's coupling

- Hund's J interaction: Tune around J = 0.4 eV
- $\chi(\mathbf{Q}_{\Gamma})$ and χ_{loc} \uparrow • $\chi(\mathbf{Q}_X) \downarrow$
- $\blacktriangleright ~J \lesssim 0.32$ qualitative change
- ► Hund's physics controls $\chi(\mathbf{Q}_{\Gamma}) > \chi(\mathbf{Q}_X)$

Orbital contributions

- $\begin{array}{l} \blacktriangleright \hspace{0.1 cm} \chi_{S_{z}^{(\alpha)}S_{z}^{(\beta)}}(\mathbf{Q}) \\ \hspace{0.1 cm} \alpha,\beta \in \{xy,xz,yz\} \end{array}$
- All orbitals @ Q_{IC} (square) (c.f. DFT w. only xz, yz) Boehnke, et al., EPL 122 57001
- ▶ 50% inter-orbital response
- \blacktriangleright Γ enhancement from xy

Summary

- Dynamical Mean Field Theory
- Magnetic resp. $\chi_{S_z S_z}(\mathbf{Q})$
- Hund's metal Sr₂RuO₄
- ► Suppression of AFM @ X
- Hund's coupling drive:
 - ▶ Quasi Ferromagnetic fluct.
 ▶ χ(Q_Γ) > χ(Q_X)
- Strong orbital mixing
- xy gives Γ enhancement
- For details see arXiv:1904.07324

