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freedom in the 4dxy and 4dyz,zx orbitals behave more or
less independently at least down to TFL.
Next, we will discuss the quantitative aspect of xxy and

xyz,zx . Since we have found that xyz,zx shows little tem-
perature dependence, we can match the observed increase
of the bulk susceptibility data xbulk [7,18,25] below 300 K
to the increase of xxy in Fig. 1(c). Thus we obtain xxy ,
3.6 3 1024 emuymol at 4.2 K, and C ¯ 34 kOeymB. By
subtracting xxy , the orbital contribution xorb , 1.5 3
1024 [9], and the core diamagnetic contribution xdia ,
20.96 3 1024 emuymol from the observed bulk suscep-
tibility, xbulk , 9 3 1024 emuymol [7], we obtain xyz ≠
xzx , 2.4 3 1024 emuymol at 4.2 K, which also implies
D ¯ 34 kOeymB. Our results indicate that xxy accounts
for ,40% of the total spin susceptibility in the canonical
Fermi liquid state below TFL, and xyz and xzx contribute
,30% each. We note that relatively large uncertainties in
bulk susceptibility data [7,18,25] leave corresponding un-
certainties (,30%) in our estimate of the magnitude of C,
D, xxy , and xyz,zx , but none of the fundamental conclu-
sions of this Letter depend on the numerical details dis-
cussed in this paragraph.
To test the preceding analysis, in Fig. 1(c) we compare

the average spin susceptibility of all three t2g orbitals,
xay ≠ sxxy 1 2xyz,zxdy3, and the 101Ru Knight shift
101Kc. Since the filling of 4dxy , 4dyz , and 4dzx orbitals
is nearly even, i.e., 1.28, 1.36, and 1.36 electrons, respec-
tively [3,11], xay represents the average spin susceptibility
of four electrons in three t2g orbitals. On the other hand,
101Kc also probes an average of the spin susceptibility of
four electrons through the isotropic hyperfine fields arising
from the inner core polarization by all three t2g orbitals
[22]. Accordingly, we expect that 101Kc ~ xay . The
agreement with this proportionality in Fig. 1(c) confirms
the consistency of our analysis.
Finally, we turn our attention to the spin dynamics.

In general, the nuclear spin-lattice relaxation rate 1yT1
satisfies the following formula [22]:

1
T1T

≠
g2

n

mBh̄

X

j,q
fjAjsqdaj2 1 jAjsqdbj2g

x 00
j sq, vnd

vn
,

(2)
where the subscript j represents the jth orbital, and
x 00

j sq, vnd is the imaginary part of the dynamical electron
spin susceptibility at wave vector q and NMR frequency
vn. The quantization axis of 1yT1 measurements is the c
axis. The hyperfine form factor jAjsqda,bj2 is q indepen-
dent for 1011yT1 at the Ru site [26], and is proportional to
cos2sqx,yy2d with a proportionality constant that is a func-
tion of C and D for 171yT1s1d at the O(1) site [22]. This
means that in principle 1011yT1T can sense both ferromag-
netic and antiferromagnetic spin fluctuations. On the other
hand, the form factor for the planar O(1) site is zero at
the staggered wave vector q ≠ sp , pd due to geometrical
cancellation of the antiferromagnetic component of trans-
ferred hyperfine fields. Accordingly, antiferromagnetic

spin fluctuations do not contribute to 171yT1s1dT [23].
Therefore, one can test whether the spin correlations are
ferromagnetic or antiferromagnetic in origin by comparing
171yT1s1dT and 1011yT1T .
In Figs. 2(a) and 2(b), we compare the temperature de-

pendence of 1yT1 and 1yT1T , respectively. Evidently,
O(1) and Ru sites show identical temperature dependence.
To the best of our knowledge, this is the first experimental
demonstration that the spin correlations in the RuO2 plane
are predominantly ferromagnetic in origin. Furthermore,
we found that both 171yT1s1dT and 1011yT1T increase
monotonically down to TFL, and almost saturate in the
canonical Fermi liquid state [27]. Besides the crossover
at TFL, both 171yT1s1d and 1011yT1 show a kink at Tp, as
indicated in Fig. 2(a). This means that the growth of ferro-
magnetic spin fluctuations as measured by 1yT1T begins
to saturate at Tp, where the c-axis resistivity rc crosses
over from semiconducting to metallic behavior upon cool-
ing [2,8]. In passing, the smaller values of 17Ks2d and
171yT1s2d imply weaker spin polarization at the apical O(2)
site transferred from the RuO2 planes, reflecting the quasi-
two-dimensional nature of the electronic states.
Combining the results in Figs. 1 and 2, we can draw

the following physical picture for the magnetic properties
of Sr2RuO4. Unlike the case of the cubic analog SrRuO3
(S ≠ 1), Hund’s coupling between the four electrons in
the Ru t2g orbitals does not align all four electron spins to
form a simple S ≠ 1 state in Sr2RuO4. The spin degrees

FIG. 2. (a) Nuclear spin-lattice relaxation rate 171yT1s1d of
the planar O(1) site [d], 171yT1s2d at the apical O(2) site [3],
and 1011yT1 at the Ru site [h]. (b) 171yT1s1dT [d], 171yT1s2dT
[3], and 1011yT1T [h].
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FIG. 1. Constant-v scans performed at h̄v ! 6.2 meV
around Q ! !1.3, 0.3, 0" along the !0, 1, 0" direction:
T ! 10.4 K (≤), T ! 295 K (±).

existence of comparable peaks at Q0 ! q0 1 G, where
q0 ! !60.3, 60.3, 0" # !60.6p$a, 60.6p$a, 0" and G
is a zone center or a Z point !001" in the !HK0" plane.
The best fit of the data to a Gaussian profile [15] incorpo-
rating experimental resolution function demonstrates that
the peak intensity is isotropic with an intrinsic q width
(FWHM), Dq ! 0.13 6 0.06 Å21.
The interpretation of the scattering at q0 as magnetic

in origin is supported by the large number of points in
reciprocal space where it has been observed. Further, the
lowest phonon frequencies at q0 are above 12 meV [16].
In addition, in contrast to a phonon-related scattering that
increases at large jQj or with temperature, the scattering
at q0 decreases both at large wave vector (Fig. 2) and at
high temperature (Fig. 1). These different points establish
the magnetic origin of the scattering observed around q0.
In contrast, in spite of several attempts, no sizable FM
spin fluctuations have been observed.
In a paramagnetic state, the magnetic neutron cross

section per formula unit can be written in terms of
the imaginary part of the dynamical spin susceptibility,
x 00!Q, v", as [17,18]

d2s

dV dv
!

kf

ki
r2

0
2F2!Q"

p!gmB"2

x 00!Q, v"
1 2 exp!2h̄v$kBT"

, (1)

where ki and kf are the incident and final neutron wave
vectors, r2

0 ! 0.292 barn, F!Q" is the magnetic form fac-
tor, and g % 2 is the Landé factor. The intensity of
the scattering can be reasonably well described by the
squared magnetic form factor of the Ru1 ion [19] (note
that the magnetic form factor of Ru41 is not available)
after correction for geometrical factors related to the un-
favorable shape of the sample; see Fig. 2. According to
our measurements, the q dependence of x 00 can be pa-
rametrized by x 00!Q, v" ! x 00!q0, v" exp&24 ln!2" !Q 2
Q0"2$Dq2'.
The Fermi surface in Sr2RuO4 is formed by three sheets

[14]: one, related to the 4dxy orbitals is quasi-2D, whereas

FIG. 2. Magnetic intensity, measured at T ! 10.4 K and
h̄v ! 6.2 meV as a function of jQj. For each point, the
corresponding wave vector, !H, K , L", is also reported. The
full line corresponds to the square of the Ru1 magnetic form
factor.

the two others, related to 4dxz,yz orbitals, are quasi-1D.
The 1D sheets can be schematically described by parallel
planes separated by q̄ ! 62p$3a, running both in the x
and in the y directions. These peculiarities give rise to
dynamical nesting effects at the wave vectors k ! !q̄ , ky",
k ! !kx , q̄", and, in particular, at q̄ ! !q̄ , q̄". The nesting
effects become dominant when calculating the bare spin
susceptibility of a noninteracting metal [14], given by the
Lindhard function [17]

x0!q , v" ! 22m2
B

X
k

fk1q 2 fk

´k1q 2 ´k 2 h̄v 1 ie
, (2)

where e ! 0, fk is the Fermi distribution function, and
´k the quasiparticle dispersion relation. Our INS data are
in very close agreement with the predicted four spots of
magnetic scattering situated at q̄ ! !62p$3a, 62p$3a"
[14]. In the experiment the incommensurate magnetic
responses are actually observed slightly away, at q0k !
!60.6p$a, 60.6p$a", which is most likely related to
details of the band structure [14].
Let us now consider the energy dependence and mag-

nitude of x 00!q0, v". At T ! 10.4 K, constant-v scans
have been measured at Q ! !1.3, 0.3, 0" along the !0, 1, 0"
direction for different transferred energies between 2.4
and 12 meV. The magnetic response always displays
a Gaussian profile, located at q0 with an energy in-
dependent q width, on top of a constant background.
In addition, two energy scans have been performed at
Q ! !1.3, 0.3, 0" and at Q ! !1.3, 0.46, 0", the latter pro-
viding a background reference. These measurements
allow us to determine the energy dependence of the mag-
netic response at q0 from 1.5 to 12 meV. The analysis
could not be extended to higher and lower energies due
to the contaminations by phonon [16] and elastic inco-
herent scattering, respectively. Using Eq. (1), the mag-
netic intensity has been converted to the dynamical spin
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q is measured in units of pya. This interaction strongly
favors a FM instability, and whether or not the actual
instability occurs depends on the density of states at the
Fermi level, according to the Stoner criterion, Is0dNs0d .
1. It appears that in SrRuO3 this condition is satisfied,
IN ≠ 1.23, and the material is a FM. In CaRuO3, the
smaller ionic radius of Ca leads to a smaller Ru-Ru
distance and thus to larger distortion. A peak in the
density of states that exists in SrRuO3 is washed out and
the material is on the border line, IN ¯ 1.
The same mechanism is operative in Sr2RuO4: For

an individual RuO2 plane, we obtain a (2D) Stoner fac-
tor Isqd ¯ 0.43 eVys1 1 0.08q2d, favoring ferromagnetic
spin fluctuations in the plane [5]. However, the 2D char-
acter of the band structure of Sr2RuO4 introduces addi-
tional complications. As discussed in Refs. [5,7], of the
three Fermi surface sheets one (g) is quasi-isotropic 2D,
and two (a and b) are quasi-1D. The latter can be visual-
ized (cf. Fig. 1 in Ref. [5]) as a system of parallel planes
separated by Q ≠ 2py3a, running both in the x and y
directions. This is true in the nearest-neighbor ddp tight-
binding model, while in reality due to the next hoppings
the planes are warped and reconnected at the crossing
lines, to form two pseudosquare prisms, obtained in LDA
calculations and observed experimentally. Naturally, such
a Fermi surface should give rise to sizable nesting effects
at the wave vectors k ≠ sQ, kyd, k ≠ skx , Qd, and espe-
cially at k ≠ Q ≠ sQ, Qd. This would lead to AFM spin
fluctuations at these vectors, in addition to the FM fluc-
tuations discussed above. To check, we have integrated
the LDA band structure of Sr2RuO4 to get the bare RPA
susceptibility,

x0sqd ≠
X

kij

Mki,k1q,jf fs´k,id 2 fs´k1q,jdg
´k1q,j 2 ´k,i

, (1)

where f is the Fermi distribution function, i and j label
the three bands. All jkil states were classified according
to the maximal t2g character, xy, yz, and zx, and the
matrix element M is taken to be 1 between two states
which have the same maximal character and 0 otherwise.
This is, of course, a rather crude approximation, but it
should reveal the qualitative behavior of x0. The results
are shown in Fig. 1. Roughly speaking,

x0sqd ≠ Ns0d 1 xnsqd , (2)
where xn is the nesting-dependent contribution. The total
susceptibility can then be expressed as

xsqd ≠
x0sqd

1 2 Isqdx0sqd
≠

x0sqd
1 2 IsqdNs0d 2 Isqdxnsqd

.

(3)
This form implies two different kinds of spin fluctua-
tions: FM ones, at q ≠ 0, and AFM ones, at q ≠ Q.
If IsQdNs0d 1 IsQdxnsQd . Is0dNs0d, the AFM fluctua-
tions are stronger. This seems to be the case in Sr2RuO4:
Our calculations yield Is0dNs0d ≠ 0.82, in good agree-

ment with the experimentally observed susceptibility en-
hancement, and IsQdNs0d 1 IsQdxnsQd ≠ 1.02 (which
actually corresponds to an instability with respect to
tripling of the unit cell both in x and in y). Since no
instability is observed in the experiment, nor in the direct
calculations, we conclude that the approximate treatment
of the matrix elements in Eq. (1) leads to an overestima-
tion of xn by at the very least 2%, but the conclusion that
AFM fluctuations are stronger or at least comparable with
the FM ones likely holds.
The direct way to test this experimentally is via neutron

scattering [8]. There is, however, an indirect argument
in favor of strong AFM spin fluctuations. Increasing the
effective dimensionality by adding additional RuO2 lay-
ers, one can increase Ns0d and eventually get a FM insta-
bility. Experimentally this happens when the number of
layers is three or maybe even two [9]. Another possible
(but not guaranteed) effect of adding layers is increased
z dispersion and thus deteriorated nesting. On the other
hand, reducing the next-nearest-neighbor hopping should
improve nesting and make an AFM transition more likely.
One expects such a reduction from rotating the RuO6 oc-
tahedra [10], as, for instance, in Ca2RuO4. Indeed, ex-
perimentally Ca2RuO4 is an AFM with a magnetization
of 1.2–1.3 s1.2 1.3dmByRu and TN ¯ 150 K. Moreover,
this AFM state is remarkably different from typical
Mott-Hubbard insulators, driven by strong Coulomb cor-
relations. First, although the conductivity grows with
temperature, the functional dependence is consistent with
a variable-range hopping and not with activation. Second,
there is substantial density of states at the Fermi level,
as evidenced by specific heat measurements. These two
facts indicate that Ca2RuO4 is not a simple insulator, but
a metal with disorder localized carriers (which is in turn
helped by strong coupling between the spin and charge de-
grees of freedom [4]). We performed LDA calculations
for Ca2RuO4 similar to those reported in Refs. [3,4] and
found a magnetic moment of ¯1.5mB (of which ¯1mB
is inside the Ru muffin-tin sphere and the rest mostly re-
siding on the apical oxygens) for Ca2RuO4 (in agreement

FIG. 1. Calculated bare susceptibility for Sr2RuO4.
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freedom in the 4dxy and 4dyz,zx orbitals behave more or
less independently at least down to TFL.
Next, we will discuss the quantitative aspect of xxy and

xyz,zx . Since we have found that xyz,zx shows little tem-
perature dependence, we can match the observed increase
of the bulk susceptibility data xbulk [7,18,25] below 300 K
to the increase of xxy in Fig. 1(c). Thus we obtain xxy ,
3.6 3 1024 emuymol at 4.2 K, and C ¯ 34 kOeymB. By
subtracting xxy , the orbital contribution xorb , 1.5 3
1024 [9], and the core diamagnetic contribution xdia ,
20.96 3 1024 emuymol from the observed bulk suscep-
tibility, xbulk , 9 3 1024 emuymol [7], we obtain xyz ≠
xzx , 2.4 3 1024 emuymol at 4.2 K, which also implies
D ¯ 34 kOeymB. Our results indicate that xxy accounts
for ,40% of the total spin susceptibility in the canonical
Fermi liquid state below TFL, and xyz and xzx contribute
,30% each. We note that relatively large uncertainties in
bulk susceptibility data [7,18,25] leave corresponding un-
certainties (,30%) in our estimate of the magnitude of C,
D, xxy , and xyz,zx , but none of the fundamental conclu-
sions of this Letter depend on the numerical details dis-
cussed in this paragraph.
To test the preceding analysis, in Fig. 1(c) we compare

the average spin susceptibility of all three t2g orbitals,
xay ≠ sxxy 1 2xyz,zxdy3, and the 101Ru Knight shift
101Kc. Since the filling of 4dxy , 4dyz , and 4dzx orbitals
is nearly even, i.e., 1.28, 1.36, and 1.36 electrons, respec-
tively [3,11], xay represents the average spin susceptibility
of four electrons in three t2g orbitals. On the other hand,
101Kc also probes an average of the spin susceptibility of
four electrons through the isotropic hyperfine fields arising
from the inner core polarization by all three t2g orbitals
[22]. Accordingly, we expect that 101Kc ~ xay . The
agreement with this proportionality in Fig. 1(c) confirms
the consistency of our analysis.
Finally, we turn our attention to the spin dynamics.

In general, the nuclear spin-lattice relaxation rate 1yT1
satisfies the following formula [22]:

1
T1T

≠
g2

n

mBh̄

X

j,q
fjAjsqdaj2 1 jAjsqdbj2g

x 00
j sq, vnd

vn
,

(2)
where the subscript j represents the jth orbital, and
x 00

j sq, vnd is the imaginary part of the dynamical electron
spin susceptibility at wave vector q and NMR frequency
vn. The quantization axis of 1yT1 measurements is the c
axis. The hyperfine form factor jAjsqda,bj2 is q indepen-
dent for 1011yT1 at the Ru site [26], and is proportional to
cos2sqx,yy2d with a proportionality constant that is a func-
tion of C and D for 171yT1s1d at the O(1) site [22]. This
means that in principle 1011yT1T can sense both ferromag-
netic and antiferromagnetic spin fluctuations. On the other
hand, the form factor for the planar O(1) site is zero at
the staggered wave vector q ≠ sp , pd due to geometrical
cancellation of the antiferromagnetic component of trans-
ferred hyperfine fields. Accordingly, antiferromagnetic

spin fluctuations do not contribute to 171yT1s1dT [23].
Therefore, one can test whether the spin correlations are
ferromagnetic or antiferromagnetic in origin by comparing
171yT1s1dT and 1011yT1T .
In Figs. 2(a) and 2(b), we compare the temperature de-

pendence of 1yT1 and 1yT1T , respectively. Evidently,
O(1) and Ru sites show identical temperature dependence.
To the best of our knowledge, this is the first experimental
demonstration that the spin correlations in the RuO2 plane
are predominantly ferromagnetic in origin. Furthermore,
we found that both 171yT1s1dT and 1011yT1T increase
monotonically down to TFL, and almost saturate in the
canonical Fermi liquid state [27]. Besides the crossover
at TFL, both 171yT1s1d and 1011yT1 show a kink at Tp, as
indicated in Fig. 2(a). This means that the growth of ferro-
magnetic spin fluctuations as measured by 1yT1T begins
to saturate at Tp, where the c-axis resistivity rc crosses
over from semiconducting to metallic behavior upon cool-
ing [2,8]. In passing, the smaller values of 17Ks2d and
171yT1s2d imply weaker spin polarization at the apical O(2)
site transferred from the RuO2 planes, reflecting the quasi-
two-dimensional nature of the electronic states.
Combining the results in Figs. 1 and 2, we can draw

the following physical picture for the magnetic properties
of Sr2RuO4. Unlike the case of the cubic analog SrRuO3
(S ≠ 1), Hund’s coupling between the four electrons in
the Ru t2g orbitals does not align all four electron spins to
form a simple S ≠ 1 state in Sr2RuO4. The spin degrees

FIG. 2. (a) Nuclear spin-lattice relaxation rate 171yT1s1d of
the planar O(1) site [d], 171yT1s2d at the apical O(2) site [3],
and 1011yT1 at the Ru site [h]. (b) 171yT1s1dT [d], 171yT1s2dT
[3], and 1011yT1T [h].
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FIG. 1. Constant-v scans performed at h̄v ! 6.2 meV
around Q ! !1.3, 0.3, 0" along the !0, 1, 0" direction:
T ! 10.4 K (≤), T ! 295 K (±).

existence of comparable peaks at Q0 ! q0 1 G, where
q0 ! !60.3, 60.3, 0" # !60.6p$a, 60.6p$a, 0" and G
is a zone center or a Z point !001" in the !HK0" plane.
The best fit of the data to a Gaussian profile [15] incorpo-
rating experimental resolution function demonstrates that
the peak intensity is isotropic with an intrinsic q width
(FWHM), Dq ! 0.13 6 0.06 Å21.
The interpretation of the scattering at q0 as magnetic

in origin is supported by the large number of points in
reciprocal space where it has been observed. Further, the
lowest phonon frequencies at q0 are above 12 meV [16].
In addition, in contrast to a phonon-related scattering that
increases at large jQj or with temperature, the scattering
at q0 decreases both at large wave vector (Fig. 2) and at
high temperature (Fig. 1). These different points establish
the magnetic origin of the scattering observed around q0.
In contrast, in spite of several attempts, no sizable FM
spin fluctuations have been observed.
In a paramagnetic state, the magnetic neutron cross

section per formula unit can be written in terms of
the imaginary part of the dynamical spin susceptibility,
x 00!Q, v", as [17,18]

d2s

dV dv
!

kf

ki
r2

0
2F2!Q"

p!gmB"2

x 00!Q, v"
1 2 exp!2h̄v$kBT"

, (1)

where ki and kf are the incident and final neutron wave
vectors, r2

0 ! 0.292 barn, F!Q" is the magnetic form fac-
tor, and g % 2 is the Landé factor. The intensity of
the scattering can be reasonably well described by the
squared magnetic form factor of the Ru1 ion [19] (note
that the magnetic form factor of Ru41 is not available)
after correction for geometrical factors related to the un-
favorable shape of the sample; see Fig. 2. According to
our measurements, the q dependence of x 00 can be pa-
rametrized by x 00!Q, v" ! x 00!q0, v" exp&24 ln!2" !Q 2
Q0"2$Dq2'.
The Fermi surface in Sr2RuO4 is formed by three sheets

[14]: one, related to the 4dxy orbitals is quasi-2D, whereas

FIG. 2. Magnetic intensity, measured at T ! 10.4 K and
h̄v ! 6.2 meV as a function of jQj. For each point, the
corresponding wave vector, !H, K , L", is also reported. The
full line corresponds to the square of the Ru1 magnetic form
factor.

the two others, related to 4dxz,yz orbitals, are quasi-1D.
The 1D sheets can be schematically described by parallel
planes separated by q̄ ! 62p$3a, running both in the x
and in the y directions. These peculiarities give rise to
dynamical nesting effects at the wave vectors k ! !q̄ , ky",
k ! !kx , q̄", and, in particular, at q̄ ! !q̄ , q̄". The nesting
effects become dominant when calculating the bare spin
susceptibility of a noninteracting metal [14], given by the
Lindhard function [17]

x0!q , v" ! 22m2
B

X
k

fk1q 2 fk

´k1q 2 ´k 2 h̄v 1 ie
, (2)

where e ! 0, fk is the Fermi distribution function, and
´k the quasiparticle dispersion relation. Our INS data are
in very close agreement with the predicted four spots of
magnetic scattering situated at q̄ ! !62p$3a, 62p$3a"
[14]. In the experiment the incommensurate magnetic
responses are actually observed slightly away, at q0k !
!60.6p$a, 60.6p$a", which is most likely related to
details of the band structure [14].
Let us now consider the energy dependence and mag-

nitude of x 00!q0, v". At T ! 10.4 K, constant-v scans
have been measured at Q ! !1.3, 0.3, 0" along the !0, 1, 0"
direction for different transferred energies between 2.4
and 12 meV. The magnetic response always displays
a Gaussian profile, located at q0 with an energy in-
dependent q width, on top of a constant background.
In addition, two energy scans have been performed at
Q ! !1.3, 0.3, 0" and at Q ! !1.3, 0.46, 0", the latter pro-
viding a background reference. These measurements
allow us to determine the energy dependence of the mag-
netic response at q0 from 1.5 to 12 meV. The analysis
could not be extended to higher and lower energies due
to the contaminations by phonon [16] and elastic inco-
herent scattering, respectively. Using Eq. (1), the mag-
netic intensity has been converted to the dynamical spin
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q is measured in units of pya. This interaction strongly
favors a FM instability, and whether or not the actual
instability occurs depends on the density of states at the
Fermi level, according to the Stoner criterion, Is0dNs0d .
1. It appears that in SrRuO3 this condition is satisfied,
IN ≠ 1.23, and the material is a FM. In CaRuO3, the
smaller ionic radius of Ca leads to a smaller Ru-Ru
distance and thus to larger distortion. A peak in the
density of states that exists in SrRuO3 is washed out and
the material is on the border line, IN ¯ 1.
The same mechanism is operative in Sr2RuO4: For

an individual RuO2 plane, we obtain a (2D) Stoner fac-
tor Isqd ¯ 0.43 eVys1 1 0.08q2d, favoring ferromagnetic
spin fluctuations in the plane [5]. However, the 2D char-
acter of the band structure of Sr2RuO4 introduces addi-
tional complications. As discussed in Refs. [5,7], of the
three Fermi surface sheets one (g) is quasi-isotropic 2D,
and two (a and b) are quasi-1D. The latter can be visual-
ized (cf. Fig. 1 in Ref. [5]) as a system of parallel planes
separated by Q ≠ 2py3a, running both in the x and y
directions. This is true in the nearest-neighbor ddp tight-
binding model, while in reality due to the next hoppings
the planes are warped and reconnected at the crossing
lines, to form two pseudosquare prisms, obtained in LDA
calculations and observed experimentally. Naturally, such
a Fermi surface should give rise to sizable nesting effects
at the wave vectors k ≠ sQ, kyd, k ≠ skx , Qd, and espe-
cially at k ≠ Q ≠ sQ, Qd. This would lead to AFM spin
fluctuations at these vectors, in addition to the FM fluc-
tuations discussed above. To check, we have integrated
the LDA band structure of Sr2RuO4 to get the bare RPA
susceptibility,

x0sqd ≠
X

kij

Mki,k1q,jf fs´k,id 2 fs´k1q,jdg
´k1q,j 2 ´k,i

, (1)

where f is the Fermi distribution function, i and j label
the three bands. All jkil states were classified according
to the maximal t2g character, xy, yz, and zx, and the
matrix element M is taken to be 1 between two states
which have the same maximal character and 0 otherwise.
This is, of course, a rather crude approximation, but it
should reveal the qualitative behavior of x0. The results
are shown in Fig. 1. Roughly speaking,

x0sqd ≠ Ns0d 1 xnsqd , (2)
where xn is the nesting-dependent contribution. The total
susceptibility can then be expressed as

xsqd ≠
x0sqd

1 2 Isqdx0sqd
≠

x0sqd
1 2 IsqdNs0d 2 Isqdxnsqd

.

(3)
This form implies two different kinds of spin fluctua-
tions: FM ones, at q ≠ 0, and AFM ones, at q ≠ Q.
If IsQdNs0d 1 IsQdxnsQd . Is0dNs0d, the AFM fluctua-
tions are stronger. This seems to be the case in Sr2RuO4:
Our calculations yield Is0dNs0d ≠ 0.82, in good agree-

ment with the experimentally observed susceptibility en-
hancement, and IsQdNs0d 1 IsQdxnsQd ≠ 1.02 (which
actually corresponds to an instability with respect to
tripling of the unit cell both in x and in y). Since no
instability is observed in the experiment, nor in the direct
calculations, we conclude that the approximate treatment
of the matrix elements in Eq. (1) leads to an overestima-
tion of xn by at the very least 2%, but the conclusion that
AFM fluctuations are stronger or at least comparable with
the FM ones likely holds.
The direct way to test this experimentally is via neutron

scattering [8]. There is, however, an indirect argument
in favor of strong AFM spin fluctuations. Increasing the
effective dimensionality by adding additional RuO2 lay-
ers, one can increase Ns0d and eventually get a FM insta-
bility. Experimentally this happens when the number of
layers is three or maybe even two [9]. Another possible
(but not guaranteed) effect of adding layers is increased
z dispersion and thus deteriorated nesting. On the other
hand, reducing the next-nearest-neighbor hopping should
improve nesting and make an AFM transition more likely.
One expects such a reduction from rotating the RuO6 oc-
tahedra [10], as, for instance, in Ca2RuO4. Indeed, ex-
perimentally Ca2RuO4 is an AFM with a magnetization
of 1.2–1.3 s1.2 1.3dmByRu and TN ¯ 150 K. Moreover,
this AFM state is remarkably different from typical
Mott-Hubbard insulators, driven by strong Coulomb cor-
relations. First, although the conductivity grows with
temperature, the functional dependence is consistent with
a variable-range hopping and not with activation. Second,
there is substantial density of states at the Fermi level,
as evidenced by specific heat measurements. These two
facts indicate that Ca2RuO4 is not a simple insulator, but
a metal with disorder localized carriers (which is in turn
helped by strong coupling between the spin and charge de-
grees of freedom [4]). We performed LDA calculations
for Ca2RuO4 similar to those reported in Refs. [3,4] and
found a magnetic moment of ¯1.5mB (of which ¯1mB
is inside the Ru muffin-tin sphere and the rest mostly re-
siding on the apical oxygens) for Ca2RuO4 (in agreement

FIG. 1. Calculated bare susceptibility for Sr2RuO4.

4325



Spin Fluctuations in Sr2RuO4

Existence from temperature dependence
I Nuclear Magnetic Resonance (NMR)

Imai et al. PRL 81 3006 (1998)

Theoretical prediction
I Density Functional Theory (DFT)

Mazin & Singh PRL 82 4324 (1999)

I Strong incommensurate spin-response
χ(QIC) at QIC ≈ (1/3, 1/3, 0)

Experimental verification

I Inelastic Neutron Scattering (INS)
Sidis et al. PRL 83 3320 (1999)

VOLUME 81, NUMBER 14 P HY S I CA L REV I EW LE T T ER S 5 OCTOBER 1998

freedom in the 4dxy and 4dyz,zx orbitals behave more or
less independently at least down to TFL.
Next, we will discuss the quantitative aspect of xxy and

xyz,zx . Since we have found that xyz,zx shows little tem-
perature dependence, we can match the observed increase
of the bulk susceptibility data xbulk [7,18,25] below 300 K
to the increase of xxy in Fig. 1(c). Thus we obtain xxy ,
3.6 3 1024 emuymol at 4.2 K, and C ¯ 34 kOeymB. By
subtracting xxy , the orbital contribution xorb , 1.5 3
1024 [9], and the core diamagnetic contribution xdia ,
20.96 3 1024 emuymol from the observed bulk suscep-
tibility, xbulk , 9 3 1024 emuymol [7], we obtain xyz ≠
xzx , 2.4 3 1024 emuymol at 4.2 K, which also implies
D ¯ 34 kOeymB. Our results indicate that xxy accounts
for ,40% of the total spin susceptibility in the canonical
Fermi liquid state below TFL, and xyz and xzx contribute
,30% each. We note that relatively large uncertainties in
bulk susceptibility data [7,18,25] leave corresponding un-
certainties (,30%) in our estimate of the magnitude of C,
D, xxy , and xyz,zx , but none of the fundamental conclu-
sions of this Letter depend on the numerical details dis-
cussed in this paragraph.
To test the preceding analysis, in Fig. 1(c) we compare

the average spin susceptibility of all three t2g orbitals,
xay ≠ sxxy 1 2xyz,zxdy3, and the 101Ru Knight shift
101Kc. Since the filling of 4dxy , 4dyz , and 4dzx orbitals
is nearly even, i.e., 1.28, 1.36, and 1.36 electrons, respec-
tively [3,11], xay represents the average spin susceptibility
of four electrons in three t2g orbitals. On the other hand,
101Kc also probes an average of the spin susceptibility of
four electrons through the isotropic hyperfine fields arising
from the inner core polarization by all three t2g orbitals
[22]. Accordingly, we expect that 101Kc ~ xay . The
agreement with this proportionality in Fig. 1(c) confirms
the consistency of our analysis.
Finally, we turn our attention to the spin dynamics.

In general, the nuclear spin-lattice relaxation rate 1yT1
satisfies the following formula [22]:

1
T1T

≠
g2

n

mBh̄

X

j,q
fjAjsqdaj2 1 jAjsqdbj2g

x 00
j sq, vnd

vn
,

(2)
where the subscript j represents the jth orbital, and
x 00

j sq, vnd is the imaginary part of the dynamical electron
spin susceptibility at wave vector q and NMR frequency
vn. The quantization axis of 1yT1 measurements is the c
axis. The hyperfine form factor jAjsqda,bj2 is q indepen-
dent for 1011yT1 at the Ru site [26], and is proportional to
cos2sqx,yy2d with a proportionality constant that is a func-
tion of C and D for 171yT1s1d at the O(1) site [22]. This
means that in principle 1011yT1T can sense both ferromag-
netic and antiferromagnetic spin fluctuations. On the other
hand, the form factor for the planar O(1) site is zero at
the staggered wave vector q ≠ sp , pd due to geometrical
cancellation of the antiferromagnetic component of trans-
ferred hyperfine fields. Accordingly, antiferromagnetic

spin fluctuations do not contribute to 171yT1s1dT [23].
Therefore, one can test whether the spin correlations are
ferromagnetic or antiferromagnetic in origin by comparing
171yT1s1dT and 1011yT1T .
In Figs. 2(a) and 2(b), we compare the temperature de-

pendence of 1yT1 and 1yT1T , respectively. Evidently,
O(1) and Ru sites show identical temperature dependence.
To the best of our knowledge, this is the first experimental
demonstration that the spin correlations in the RuO2 plane
are predominantly ferromagnetic in origin. Furthermore,
we found that both 171yT1s1dT and 1011yT1T increase
monotonically down to TFL, and almost saturate in the
canonical Fermi liquid state [27]. Besides the crossover
at TFL, both 171yT1s1d and 1011yT1 show a kink at Tp, as
indicated in Fig. 2(a). This means that the growth of ferro-
magnetic spin fluctuations as measured by 1yT1T begins
to saturate at Tp, where the c-axis resistivity rc crosses
over from semiconducting to metallic behavior upon cool-
ing [2,8]. In passing, the smaller values of 17Ks2d and
171yT1s2d imply weaker spin polarization at the apical O(2)
site transferred from the RuO2 planes, reflecting the quasi-
two-dimensional nature of the electronic states.
Combining the results in Figs. 1 and 2, we can draw

the following physical picture for the magnetic properties
of Sr2RuO4. Unlike the case of the cubic analog SrRuO3
(S ≠ 1), Hund’s coupling between the four electrons in
the Ru t2g orbitals does not align all four electron spins to
form a simple S ≠ 1 state in Sr2RuO4. The spin degrees

FIG. 2. (a) Nuclear spin-lattice relaxation rate 171yT1s1d of
the planar O(1) site [d], 171yT1s2d at the apical O(2) site [3],
and 1011yT1 at the Ru site [h]. (b) 171yT1s1dT [d], 171yT1s2dT
[3], and 1011yT1T [h].
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FIG. 1. Constant-v scans performed at h̄v ! 6.2 meV
around Q ! !1.3, 0.3, 0" along the !0, 1, 0" direction:
T ! 10.4 K (≤), T ! 295 K (±).

existence of comparable peaks at Q0 ! q0 1 G, where
q0 ! !60.3, 60.3, 0" # !60.6p$a, 60.6p$a, 0" and G
is a zone center or a Z point !001" in the !HK0" plane.
The best fit of the data to a Gaussian profile [15] incorpo-
rating experimental resolution function demonstrates that
the peak intensity is isotropic with an intrinsic q width
(FWHM), Dq ! 0.13 6 0.06 Å21.
The interpretation of the scattering at q0 as magnetic

in origin is supported by the large number of points in
reciprocal space where it has been observed. Further, the
lowest phonon frequencies at q0 are above 12 meV [16].
In addition, in contrast to a phonon-related scattering that
increases at large jQj or with temperature, the scattering
at q0 decreases both at large wave vector (Fig. 2) and at
high temperature (Fig. 1). These different points establish
the magnetic origin of the scattering observed around q0.
In contrast, in spite of several attempts, no sizable FM
spin fluctuations have been observed.
In a paramagnetic state, the magnetic neutron cross

section per formula unit can be written in terms of
the imaginary part of the dynamical spin susceptibility,
x 00!Q, v", as [17,18]

d2s

dV dv
!

kf

ki
r2

0
2F2!Q"

p!gmB"2

x 00!Q, v"
1 2 exp!2h̄v$kBT"

, (1)

where ki and kf are the incident and final neutron wave
vectors, r2

0 ! 0.292 barn, F!Q" is the magnetic form fac-
tor, and g % 2 is the Landé factor. The intensity of
the scattering can be reasonably well described by the
squared magnetic form factor of the Ru1 ion [19] (note
that the magnetic form factor of Ru41 is not available)
after correction for geometrical factors related to the un-
favorable shape of the sample; see Fig. 2. According to
our measurements, the q dependence of x 00 can be pa-
rametrized by x 00!Q, v" ! x 00!q0, v" exp&24 ln!2" !Q 2
Q0"2$Dq2'.
The Fermi surface in Sr2RuO4 is formed by three sheets

[14]: one, related to the 4dxy orbitals is quasi-2D, whereas

FIG. 2. Magnetic intensity, measured at T ! 10.4 K and
h̄v ! 6.2 meV as a function of jQj. For each point, the
corresponding wave vector, !H, K , L", is also reported. The
full line corresponds to the square of the Ru1 magnetic form
factor.

the two others, related to 4dxz,yz orbitals, are quasi-1D.
The 1D sheets can be schematically described by parallel
planes separated by q̄ ! 62p$3a, running both in the x
and in the y directions. These peculiarities give rise to
dynamical nesting effects at the wave vectors k ! !q̄ , ky",
k ! !kx , q̄", and, in particular, at q̄ ! !q̄ , q̄". The nesting
effects become dominant when calculating the bare spin
susceptibility of a noninteracting metal [14], given by the
Lindhard function [17]

x0!q , v" ! 22m2
B

X
k

fk1q 2 fk

´k1q 2 ´k 2 h̄v 1 ie
, (2)

where e ! 0, fk is the Fermi distribution function, and
´k the quasiparticle dispersion relation. Our INS data are
in very close agreement with the predicted four spots of
magnetic scattering situated at q̄ ! !62p$3a, 62p$3a"
[14]. In the experiment the incommensurate magnetic
responses are actually observed slightly away, at q0k !
!60.6p$a, 60.6p$a", which is most likely related to
details of the band structure [14].
Let us now consider the energy dependence and mag-

nitude of x 00!q0, v". At T ! 10.4 K, constant-v scans
have been measured at Q ! !1.3, 0.3, 0" along the !0, 1, 0"
direction for different transferred energies between 2.4
and 12 meV. The magnetic response always displays
a Gaussian profile, located at q0 with an energy in-
dependent q width, on top of a constant background.
In addition, two energy scans have been performed at
Q ! !1.3, 0.3, 0" and at Q ! !1.3, 0.46, 0", the latter pro-
viding a background reference. These measurements
allow us to determine the energy dependence of the mag-
netic response at q0 from 1.5 to 12 meV. The analysis
could not be extended to higher and lower energies due
to the contaminations by phonon [16] and elastic inco-
herent scattering, respectively. Using Eq. (1), the mag-
netic intensity has been converted to the dynamical spin
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q is measured in units of pya. This interaction strongly
favors a FM instability, and whether or not the actual
instability occurs depends on the density of states at the
Fermi level, according to the Stoner criterion, Is0dNs0d .
1. It appears that in SrRuO3 this condition is satisfied,
IN ≠ 1.23, and the material is a FM. In CaRuO3, the
smaller ionic radius of Ca leads to a smaller Ru-Ru
distance and thus to larger distortion. A peak in the
density of states that exists in SrRuO3 is washed out and
the material is on the border line, IN ¯ 1.
The same mechanism is operative in Sr2RuO4: For

an individual RuO2 plane, we obtain a (2D) Stoner fac-
tor Isqd ¯ 0.43 eVys1 1 0.08q2d, favoring ferromagnetic
spin fluctuations in the plane [5]. However, the 2D char-
acter of the band structure of Sr2RuO4 introduces addi-
tional complications. As discussed in Refs. [5,7], of the
three Fermi surface sheets one (g) is quasi-isotropic 2D,
and two (a and b) are quasi-1D. The latter can be visual-
ized (cf. Fig. 1 in Ref. [5]) as a system of parallel planes
separated by Q ≠ 2py3a, running both in the x and y
directions. This is true in the nearest-neighbor ddp tight-
binding model, while in reality due to the next hoppings
the planes are warped and reconnected at the crossing
lines, to form two pseudosquare prisms, obtained in LDA
calculations and observed experimentally. Naturally, such
a Fermi surface should give rise to sizable nesting effects
at the wave vectors k ≠ sQ, kyd, k ≠ skx , Qd, and espe-
cially at k ≠ Q ≠ sQ, Qd. This would lead to AFM spin
fluctuations at these vectors, in addition to the FM fluc-
tuations discussed above. To check, we have integrated
the LDA band structure of Sr2RuO4 to get the bare RPA
susceptibility,

x0sqd ≠
X

kij

Mki,k1q,jf fs´k,id 2 fs´k1q,jdg
´k1q,j 2 ´k,i

, (1)

where f is the Fermi distribution function, i and j label
the three bands. All jkil states were classified according
to the maximal t2g character, xy, yz, and zx, and the
matrix element M is taken to be 1 between two states
which have the same maximal character and 0 otherwise.
This is, of course, a rather crude approximation, but it
should reveal the qualitative behavior of x0. The results
are shown in Fig. 1. Roughly speaking,

x0sqd ≠ Ns0d 1 xnsqd , (2)
where xn is the nesting-dependent contribution. The total
susceptibility can then be expressed as

xsqd ≠
x0sqd

1 2 Isqdx0sqd
≠

x0sqd
1 2 IsqdNs0d 2 Isqdxnsqd

.

(3)
This form implies two different kinds of spin fluctua-
tions: FM ones, at q ≠ 0, and AFM ones, at q ≠ Q.
If IsQdNs0d 1 IsQdxnsQd . Is0dNs0d, the AFM fluctua-
tions are stronger. This seems to be the case in Sr2RuO4:
Our calculations yield Is0dNs0d ≠ 0.82, in good agree-

ment with the experimentally observed susceptibility en-
hancement, and IsQdNs0d 1 IsQdxnsQd ≠ 1.02 (which
actually corresponds to an instability with respect to
tripling of the unit cell both in x and in y). Since no
instability is observed in the experiment, nor in the direct
calculations, we conclude that the approximate treatment
of the matrix elements in Eq. (1) leads to an overestima-
tion of xn by at the very least 2%, but the conclusion that
AFM fluctuations are stronger or at least comparable with
the FM ones likely holds.
The direct way to test this experimentally is via neutron

scattering [8]. There is, however, an indirect argument
in favor of strong AFM spin fluctuations. Increasing the
effective dimensionality by adding additional RuO2 lay-
ers, one can increase Ns0d and eventually get a FM insta-
bility. Experimentally this happens when the number of
layers is three or maybe even two [9]. Another possible
(but not guaranteed) effect of adding layers is increased
z dispersion and thus deteriorated nesting. On the other
hand, reducing the next-nearest-neighbor hopping should
improve nesting and make an AFM transition more likely.
One expects such a reduction from rotating the RuO6 oc-
tahedra [10], as, for instance, in Ca2RuO4. Indeed, ex-
perimentally Ca2RuO4 is an AFM with a magnetization
of 1.2–1.3 s1.2 1.3dmByRu and TN ¯ 150 K. Moreover,
this AFM state is remarkably different from typical
Mott-Hubbard insulators, driven by strong Coulomb cor-
relations. First, although the conductivity grows with
temperature, the functional dependence is consistent with
a variable-range hopping and not with activation. Second,
there is substantial density of states at the Fermi level,
as evidenced by specific heat measurements. These two
facts indicate that Ca2RuO4 is not a simple insulator, but
a metal with disorder localized carriers (which is in turn
helped by strong coupling between the spin and charge de-
grees of freedom [4]). We performed LDA calculations
for Ca2RuO4 similar to those reported in Refs. [3,4] and
found a magnetic moment of ¯1.5mB (of which ¯1mB
is inside the Ru muffin-tin sphere and the rest mostly re-
siding on the apical oxygens) for Ca2RuO4 (in agreement

FIG. 1. Calculated bare susceptibility for Sr2RuO4.
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freedom in the 4dxy and 4dyz,zx orbitals behave more or
less independently at least down to TFL.
Next, we will discuss the quantitative aspect of xxy and

xyz,zx . Since we have found that xyz,zx shows little tem-
perature dependence, we can match the observed increase
of the bulk susceptibility data xbulk [7,18,25] below 300 K
to the increase of xxy in Fig. 1(c). Thus we obtain xxy ,
3.6 3 1024 emuymol at 4.2 K, and C ¯ 34 kOeymB. By
subtracting xxy , the orbital contribution xorb , 1.5 3
1024 [9], and the core diamagnetic contribution xdia ,
20.96 3 1024 emuymol from the observed bulk suscep-
tibility, xbulk , 9 3 1024 emuymol [7], we obtain xyz ≠
xzx , 2.4 3 1024 emuymol at 4.2 K, which also implies
D ¯ 34 kOeymB. Our results indicate that xxy accounts
for ,40% of the total spin susceptibility in the canonical
Fermi liquid state below TFL, and xyz and xzx contribute
,30% each. We note that relatively large uncertainties in
bulk susceptibility data [7,18,25] leave corresponding un-
certainties (,30%) in our estimate of the magnitude of C,
D, xxy , and xyz,zx , but none of the fundamental conclu-
sions of this Letter depend on the numerical details dis-
cussed in this paragraph.
To test the preceding analysis, in Fig. 1(c) we compare

the average spin susceptibility of all three t2g orbitals,
xay ≠ sxxy 1 2xyz,zxdy3, and the 101Ru Knight shift
101Kc. Since the filling of 4dxy , 4dyz , and 4dzx orbitals
is nearly even, i.e., 1.28, 1.36, and 1.36 electrons, respec-
tively [3,11], xay represents the average spin susceptibility
of four electrons in three t2g orbitals. On the other hand,
101Kc also probes an average of the spin susceptibility of
four electrons through the isotropic hyperfine fields arising
from the inner core polarization by all three t2g orbitals
[22]. Accordingly, we expect that 101Kc ~ xay . The
agreement with this proportionality in Fig. 1(c) confirms
the consistency of our analysis.
Finally, we turn our attention to the spin dynamics.

In general, the nuclear spin-lattice relaxation rate 1yT1
satisfies the following formula [22]:

1
T1T

≠
g2

n

mBh̄

X

j,q
fjAjsqdaj2 1 jAjsqdbj2g

x 00
j sq, vnd

vn
,

(2)
where the subscript j represents the jth orbital, and
x 00

j sq, vnd is the imaginary part of the dynamical electron
spin susceptibility at wave vector q and NMR frequency
vn. The quantization axis of 1yT1 measurements is the c
axis. The hyperfine form factor jAjsqda,bj2 is q indepen-
dent for 1011yT1 at the Ru site [26], and is proportional to
cos2sqx,yy2d with a proportionality constant that is a func-
tion of C and D for 171yT1s1d at the O(1) site [22]. This
means that in principle 1011yT1T can sense both ferromag-
netic and antiferromagnetic spin fluctuations. On the other
hand, the form factor for the planar O(1) site is zero at
the staggered wave vector q ≠ sp , pd due to geometrical
cancellation of the antiferromagnetic component of trans-
ferred hyperfine fields. Accordingly, antiferromagnetic

spin fluctuations do not contribute to 171yT1s1dT [23].
Therefore, one can test whether the spin correlations are
ferromagnetic or antiferromagnetic in origin by comparing
171yT1s1dT and 1011yT1T .
In Figs. 2(a) and 2(b), we compare the temperature de-

pendence of 1yT1 and 1yT1T , respectively. Evidently,
O(1) and Ru sites show identical temperature dependence.
To the best of our knowledge, this is the first experimental
demonstration that the spin correlations in the RuO2 plane
are predominantly ferromagnetic in origin. Furthermore,
we found that both 171yT1s1dT and 1011yT1T increase
monotonically down to TFL, and almost saturate in the
canonical Fermi liquid state [27]. Besides the crossover
at TFL, both 171yT1s1d and 1011yT1 show a kink at Tp, as
indicated in Fig. 2(a). This means that the growth of ferro-
magnetic spin fluctuations as measured by 1yT1T begins
to saturate at Tp, where the c-axis resistivity rc crosses
over from semiconducting to metallic behavior upon cool-
ing [2,8]. In passing, the smaller values of 17Ks2d and
171yT1s2d imply weaker spin polarization at the apical O(2)
site transferred from the RuO2 planes, reflecting the quasi-
two-dimensional nature of the electronic states.
Combining the results in Figs. 1 and 2, we can draw

the following physical picture for the magnetic properties
of Sr2RuO4. Unlike the case of the cubic analog SrRuO3
(S ≠ 1), Hund’s coupling between the four electrons in
the Ru t2g orbitals does not align all four electron spins to
form a simple S ≠ 1 state in Sr2RuO4. The spin degrees

FIG. 2. (a) Nuclear spin-lattice relaxation rate 171yT1s1d of
the planar O(1) site [d], 171yT1s2d at the apical O(2) site [3],
and 1011yT1 at the Ru site [h]. (b) 171yT1s1dT [d], 171yT1s2dT
[3], and 1011yT1T [h].
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FIG. 1. Constant-v scans performed at h̄v ! 6.2 meV
around Q ! !1.3, 0.3, 0" along the !0, 1, 0" direction:
T ! 10.4 K (≤), T ! 295 K (±).

existence of comparable peaks at Q0 ! q0 1 G, where
q0 ! !60.3, 60.3, 0" # !60.6p$a, 60.6p$a, 0" and G
is a zone center or a Z point !001" in the !HK0" plane.
The best fit of the data to a Gaussian profile [15] incorpo-
rating experimental resolution function demonstrates that
the peak intensity is isotropic with an intrinsic q width
(FWHM), Dq ! 0.13 6 0.06 Å21.
The interpretation of the scattering at q0 as magnetic

in origin is supported by the large number of points in
reciprocal space where it has been observed. Further, the
lowest phonon frequencies at q0 are above 12 meV [16].
In addition, in contrast to a phonon-related scattering that
increases at large jQj or with temperature, the scattering
at q0 decreases both at large wave vector (Fig. 2) and at
high temperature (Fig. 1). These different points establish
the magnetic origin of the scattering observed around q0.
In contrast, in spite of several attempts, no sizable FM
spin fluctuations have been observed.
In a paramagnetic state, the magnetic neutron cross

section per formula unit can be written in terms of
the imaginary part of the dynamical spin susceptibility,
x 00!Q, v", as [17,18]

d2s

dV dv
!

kf

ki
r2

0
2F2!Q"

p!gmB"2

x 00!Q, v"
1 2 exp!2h̄v$kBT"

, (1)

where ki and kf are the incident and final neutron wave
vectors, r2

0 ! 0.292 barn, F!Q" is the magnetic form fac-
tor, and g % 2 is the Landé factor. The intensity of
the scattering can be reasonably well described by the
squared magnetic form factor of the Ru1 ion [19] (note
that the magnetic form factor of Ru41 is not available)
after correction for geometrical factors related to the un-
favorable shape of the sample; see Fig. 2. According to
our measurements, the q dependence of x 00 can be pa-
rametrized by x 00!Q, v" ! x 00!q0, v" exp&24 ln!2" !Q 2
Q0"2$Dq2'.
The Fermi surface in Sr2RuO4 is formed by three sheets

[14]: one, related to the 4dxy orbitals is quasi-2D, whereas

FIG. 2. Magnetic intensity, measured at T ! 10.4 K and
h̄v ! 6.2 meV as a function of jQj. For each point, the
corresponding wave vector, !H, K , L", is also reported. The
full line corresponds to the square of the Ru1 magnetic form
factor.

the two others, related to 4dxz,yz orbitals, are quasi-1D.
The 1D sheets can be schematically described by parallel
planes separated by q̄ ! 62p$3a, running both in the x
and in the y directions. These peculiarities give rise to
dynamical nesting effects at the wave vectors k ! !q̄ , ky",
k ! !kx , q̄", and, in particular, at q̄ ! !q̄ , q̄". The nesting
effects become dominant when calculating the bare spin
susceptibility of a noninteracting metal [14], given by the
Lindhard function [17]

x0!q , v" ! 22m2
B

X
k

fk1q 2 fk

´k1q 2 ´k 2 h̄v 1 ie
, (2)

where e ! 0, fk is the Fermi distribution function, and
´k the quasiparticle dispersion relation. Our INS data are
in very close agreement with the predicted four spots of
magnetic scattering situated at q̄ ! !62p$3a, 62p$3a"
[14]. In the experiment the incommensurate magnetic
responses are actually observed slightly away, at q0k !
!60.6p$a, 60.6p$a", which is most likely related to
details of the band structure [14].
Let us now consider the energy dependence and mag-

nitude of x 00!q0, v". At T ! 10.4 K, constant-v scans
have been measured at Q ! !1.3, 0.3, 0" along the !0, 1, 0"
direction for different transferred energies between 2.4
and 12 meV. The magnetic response always displays
a Gaussian profile, located at q0 with an energy in-
dependent q width, on top of a constant background.
In addition, two energy scans have been performed at
Q ! !1.3, 0.3, 0" and at Q ! !1.3, 0.46, 0", the latter pro-
viding a background reference. These measurements
allow us to determine the energy dependence of the mag-
netic response at q0 from 1.5 to 12 meV. The analysis
could not be extended to higher and lower energies due
to the contaminations by phonon [16] and elastic inco-
herent scattering, respectively. Using Eq. (1), the mag-
netic intensity has been converted to the dynamical spin

3321

VOLUME 82, NUMBER 21 P HY S I CA L REV I EW LE T T ER S 24 MAY 1999

q is measured in units of pya. This interaction strongly
favors a FM instability, and whether or not the actual
instability occurs depends on the density of states at the
Fermi level, according to the Stoner criterion, Is0dNs0d .
1. It appears that in SrRuO3 this condition is satisfied,
IN ≠ 1.23, and the material is a FM. In CaRuO3, the
smaller ionic radius of Ca leads to a smaller Ru-Ru
distance and thus to larger distortion. A peak in the
density of states that exists in SrRuO3 is washed out and
the material is on the border line, IN ¯ 1.
The same mechanism is operative in Sr2RuO4: For

an individual RuO2 plane, we obtain a (2D) Stoner fac-
tor Isqd ¯ 0.43 eVys1 1 0.08q2d, favoring ferromagnetic
spin fluctuations in the plane [5]. However, the 2D char-
acter of the band structure of Sr2RuO4 introduces addi-
tional complications. As discussed in Refs. [5,7], of the
three Fermi surface sheets one (g) is quasi-isotropic 2D,
and two (a and b) are quasi-1D. The latter can be visual-
ized (cf. Fig. 1 in Ref. [5]) as a system of parallel planes
separated by Q ≠ 2py3a, running both in the x and y
directions. This is true in the nearest-neighbor ddp tight-
binding model, while in reality due to the next hoppings
the planes are warped and reconnected at the crossing
lines, to form two pseudosquare prisms, obtained in LDA
calculations and observed experimentally. Naturally, such
a Fermi surface should give rise to sizable nesting effects
at the wave vectors k ≠ sQ, kyd, k ≠ skx , Qd, and espe-
cially at k ≠ Q ≠ sQ, Qd. This would lead to AFM spin
fluctuations at these vectors, in addition to the FM fluc-
tuations discussed above. To check, we have integrated
the LDA band structure of Sr2RuO4 to get the bare RPA
susceptibility,

x0sqd ≠
X

kij

Mki,k1q,jf fs´k,id 2 fs´k1q,jdg
´k1q,j 2 ´k,i

, (1)

where f is the Fermi distribution function, i and j label
the three bands. All jkil states were classified according
to the maximal t2g character, xy, yz, and zx, and the
matrix element M is taken to be 1 between two states
which have the same maximal character and 0 otherwise.
This is, of course, a rather crude approximation, but it
should reveal the qualitative behavior of x0. The results
are shown in Fig. 1. Roughly speaking,

x0sqd ≠ Ns0d 1 xnsqd , (2)
where xn is the nesting-dependent contribution. The total
susceptibility can then be expressed as

xsqd ≠
x0sqd

1 2 Isqdx0sqd
≠

x0sqd
1 2 IsqdNs0d 2 Isqdxnsqd

.

(3)
This form implies two different kinds of spin fluctua-
tions: FM ones, at q ≠ 0, and AFM ones, at q ≠ Q.
If IsQdNs0d 1 IsQdxnsQd . Is0dNs0d, the AFM fluctua-
tions are stronger. This seems to be the case in Sr2RuO4:
Our calculations yield Is0dNs0d ≠ 0.82, in good agree-

ment with the experimentally observed susceptibility en-
hancement, and IsQdNs0d 1 IsQdxnsQd ≠ 1.02 (which
actually corresponds to an instability with respect to
tripling of the unit cell both in x and in y). Since no
instability is observed in the experiment, nor in the direct
calculations, we conclude that the approximate treatment
of the matrix elements in Eq. (1) leads to an overestima-
tion of xn by at the very least 2%, but the conclusion that
AFM fluctuations are stronger or at least comparable with
the FM ones likely holds.
The direct way to test this experimentally is via neutron

scattering [8]. There is, however, an indirect argument
in favor of strong AFM spin fluctuations. Increasing the
effective dimensionality by adding additional RuO2 lay-
ers, one can increase Ns0d and eventually get a FM insta-
bility. Experimentally this happens when the number of
layers is three or maybe even two [9]. Another possible
(but not guaranteed) effect of adding layers is increased
z dispersion and thus deteriorated nesting. On the other
hand, reducing the next-nearest-neighbor hopping should
improve nesting and make an AFM transition more likely.
One expects such a reduction from rotating the RuO6 oc-
tahedra [10], as, for instance, in Ca2RuO4. Indeed, ex-
perimentally Ca2RuO4 is an AFM with a magnetization
of 1.2–1.3 s1.2 1.3dmByRu and TN ¯ 150 K. Moreover,
this AFM state is remarkably different from typical
Mott-Hubbard insulators, driven by strong Coulomb cor-
relations. First, although the conductivity grows with
temperature, the functional dependence is consistent with
a variable-range hopping and not with activation. Second,
there is substantial density of states at the Fermi level,
as evidenced by specific heat measurements. These two
facts indicate that Ca2RuO4 is not a simple insulator, but
a metal with disorder localized carriers (which is in turn
helped by strong coupling between the spin and charge de-
grees of freedom [4]). We performed LDA calculations
for Ca2RuO4 similar to those reported in Refs. [3,4] and
found a magnetic moment of ¯1.5mB (of which ¯1mB
is inside the Ru muffin-tin sphere and the rest mostly re-
siding on the apical oxygens) for Ca2RuO4 (in agreement

FIG. 1. Calculated bare susceptibility for Sr2RuO4.
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FIG. 3. Correlation enhanced e↵ective SOC. (a) Quadrant of the experimental Fermi surface with a DFT calculation without

SOC (ĤDFT) at the experimental kz ⇡ 0.4 ⇡/c (grey lines). (b,c) Same as (a) with calculations including SOC (DFT+�DFT)
and enhanced SOC (�DFT +��), respectively. For details, see main text. (d) Comparison of the experimental MDC along the
k-space cut indicated in (a) with the di↵erent calculations shown in (a-c). (e) Schematic illustration of the renormalization of
a SOC induced degeneracy lifting. Here, Z =

p
Z⌫Z⌫0 , where ⌫, ⌫0 labels the two bands and v =

p
v⌫v⌫0 where v⌫ , v⌫0 are bare

velocities in the absence of SOC [23] (see text). (f) Experimental quasiparticle dispersion along the k-space cut indicated in
(a). (g) Orbital character of the DFT+�DFT + �� eigenstates along the Fermi surface.

ergy scale of SOC. Note that the SOC-induced splitting
of the bands at the � point reported in Ref. [67] can
also be explained by the competing e↵ects of enhance-
ment by correlations and reduction by the quasiparticle
weight as shown in Ref. [23]. We also point out that the
equilibration of quasiparticle velocities close to the diag-
onal, apparent from Figs. 2 (a,c) and 3 (f) is indeed the
behavior expected close to an avoided crossing [23].

Including the enhanced SOC determined from this
non-crossing gap leads to a much improved theoreti-
cal description of the entire Fermi surface [69]. As
shown in Fig. 3 (b), our high-resolution experimental
Fermi surface deviates systematically from a DFT cal-
culation with SOC. Most notably, ĤDFT+ĤSOC

�DFT
under-

estimates the size of the � sheet and overestimates the
� sheet. Intriguingly, this is almost completely corrected
in ĤDFT+ĤSOC

�DFT+��, with �DFT + �� = 200 meV, as
demonstrated in Fig. 3 (c). However, a close inspection
shows that the remaining discrepancies between experi-
ment and ĤDFT+ĤSOC

�DFT+�� break the crystal symmetry,
suggesting that they are dominated by experimental ar-
tifacts. A likely source for these image distortions is im-
perfections in the electron optics arising from variations
of the work function around the electron emission spot on
the sample. Such distortions can presently not be fully
eliminated in low-energy photoemission from cleaved sin-
gle crystals.

Importantly, the change in Fermi surface sheet volume
with the inclusion of �� is not driven by a change in the
crystal field splitting between the xy and xz, yz orbitals

(see appendix B). The volume change occurs solely be-
cause of a further increase in the orbital mixing induced
by the enhanced SOC. As shown in Fig. 3 (g), this mixing
is not limited to the vicinity of the avoided crossing but
extends along the entire Fermi surface. For �DFT + ��
we find a minimal dxy and dxz,yz mixing for the � and �
bands of 20/80% along the �M direction with a mono-
tonic increase to ⇡ 50% along the Brillouin zone diagonal
�X. We note that this mixing varies with the perpendic-
ular momentum kz. However, around the experimental
value of kz ⇡ 0.4 ⇡/c the variation is weak [70]. The
analysis presented here and in Secs. III A and VI is thus
robust with respect to a typical uncertainty in kz. These
findings suggest that a natural reference single-particle
Hamiltonian is Ĥ0=ĤDFT+ĤSOC

�DFT+��. This choice en-

sures that the Fermi surface of Ĥ0 is very close to that of
the interacting system. From Eq. 4, this implies that the
self-energy matrix approximately vanishes at zero bind-
ing energy: ⌃0

⌫⌫0(! = 0, k) ' 0. We choose Ĥ0 in this
manner in all the following. Hence, from now on | ⌫ (k)i
and "⌫ (k) refer to the eigenstates and band structure of

Ĥ0=ĤDFT+ĤSOC
�DFT+��. We point out that although Ĥ0

is a single-particle Hamiltonian, the e↵ective enhance-
ment �� of SOC included in Ĥ0 is a correlation e↵ect
beyond DFT.

I Correlation effects from DMFT
Mravlje, et al. PRL 106, 096401 (2011)
Zhang, et al. PRL 116, 106402 (2016)
Kim, et al. PRL 120, 126401 (2018)
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FIG. 1. (a) Fermi surface of Sr2RuO4. The data were acquired at 5 K on a CO passivated surface with a photon energy
of 11 eV and p-polarization for measurements along the �X symmetry line. The sample tilt around the �X axis used to
measure the full Fermi surface results in a mixed polarization for data away from this symmetry axis. The Brillouin zone
of the reconstructed surface layer is indicated by diagonal dashed lines. Surface states and final state umklapp processes are
suppressed to near the detection limit. A comparison with ARPES data from a pristine cleave is shown in appendix A. The
data have been mirror-symmetrized for clarity. (b) Constant energy surfaces illustrating the progressive broadening of the
quasiparticle states away from the Fermi level EF .

high-symmetry line our data reproduce the large di↵er-

ence in Fermi velocity v�,�
F for the � and � sheet, which

is expected from the di↵erent cyclotron masses deduced
from quantum oscillations [12, 25, 26] and was reported
in earlier ARPES studies [33, 55]. Our systematic data,
however, reveal that this di↵erence gradually disappears
towards the Brillouin zone diagonal (✓ = 45�), where all
three bands disperse nearly parallel to one another. In
Sec. IV we will show that this equilibration of the Fermi
velocity can be attributed to the strong e↵ects of SOC
around the zone diagonal.

To quantify the angle dependence of v�,�
F from exper-

iment, we determine the maxima k⌫
max(!) of the mo-

mentum distribution curves (MDCs) over the range of
2-6 meV below the Fermi level EF and fit these k-space
loci with a second-order polynomial. We then define the
Fermi velocity as the derivative of this polynomial at EF .
This procedure minimizes artifacts due to the finite en-
ergy resolution of the experiment. As shown in Fig. 2 (c),

the Fermi velocities v�,�
F obtained in this way show an

opposite trend with azimuthal angle for the two Fermi
sheets. For the � band we observe a gentle decrease of
vF as we approach the �X direction, whereas for � the
velocity increases by more than a factor of two over the
same range [56]. This provides a first indication for a
strong momentum dependence of the self-energies ⌃0

�,� ,
which we will analyze quantitatively in Sec.V. Here, we
limit the discussion to the angle dependence of the mass
enhancement vb/vF , which we calculate from the mea-

sured quasiparticle Fermi velocities of Fig. 2 (c) and the

corresponding velocities of a reference Hamiltonian Ĥ0

defined in Sec. IV. As shown in Fig. 2 (d), this confirms
a substantial many-body e↵ect on the anisotropy of the
quasiparticle dispersion. Along �M, we find a strong dif-
ferentiation with mass enhancements of ⇡ 5 for the �
sheet and ⇡ 3.2 for �, whereas vb/vF approaches a com-
mon value of ⇡ 4.4 for both sheets along the Brillouin
zone diagonal.

Before introducing the theoretical framework used to
quantify the anisotropy of the self-energy and the e↵ects
of SOC, we compare our data quantitatively to bulk sen-
sitive quantum oscillation measurements. Using the ex-
perimental Fermi wave vectors kF and velocities deter-
mined from our data on a dense grid along the entire
Fermi surface, we can compute the cyclotron masses mea-
sured by dHvA experiments, without relying on the ap-
proximation of circular Fermi surfaces and/or isotropic
Fermi velocities used in earlier studies [33, 49, 55, 57].
Expressing the cyclotron mass m⇤ as

m⇤ =
~2

2⇡

@AFS

@✏
=

~2

2⇡

Z 2⇡

0

kF (✓)

@✏/@k(✓)
d✓ , (1)

where AFS is the Fermi surface volume, and using the
data shown in Fig. 2 (c), we obtain m⇤

� = 17.3(2.0) me

and m⇤
� = 6.1(1.0) me, in quantitative agreement with

the values of m⇤
� = 16 me and m⇤

� = 7 me found in

dHvA experiments [12, 25, 26]. We thus conclude that
the quasiparticle states probed by our experiments are

Tamai, et al., PRX 9 021048 (2019)
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FIG. 3. Correlation enhanced e↵ective SOC. (a) Quadrant of the experimental Fermi surface with a DFT calculation without

SOC (ĤDFT) at the experimental kz ⇡ 0.4 ⇡/c (grey lines). (b,c) Same as (a) with calculations including SOC (DFT+�DFT)
and enhanced SOC (�DFT +��), respectively. For details, see main text. (d) Comparison of the experimental MDC along the
k-space cut indicated in (a) with the di↵erent calculations shown in (a-c). (e) Schematic illustration of the renormalization of
a SOC induced degeneracy lifting. Here, Z =

p
Z⌫Z⌫0 , where ⌫, ⌫0 labels the two bands and v =

p
v⌫v⌫0 where v⌫ , v⌫0 are bare

velocities in the absence of SOC [23] (see text). (f) Experimental quasiparticle dispersion along the k-space cut indicated in
(a). (g) Orbital character of the DFT+�DFT + �� eigenstates along the Fermi surface.

ergy scale of SOC. Note that the SOC-induced splitting
of the bands at the � point reported in Ref. [67] can
also be explained by the competing e↵ects of enhance-
ment by correlations and reduction by the quasiparticle
weight as shown in Ref. [23]. We also point out that the
equilibration of quasiparticle velocities close to the diag-
onal, apparent from Figs. 2 (a,c) and 3 (f) is indeed the
behavior expected close to an avoided crossing [23].

Including the enhanced SOC determined from this
non-crossing gap leads to a much improved theoreti-
cal description of the entire Fermi surface [69]. As
shown in Fig. 3 (b), our high-resolution experimental
Fermi surface deviates systematically from a DFT cal-
culation with SOC. Most notably, ĤDFT+ĤSOC

�DFT
under-

estimates the size of the � sheet and overestimates the
� sheet. Intriguingly, this is almost completely corrected
in ĤDFT+ĤSOC

�DFT+��, with �DFT + �� = 200 meV, as
demonstrated in Fig. 3 (c). However, a close inspection
shows that the remaining discrepancies between experi-
ment and ĤDFT+ĤSOC

�DFT+�� break the crystal symmetry,
suggesting that they are dominated by experimental ar-
tifacts. A likely source for these image distortions is im-
perfections in the electron optics arising from variations
of the work function around the electron emission spot on
the sample. Such distortions can presently not be fully
eliminated in low-energy photoemission from cleaved sin-
gle crystals.

Importantly, the change in Fermi surface sheet volume
with the inclusion of �� is not driven by a change in the
crystal field splitting between the xy and xz, yz orbitals

(see appendix B). The volume change occurs solely be-
cause of a further increase in the orbital mixing induced
by the enhanced SOC. As shown in Fig. 3 (g), this mixing
is not limited to the vicinity of the avoided crossing but
extends along the entire Fermi surface. For �DFT + ��
we find a minimal dxy and dxz,yz mixing for the � and �
bands of 20/80% along the �M direction with a mono-
tonic increase to ⇡ 50% along the Brillouin zone diagonal
�X. We note that this mixing varies with the perpendic-
ular momentum kz. However, around the experimental
value of kz ⇡ 0.4 ⇡/c the variation is weak [70]. The
analysis presented here and in Secs. III A and VI is thus
robust with respect to a typical uncertainty in kz. These
findings suggest that a natural reference single-particle
Hamiltonian is Ĥ0=ĤDFT+ĤSOC

�DFT+��. This choice en-

sures that the Fermi surface of Ĥ0 is very close to that of
the interacting system. From Eq. 4, this implies that the
self-energy matrix approximately vanishes at zero bind-
ing energy: ⌃0

⌫⌫0(! = 0, k) ' 0. We choose Ĥ0 in this
manner in all the following. Hence, from now on | ⌫ (k)i
and "⌫ (k) refer to the eigenstates and band structure of

Ĥ0=ĤDFT+ĤSOC
�DFT+��. We point out that although Ĥ0

is a single-particle Hamiltonian, the e↵ective enhance-
ment �� of SOC included in Ĥ0 is a correlation e↵ect
beyond DFT.

I Correlation effects from DMFT
Mravlje, et al. PRL 106, 096401 (2011)
Zhang, et al. PRL 116, 106402 (2016)
Kim, et al. PRL 120, 126401 (2018)
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FIG. 1. (a) Fermi surface of Sr2RuO4. The data were acquired at 5 K on a CO passivated surface with a photon energy
of 11 eV and p-polarization for measurements along the �X symmetry line. The sample tilt around the �X axis used to
measure the full Fermi surface results in a mixed polarization for data away from this symmetry axis. The Brillouin zone
of the reconstructed surface layer is indicated by diagonal dashed lines. Surface states and final state umklapp processes are
suppressed to near the detection limit. A comparison with ARPES data from a pristine cleave is shown in appendix A. The
data have been mirror-symmetrized for clarity. (b) Constant energy surfaces illustrating the progressive broadening of the
quasiparticle states away from the Fermi level EF .

high-symmetry line our data reproduce the large di↵er-

ence in Fermi velocity v�,�
F for the � and � sheet, which

is expected from the di↵erent cyclotron masses deduced
from quantum oscillations [12, 25, 26] and was reported
in earlier ARPES studies [33, 55]. Our systematic data,
however, reveal that this di↵erence gradually disappears
towards the Brillouin zone diagonal (✓ = 45�), where all
three bands disperse nearly parallel to one another. In
Sec. IV we will show that this equilibration of the Fermi
velocity can be attributed to the strong e↵ects of SOC
around the zone diagonal.

To quantify the angle dependence of v�,�
F from exper-

iment, we determine the maxima k⌫
max(!) of the mo-

mentum distribution curves (MDCs) over the range of
2-6 meV below the Fermi level EF and fit these k-space
loci with a second-order polynomial. We then define the
Fermi velocity as the derivative of this polynomial at EF .
This procedure minimizes artifacts due to the finite en-
ergy resolution of the experiment. As shown in Fig. 2 (c),

the Fermi velocities v�,�
F obtained in this way show an

opposite trend with azimuthal angle for the two Fermi
sheets. For the � band we observe a gentle decrease of
vF as we approach the �X direction, whereas for � the
velocity increases by more than a factor of two over the
same range [56]. This provides a first indication for a
strong momentum dependence of the self-energies ⌃0

�,� ,
which we will analyze quantitatively in Sec.V. Here, we
limit the discussion to the angle dependence of the mass
enhancement vb/vF , which we calculate from the mea-

sured quasiparticle Fermi velocities of Fig. 2 (c) and the

corresponding velocities of a reference Hamiltonian Ĥ0

defined in Sec. IV. As shown in Fig. 2 (d), this confirms
a substantial many-body e↵ect on the anisotropy of the
quasiparticle dispersion. Along �M, we find a strong dif-
ferentiation with mass enhancements of ⇡ 5 for the �
sheet and ⇡ 3.2 for �, whereas vb/vF approaches a com-
mon value of ⇡ 4.4 for both sheets along the Brillouin
zone diagonal.

Before introducing the theoretical framework used to
quantify the anisotropy of the self-energy and the e↵ects
of SOC, we compare our data quantitatively to bulk sen-
sitive quantum oscillation measurements. Using the ex-
perimental Fermi wave vectors kF and velocities deter-
mined from our data on a dense grid along the entire
Fermi surface, we can compute the cyclotron masses mea-
sured by dHvA experiments, without relying on the ap-
proximation of circular Fermi surfaces and/or isotropic
Fermi velocities used in earlier studies [33, 49, 55, 57].
Expressing the cyclotron mass m⇤ as

m⇤ =
~2

2⇡

@AFS

@✏
=

~2

2⇡

Z 2⇡

0

kF (✓)

@✏/@k(✓)
d✓ , (1)

where AFS is the Fermi surface volume, and using the
data shown in Fig. 2 (c), we obtain m⇤

� = 17.3(2.0) me

and m⇤
� = 6.1(1.0) me, in quantitative agreement with

the values of m⇤
� = 16 me and m⇤

� = 7 me found in

dHvA experiments [12, 25, 26]. We thus conclude that
the quasiparticle states probed by our experiments are

Tamai, et al., PRX 9 021048 (2019)



Fermi Surfaces
I α & β sheets, mixtures of xz and yz
I γ sheet, dominantly xy

6

FIG. 3. Correlation enhanced e↵ective SOC. (a) Quadrant of the experimental Fermi surface with a DFT calculation without

SOC (ĤDFT) at the experimental kz ⇡ 0.4 ⇡/c (grey lines). (b,c) Same as (a) with calculations including SOC (DFT+�DFT)
and enhanced SOC (�DFT +��), respectively. For details, see main text. (d) Comparison of the experimental MDC along the
k-space cut indicated in (a) with the di↵erent calculations shown in (a-c). (e) Schematic illustration of the renormalization of
a SOC induced degeneracy lifting. Here, Z =

p
Z⌫Z⌫0 , where ⌫, ⌫0 labels the two bands and v =

p
v⌫v⌫0 where v⌫ , v⌫0 are bare

velocities in the absence of SOC [23] (see text). (f) Experimental quasiparticle dispersion along the k-space cut indicated in
(a). (g) Orbital character of the DFT+�DFT + �� eigenstates along the Fermi surface.

ergy scale of SOC. Note that the SOC-induced splitting
of the bands at the � point reported in Ref. [67] can
also be explained by the competing e↵ects of enhance-
ment by correlations and reduction by the quasiparticle
weight as shown in Ref. [23]. We also point out that the
equilibration of quasiparticle velocities close to the diag-
onal, apparent from Figs. 2 (a,c) and 3 (f) is indeed the
behavior expected close to an avoided crossing [23].

Including the enhanced SOC determined from this
non-crossing gap leads to a much improved theoreti-
cal description of the entire Fermi surface [69]. As
shown in Fig. 3 (b), our high-resolution experimental
Fermi surface deviates systematically from a DFT cal-
culation with SOC. Most notably, ĤDFT+ĤSOC

�DFT
under-

estimates the size of the � sheet and overestimates the
� sheet. Intriguingly, this is almost completely corrected
in ĤDFT+ĤSOC

�DFT+��, with �DFT + �� = 200 meV, as
demonstrated in Fig. 3 (c). However, a close inspection
shows that the remaining discrepancies between experi-
ment and ĤDFT+ĤSOC

�DFT+�� break the crystal symmetry,
suggesting that they are dominated by experimental ar-
tifacts. A likely source for these image distortions is im-
perfections in the electron optics arising from variations
of the work function around the electron emission spot on
the sample. Such distortions can presently not be fully
eliminated in low-energy photoemission from cleaved sin-
gle crystals.

Importantly, the change in Fermi surface sheet volume
with the inclusion of �� is not driven by a change in the
crystal field splitting between the xy and xz, yz orbitals

(see appendix B). The volume change occurs solely be-
cause of a further increase in the orbital mixing induced
by the enhanced SOC. As shown in Fig. 3 (g), this mixing
is not limited to the vicinity of the avoided crossing but
extends along the entire Fermi surface. For �DFT + ��
we find a minimal dxy and dxz,yz mixing for the � and �
bands of 20/80% along the �M direction with a mono-
tonic increase to ⇡ 50% along the Brillouin zone diagonal
�X. We note that this mixing varies with the perpendic-
ular momentum kz. However, around the experimental
value of kz ⇡ 0.4 ⇡/c the variation is weak [70]. The
analysis presented here and in Secs. III A and VI is thus
robust with respect to a typical uncertainty in kz. These
findings suggest that a natural reference single-particle
Hamiltonian is Ĥ0=ĤDFT+ĤSOC

�DFT+��. This choice en-

sures that the Fermi surface of Ĥ0 is very close to that of
the interacting system. From Eq. 4, this implies that the
self-energy matrix approximately vanishes at zero bind-
ing energy: ⌃0

⌫⌫0(! = 0, k) ' 0. We choose Ĥ0 in this
manner in all the following. Hence, from now on | ⌫ (k)i
and "⌫ (k) refer to the eigenstates and band structure of

Ĥ0=ĤDFT+ĤSOC
�DFT+��. We point out that although Ĥ0

is a single-particle Hamiltonian, the e↵ective enhance-
ment �� of SOC included in Ĥ0 is a correlation e↵ect
beyond DFT.

I Correlation effects from DMFT
Mravlje, et al. PRL 106, 096401 (2011)
Zhang, et al. PRL 116, 106402 (2016)
Kim, et al. PRL 120, 126401 (2018)
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FIG. 1. (a) Fermi surface of Sr2RuO4. The data were acquired at 5 K on a CO passivated surface with a photon energy
of 11 eV and p-polarization for measurements along the �X symmetry line. The sample tilt around the �X axis used to
measure the full Fermi surface results in a mixed polarization for data away from this symmetry axis. The Brillouin zone
of the reconstructed surface layer is indicated by diagonal dashed lines. Surface states and final state umklapp processes are
suppressed to near the detection limit. A comparison with ARPES data from a pristine cleave is shown in appendix A. The
data have been mirror-symmetrized for clarity. (b) Constant energy surfaces illustrating the progressive broadening of the
quasiparticle states away from the Fermi level EF .

high-symmetry line our data reproduce the large di↵er-

ence in Fermi velocity v�,�
F for the � and � sheet, which

is expected from the di↵erent cyclotron masses deduced
from quantum oscillations [12, 25, 26] and was reported
in earlier ARPES studies [33, 55]. Our systematic data,
however, reveal that this di↵erence gradually disappears
towards the Brillouin zone diagonal (✓ = 45�), where all
three bands disperse nearly parallel to one another. In
Sec. IV we will show that this equilibration of the Fermi
velocity can be attributed to the strong e↵ects of SOC
around the zone diagonal.

To quantify the angle dependence of v�,�
F from exper-

iment, we determine the maxima k⌫
max(!) of the mo-

mentum distribution curves (MDCs) over the range of
2-6 meV below the Fermi level EF and fit these k-space
loci with a second-order polynomial. We then define the
Fermi velocity as the derivative of this polynomial at EF .
This procedure minimizes artifacts due to the finite en-
ergy resolution of the experiment. As shown in Fig. 2 (c),

the Fermi velocities v�,�
F obtained in this way show an

opposite trend with azimuthal angle for the two Fermi
sheets. For the � band we observe a gentle decrease of
vF as we approach the �X direction, whereas for � the
velocity increases by more than a factor of two over the
same range [56]. This provides a first indication for a
strong momentum dependence of the self-energies ⌃0

�,� ,
which we will analyze quantitatively in Sec.V. Here, we
limit the discussion to the angle dependence of the mass
enhancement vb/vF , which we calculate from the mea-

sured quasiparticle Fermi velocities of Fig. 2 (c) and the

corresponding velocities of a reference Hamiltonian Ĥ0

defined in Sec. IV. As shown in Fig. 2 (d), this confirms
a substantial many-body e↵ect on the anisotropy of the
quasiparticle dispersion. Along �M, we find a strong dif-
ferentiation with mass enhancements of ⇡ 5 for the �
sheet and ⇡ 3.2 for �, whereas vb/vF approaches a com-
mon value of ⇡ 4.4 for both sheets along the Brillouin
zone diagonal.

Before introducing the theoretical framework used to
quantify the anisotropy of the self-energy and the e↵ects
of SOC, we compare our data quantitatively to bulk sen-
sitive quantum oscillation measurements. Using the ex-
perimental Fermi wave vectors kF and velocities deter-
mined from our data on a dense grid along the entire
Fermi surface, we can compute the cyclotron masses mea-
sured by dHvA experiments, without relying on the ap-
proximation of circular Fermi surfaces and/or isotropic
Fermi velocities used in earlier studies [33, 49, 55, 57].
Expressing the cyclotron mass m⇤ as

m⇤ =
~2

2⇡

@AFS

@✏
=

~2

2⇡

Z 2⇡

0

kF (✓)

@✏/@k(✓)
d✓ , (1)

where AFS is the Fermi surface volume, and using the
data shown in Fig. 2 (c), we obtain m⇤

� = 17.3(2.0) me

and m⇤
� = 6.1(1.0) me, in quantitative agreement with

the values of m⇤
� = 16 me and m⇤

� = 7 me found in

dHvA experiments [12, 25, 26]. We thus conclude that
the quasiparticle states probed by our experiments are

Tamai, et al., PRX 9 021048 (2019)
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Inelastic Neutron Scattering (INS)

response consists of two components: a broad maximum
around q¼ 0, which we will call QFM, and an IC, and
much stronger, AFM component. We entered this full
magnetic susceptibility into the BCS equations describing
spin-fluctuation-induced SC pairing.
Because neutron polarization analysis suffers from a

reduced intensity, we used a large sample of ten aligned
crystals grown at Kyoto University [45] with a total volume
of 2.2 cm3 and a mosaic spread of 1.9(2) degrees.
Experiments were performed on the spectrometer IN20
at the Institut Laue Langevin, for details see the
Supplemental Material [46]. In general, neutron scattering
only senses magnetic components that are polarized
perpendicular to the scattering vector Q. The polarization
analysis distinguishes spin-flip (SFi with i ¼ x, y, and z the
direction of neutron polarization) and non-spin-flip (NSFi)
processes and adds further selection rules. Phonon scatter-
ing and nuclear Bragg peaks only contribute to the NSFi
channels, but magnetic scattering contributes to the SFi
channel when the magnetic component is perpendicular to
the direction of neutron polarization, and to theNSFi channel
otherwise. We use the conventional coordinate system
with x parallel toQ, z perpendicular to the scattering plane,
and y ¼ z × x.
Even with our large sample it was impossible to

quantitatively analyze the QFM response by unpolarized
INS, because it is too little structured in qspace impeding
a background (BG) determination, see Supplemental
Material [46]. In contrast, the polarization analysis permits
a direct BG subtraction at each point in Q and energy. For
instance, 2IðSFxÞ-IðSFyÞ-IðSFzÞ yields a BG-free total
magnetic signal (up to a correction for the finite flipping
ratio). Figures 1(b) and 1(c) show a representative scan
through both the IC and the FM Q positions. The full
polarization analysis is shown for the SF (b) and the
NSF (c) channels. The SF signals have been counted with
better statistics, because the SF count rates always contain
the magnetic signal and have a lower BG. Only the NSFy
and NSFz channels contain a single magnetic component
superposed with the larger NSF scattering, which contains
all the phonon contributions. The appearance of the nesting
signal in various channels is well confirmed; Fig. 1(b)
clearly shows the anisotropy of the IC nesting signal at
ð−0.3; 0.7; 0Þ discussed in Ref. [30]. The sharp enhance-
ment at (0,1,0) is present only in the NSF channel, which
proves its nonmagnetic character (the longitudinal zone-
boundary phonon) [47,48]. The finite flipping ratio was
determined on several phonon modes, which integrates the
signal of all individual crystals, yielding values between 8
and 10. The final analysis only used the SF data, corrected
by the average flipping ratio, because of their higher signal
to BG ratio [49].
Polarized INS results displaying the average of two

magnetic components (in plane plus out of plane) are
shown in Fig. 1 for T ¼ 1.6 K and in the Supplemental

Material for T ¼ 150 K [46]. In order to compare scans
taken at different but equivalent scattering vectors, a
correction for the magnetic form factor has been applied.
The observation of magnetic fluctuations in so many
different scans unambiguously documents the existence
of sizeable QFM fluctuations. The analysis furthermore
yields the absolute scale of the magnetic response through-
out the entire Brillouin zone, which allows us to construct a
model for the full susceptibility χ00ðq; EÞ. The calibration
into absolute susceptibility units has been performed by the
comparison with the scattering intensity arising from an
acoustic phonon, similar to the procedure described in
Ref. [50]. This calibration can be performed with high
precision in the case of Sr2RuO4, because the phonon

(a) (b)

(c)

(d) (e) (f)

(g)

(h)

FIG. 1. (a) 2D reciprocal space of Sr2RuO4; QFM scattering is
indicated by large (gray) discs and the IC signal by small (yellow)
circles. Arrows show typical scan directions. (b)–(c) Diagonal
scans at 8 meV and 1.6 K [across ð−0.3; 0.7; 0Þ and (0,1,0)]:
(b) SF count rates, (c) NSF count rates. (d) Magnetic signal along
diagonal scans at 1.6 K; note that the BG is eliminated through
the polarization analysis. Scan paths are not identical, but all run
through oneQIC towards (1,0,0), see (a). The signal in (d)–(g) has
been corrected for the magnetic form factor and the Bose factor
and represents χ00ðq; EÞ convoluted with the resolution function,
labelled ℜ $ χ00ðq; EÞ. In (e) the results of the scans parallel to the
a*/b* axes are shown. Energy scans atQIC andQFM are shown in
(f) and (g), respectively. Lines in (d)–(g) denote the fitted model
folded with the resolution. The unfolded incommensurate and
QFM susceptibilities are shown in (h) (single component).
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dispersion is well known and a lattice dynamical model
exists that was used to calculate the phonon signal strength
at finite propagation vectors [47,48], while in most cases
the q → 0 limit is used as an approximation. Note,
however, that the INS signal does not directly correspond
to χ00ðq; EÞ but to its folding with the resolution function,
ℜ # χ00ðq; EÞ, see Figs. 1(d)–(g). Only if the resolution is
much better than the typical variation of χ00ðq; EÞ the
convolution has no visible effect.
The quantitative model fitted to the data consists of two

parts: the IC peaks centered at QIC and the broad and
weaklyq-dependent QFM part at the zone center. We write
χ00ðq; EÞ ¼ χ00ICðq; EÞ þ χ00FMðq; EÞ, where

χ00ICðq; EÞ ¼ χ0IC
ΓICE

E2 þ Γ2
IC½1þ ξ2ICð2πa ΔqÞ2'2

ð1Þ

is the single-relaxor formula with both ðΓqÞ−1 and χ0ðq; 0Þ
decaying with the same correlation length ξIC. Here
Δq ¼ jq−qICj, and is measured in the reciprocal lattice
units, (r.l.u.), equal to 2π=a.
Equation (1) describes a typical magnetic response near

an AFM instability [51]. The QFM term was described by a
broad Gaussian, and its energy dependence in the single-
relaxor form with the constant parameter ΓFM:

χ00FMðq; EÞ ¼ χ0FM
ΓFME

E2 þ Γ2
FM

exp
!
−

q2

W2
4 lnð2Þ

"
ð2Þ

and q is the distance to the nearest 2D Bragg point. The
parameters resulting from a global fit to the whole data set
are given in Table I [52]. The model susceptibility was
convoluted with the spectrometer resolution using the reslib
program package [53] and scaled through phonon scatter-
ing [48] yielding the lines in Figs. 1(d)–(g).
The corresponding real part of the susceptibility at zero

energy χ0ðq; E ¼ 0Þ, i.e., the amplitudes of the spectra at
fixed q, as well as χ00ðq; EÞ for qalong the Brillouin zone
diagonal are displayed in Fig. 2. The QFM signal shows no

significant anisotropy and corresponds to the macroscopic
susceptibility, which also exhibits only weak anisotropy
[2,3]. For the IC peak, the model describes the average of
the in plane and out of plane susceptibilities [30], with χ0c
(χ0ab) slightly larger (smaller) than this value. The model
was obtained by refining the only six parameters with the
total set of 120 independent data points at 1.6 K and 76 at
150 K. Thus obtained χ0IC and ΓIC are somewhat higher than
those extracted from unpolarized INS [11,26]. The correla-
tion length ξIC is less accurate but the qualitative decrease at
higher temperature is unambiguous. In principle, one should
consider the in plane and out of plane components of the IC
peak separately and then take their superposition, but the
limited statistics does not allow for that. In contrast to the IC
signal, the QFM one is basically temperature independent,

TABLE I. (Upper part) Parameters of the χ00ðq; EÞ model for Sr2RuO4 refined with the polarized INS data for
T ¼ 1.6 and 150 K. (Lower part) The largest triplet, T, and singlet, S, eigenvalues (in arbitrary units) of the
interaction matrices Vs and Vt, respectively [Eq. (3)], obtained for the isotropic susceptibility, χ0 ¼ χ0ðq; 0Þ or for
the anisotropic components χ0zz and χ0ab; the largest eigenvalues for QFM or IC fluctuations only are shown together
with those for the total susceptibility.

T [K] χ0FM [μ2B=eV] W [r.l.u.] ΓFM [eV] χ0IC [μ2B=eV] ξIC [Å] ΓIC [eV]

1.6 22 ( 1 0.53 ( 0.04 15.5 ( 1.4 213 ( 10 9.7 ( 0.5 11.1 ( 0.8
150 22 ( 2 0.47 ( 0.06 19.0 ( 3.5 89 ( 7 6.1 ( 0.5 17.8 ( 2.9

QFM T QFM S IC T IC S total T total S

χ0 10.6 0.21 16.8 94.8 18 87
χ0zz 11.7 0.23 29.1 164.2 30.3 155.6
χ0ab 9.6 0.19 9.7 54.7 11.3 48.3

FIG. 2. The real part of the static susceptibility χ0ðq; E ¼ 0Þ as
described by Eqs. (1) and (2) along the zone diagonal (a) and for
the entire zone (c) at 1.6 K and (d) at 150 K; in (b) χ00ðq; EÞ is
shown along the Brillouin zone diagonal.

PHYSICAL REVIEW LETTERS 122, 047004 (2019)

047004-3

P. Steffens, et al., PRL 122, 047004, (2019)

response consists of two components: a broad maximum
around q¼ 0, which we will call QFM, and an IC, and
much stronger, AFM component. We entered this full
magnetic susceptibility into the BCS equations describing
spin-fluctuation-induced SC pairing.
Because neutron polarization analysis suffers from a

reduced intensity, we used a large sample of ten aligned
crystals grown at Kyoto University [45] with a total volume
of 2.2 cm3 and a mosaic spread of 1.9(2) degrees.
Experiments were performed on the spectrometer IN20
at the Institut Laue Langevin, for details see the
Supplemental Material [46]. In general, neutron scattering
only senses magnetic components that are polarized
perpendicular to the scattering vector Q. The polarization
analysis distinguishes spin-flip (SFi with i ¼ x, y, and z the
direction of neutron polarization) and non-spin-flip (NSFi)
processes and adds further selection rules. Phonon scatter-
ing and nuclear Bragg peaks only contribute to the NSFi
channels, but magnetic scattering contributes to the SFi
channel when the magnetic component is perpendicular to
the direction of neutron polarization, and to theNSFi channel
otherwise. We use the conventional coordinate system
with x parallel toQ, z perpendicular to the scattering plane,
and y ¼ z × x.
Even with our large sample it was impossible to

quantitatively analyze the QFM response by unpolarized
INS, because it is too little structured in qspace impeding
a background (BG) determination, see Supplemental
Material [46]. In contrast, the polarization analysis permits
a direct BG subtraction at each point in Q and energy. For
instance, 2IðSFxÞ-IðSFyÞ-IðSFzÞ yields a BG-free total
magnetic signal (up to a correction for the finite flipping
ratio). Figures 1(b) and 1(c) show a representative scan
through both the IC and the FM Q positions. The full
polarization analysis is shown for the SF (b) and the
NSF (c) channels. The SF signals have been counted with
better statistics, because the SF count rates always contain
the magnetic signal and have a lower BG. Only the NSFy
and NSFz channels contain a single magnetic component
superposed with the larger NSF scattering, which contains
all the phonon contributions. The appearance of the nesting
signal in various channels is well confirmed; Fig. 1(b)
clearly shows the anisotropy of the IC nesting signal at
ð−0.3; 0.7; 0Þ discussed in Ref. [30]. The sharp enhance-
ment at (0,1,0) is present only in the NSF channel, which
proves its nonmagnetic character (the longitudinal zone-
boundary phonon) [47,48]. The finite flipping ratio was
determined on several phonon modes, which integrates the
signal of all individual crystals, yielding values between 8
and 10. The final analysis only used the SF data, corrected
by the average flipping ratio, because of their higher signal
to BG ratio [49].
Polarized INS results displaying the average of two

magnetic components (in plane plus out of plane) are
shown in Fig. 1 for T ¼ 1.6 K and in the Supplemental

Material for T ¼ 150 K [46]. In order to compare scans
taken at different but equivalent scattering vectors, a
correction for the magnetic form factor has been applied.
The observation of magnetic fluctuations in so many
different scans unambiguously documents the existence
of sizeable QFM fluctuations. The analysis furthermore
yields the absolute scale of the magnetic response through-
out the entire Brillouin zone, which allows us to construct a
model for the full susceptibility χ00ðq; EÞ. The calibration
into absolute susceptibility units has been performed by the
comparison with the scattering intensity arising from an
acoustic phonon, similar to the procedure described in
Ref. [50]. This calibration can be performed with high
precision in the case of Sr2RuO4, because the phonon

(a) (b)

(c)

(d) (e) (f)

(g)

(h)

FIG. 1. (a) 2D reciprocal space of Sr2RuO4; QFM scattering is
indicated by large (gray) discs and the IC signal by small (yellow)
circles. Arrows show typical scan directions. (b)–(c) Diagonal
scans at 8 meV and 1.6 K [across ð−0.3; 0.7; 0Þ and (0,1,0)]:
(b) SF count rates, (c) NSF count rates. (d) Magnetic signal along
diagonal scans at 1.6 K; note that the BG is eliminated through
the polarization analysis. Scan paths are not identical, but all run
through oneQIC towards (1,0,0), see (a). The signal in (d)–(g) has
been corrected for the magnetic form factor and the Bose factor
and represents χ00ðq; EÞ convoluted with the resolution function,
labelled ℜ $ χ00ðq; EÞ. In (e) the results of the scans parallel to the
a*/b* axes are shown. Energy scans atQIC andQFM are shown in
(f) and (g), respectively. Lines in (d)–(g) denote the fitted model
folded with the resolution. The unfolded incommensurate and
QFM susceptibilities are shown in (h) (single component).
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Inelastic Neutron Scattering (INS)

response consists of two components: a broad maximum
around q¼ 0, which we will call QFM, and an IC, and
much stronger, AFM component. We entered this full
magnetic susceptibility into the BCS equations describing
spin-fluctuation-induced SC pairing.
Because neutron polarization analysis suffers from a

reduced intensity, we used a large sample of ten aligned
crystals grown at Kyoto University [45] with a total volume
of 2.2 cm3 and a mosaic spread of 1.9(2) degrees.
Experiments were performed on the spectrometer IN20
at the Institut Laue Langevin, for details see the
Supplemental Material [46]. In general, neutron scattering
only senses magnetic components that are polarized
perpendicular to the scattering vector Q. The polarization
analysis distinguishes spin-flip (SFi with i ¼ x, y, and z the
direction of neutron polarization) and non-spin-flip (NSFi)
processes and adds further selection rules. Phonon scatter-
ing and nuclear Bragg peaks only contribute to the NSFi
channels, but magnetic scattering contributes to the SFi
channel when the magnetic component is perpendicular to
the direction of neutron polarization, and to theNSFi channel
otherwise. We use the conventional coordinate system
with x parallel toQ, z perpendicular to the scattering plane,
and y ¼ z × x.
Even with our large sample it was impossible to

quantitatively analyze the QFM response by unpolarized
INS, because it is too little structured in qspace impeding
a background (BG) determination, see Supplemental
Material [46]. In contrast, the polarization analysis permits
a direct BG subtraction at each point in Q and energy. For
instance, 2IðSFxÞ-IðSFyÞ-IðSFzÞ yields a BG-free total
magnetic signal (up to a correction for the finite flipping
ratio). Figures 1(b) and 1(c) show a representative scan
through both the IC and the FM Q positions. The full
polarization analysis is shown for the SF (b) and the
NSF (c) channels. The SF signals have been counted with
better statistics, because the SF count rates always contain
the magnetic signal and have a lower BG. Only the NSFy
and NSFz channels contain a single magnetic component
superposed with the larger NSF scattering, which contains
all the phonon contributions. The appearance of the nesting
signal in various channels is well confirmed; Fig. 1(b)
clearly shows the anisotropy of the IC nesting signal at
ð−0.3; 0.7; 0Þ discussed in Ref. [30]. The sharp enhance-
ment at (0,1,0) is present only in the NSF channel, which
proves its nonmagnetic character (the longitudinal zone-
boundary phonon) [47,48]. The finite flipping ratio was
determined on several phonon modes, which integrates the
signal of all individual crystals, yielding values between 8
and 10. The final analysis only used the SF data, corrected
by the average flipping ratio, because of their higher signal
to BG ratio [49].
Polarized INS results displaying the average of two

magnetic components (in plane plus out of plane) are
shown in Fig. 1 for T ¼ 1.6 K and in the Supplemental

Material for T ¼ 150 K [46]. In order to compare scans
taken at different but equivalent scattering vectors, a
correction for the magnetic form factor has been applied.
The observation of magnetic fluctuations in so many
different scans unambiguously documents the existence
of sizeable QFM fluctuations. The analysis furthermore
yields the absolute scale of the magnetic response through-
out the entire Brillouin zone, which allows us to construct a
model for the full susceptibility χ00ðq; EÞ. The calibration
into absolute susceptibility units has been performed by the
comparison with the scattering intensity arising from an
acoustic phonon, similar to the procedure described in
Ref. [50]. This calibration can be performed with high
precision in the case of Sr2RuO4, because the phonon
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FIG. 1. (a) 2D reciprocal space of Sr2RuO4; QFM scattering is
indicated by large (gray) discs and the IC signal by small (yellow)
circles. Arrows show typical scan directions. (b)–(c) Diagonal
scans at 8 meV and 1.6 K [across ð−0.3; 0.7; 0Þ and (0,1,0)]:
(b) SF count rates, (c) NSF count rates. (d) Magnetic signal along
diagonal scans at 1.6 K; note that the BG is eliminated through
the polarization analysis. Scan paths are not identical, but all run
through oneQIC towards (1,0,0), see (a). The signal in (d)–(g) has
been corrected for the magnetic form factor and the Bose factor
and represents χ00ðq; EÞ convoluted with the resolution function,
labelled ℜ $ χ00ðq; EÞ. In (e) the results of the scans parallel to the
a*/b* axes are shown. Energy scans atQIC andQFM are shown in
(f) and (g), respectively. Lines in (d)–(g) denote the fitted model
folded with the resolution. The unfolded incommensurate and
QFM susceptibilities are shown in (h) (single component).
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dispersion is well known and a lattice dynamical model
exists that was used to calculate the phonon signal strength
at finite propagation vectors [47,48], while in most cases
the q → 0 limit is used as an approximation. Note,
however, that the INS signal does not directly correspond
to χ00ðq; EÞ but to its folding with the resolution function,
ℜ # χ00ðq; EÞ, see Figs. 1(d)–(g). Only if the resolution is
much better than the typical variation of χ00ðq; EÞ the
convolution has no visible effect.
The quantitative model fitted to the data consists of two

parts: the IC peaks centered at QIC and the broad and
weaklyq-dependent QFM part at the zone center. We write
χ00ðq; EÞ ¼ χ00ICðq; EÞ þ χ00FMðq; EÞ, where

χ00ICðq; EÞ ¼ χ0IC
ΓICE

E2 þ Γ2
IC½1þ ξ2ICð2πa ΔqÞ2'2

ð1Þ

is the single-relaxor formula with both ðΓqÞ−1 and χ0ðq; 0Þ
decaying with the same correlation length ξIC. Here
Δq ¼ jq−qICj, and is measured in the reciprocal lattice
units, (r.l.u.), equal to 2π=a.
Equation (1) describes a typical magnetic response near

an AFM instability [51]. The QFM term was described by a
broad Gaussian, and its energy dependence in the single-
relaxor form with the constant parameter ΓFM:

χ00FMðq; EÞ ¼ χ0FM
ΓFME

E2 þ Γ2
FM

exp
!
−

q2

W2
4 lnð2Þ

"
ð2Þ

and q is the distance to the nearest 2D Bragg point. The
parameters resulting from a global fit to the whole data set
are given in Table I [52]. The model susceptibility was
convoluted with the spectrometer resolution using the reslib
program package [53] and scaled through phonon scatter-
ing [48] yielding the lines in Figs. 1(d)–(g).
The corresponding real part of the susceptibility at zero

energy χ0ðq; E ¼ 0Þ, i.e., the amplitudes of the spectra at
fixed q, as well as χ00ðq; EÞ for qalong the Brillouin zone
diagonal are displayed in Fig. 2. The QFM signal shows no

significant anisotropy and corresponds to the macroscopic
susceptibility, which also exhibits only weak anisotropy
[2,3]. For the IC peak, the model describes the average of
the in plane and out of plane susceptibilities [30], with χ0c
(χ0ab) slightly larger (smaller) than this value. The model
was obtained by refining the only six parameters with the
total set of 120 independent data points at 1.6 K and 76 at
150 K. Thus obtained χ0IC and ΓIC are somewhat higher than
those extracted from unpolarized INS [11,26]. The correla-
tion length ξIC is less accurate but the qualitative decrease at
higher temperature is unambiguous. In principle, one should
consider the in plane and out of plane components of the IC
peak separately and then take their superposition, but the
limited statistics does not allow for that. In contrast to the IC
signal, the QFM one is basically temperature independent,

TABLE I. (Upper part) Parameters of the χ00ðq; EÞ model for Sr2RuO4 refined with the polarized INS data for
T ¼ 1.6 and 150 K. (Lower part) The largest triplet, T, and singlet, S, eigenvalues (in arbitrary units) of the
interaction matrices Vs and Vt, respectively [Eq. (3)], obtained for the isotropic susceptibility, χ0 ¼ χ0ðq; 0Þ or for
the anisotropic components χ0zz and χ0ab; the largest eigenvalues for QFM or IC fluctuations only are shown together
with those for the total susceptibility.

T [K] χ0FM [μ2B=eV] W [r.l.u.] ΓFM [eV] χ0IC [μ2B=eV] ξIC [Å] ΓIC [eV]

1.6 22 ( 1 0.53 ( 0.04 15.5 ( 1.4 213 ( 10 9.7 ( 0.5 11.1 ( 0.8
150 22 ( 2 0.47 ( 0.06 19.0 ( 3.5 89 ( 7 6.1 ( 0.5 17.8 ( 2.9

QFM T QFM S IC T IC S total T total S

χ0 10.6 0.21 16.8 94.8 18 87
χ0zz 11.7 0.23 29.1 164.2 30.3 155.6
χ0ab 9.6 0.19 9.7 54.7 11.3 48.3

FIG. 2. The real part of the static susceptibility χ0ðq; E ¼ 0Þ as
described by Eqs. (1) and (2) along the zone diagonal (a) and for
the entire zone (c) at 1.6 K and (d) at 150 K; in (b) χ00ðq; EÞ is
shown along the Brillouin zone diagonal.
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response consists of two components: a broad maximum
around q¼ 0, which we will call QFM, and an IC, and
much stronger, AFM component. We entered this full
magnetic susceptibility into the BCS equations describing
spin-fluctuation-induced SC pairing.
Because neutron polarization analysis suffers from a

reduced intensity, we used a large sample of ten aligned
crystals grown at Kyoto University [45] with a total volume
of 2.2 cm3 and a mosaic spread of 1.9(2) degrees.
Experiments were performed on the spectrometer IN20
at the Institut Laue Langevin, for details see the
Supplemental Material [46]. In general, neutron scattering
only senses magnetic components that are polarized
perpendicular to the scattering vector Q. The polarization
analysis distinguishes spin-flip (SFi with i ¼ x, y, and z the
direction of neutron polarization) and non-spin-flip (NSFi)
processes and adds further selection rules. Phonon scatter-
ing and nuclear Bragg peaks only contribute to the NSFi
channels, but magnetic scattering contributes to the SFi
channel when the magnetic component is perpendicular to
the direction of neutron polarization, and to theNSFi channel
otherwise. We use the conventional coordinate system
with x parallel toQ, z perpendicular to the scattering plane,
and y ¼ z × x.
Even with our large sample it was impossible to

quantitatively analyze the QFM response by unpolarized
INS, because it is too little structured in qspace impeding
a background (BG) determination, see Supplemental
Material [46]. In contrast, the polarization analysis permits
a direct BG subtraction at each point in Q and energy. For
instance, 2IðSFxÞ-IðSFyÞ-IðSFzÞ yields a BG-free total
magnetic signal (up to a correction for the finite flipping
ratio). Figures 1(b) and 1(c) show a representative scan
through both the IC and the FM Q positions. The full
polarization analysis is shown for the SF (b) and the
NSF (c) channels. The SF signals have been counted with
better statistics, because the SF count rates always contain
the magnetic signal and have a lower BG. Only the NSFy
and NSFz channels contain a single magnetic component
superposed with the larger NSF scattering, which contains
all the phonon contributions. The appearance of the nesting
signal in various channels is well confirmed; Fig. 1(b)
clearly shows the anisotropy of the IC nesting signal at
ð−0.3; 0.7; 0Þ discussed in Ref. [30]. The sharp enhance-
ment at (0,1,0) is present only in the NSF channel, which
proves its nonmagnetic character (the longitudinal zone-
boundary phonon) [47,48]. The finite flipping ratio was
determined on several phonon modes, which integrates the
signal of all individual crystals, yielding values between 8
and 10. The final analysis only used the SF data, corrected
by the average flipping ratio, because of their higher signal
to BG ratio [49].
Polarized INS results displaying the average of two

magnetic components (in plane plus out of plane) are
shown in Fig. 1 for T ¼ 1.6 K and in the Supplemental

Material for T ¼ 150 K [46]. In order to compare scans
taken at different but equivalent scattering vectors, a
correction for the magnetic form factor has been applied.
The observation of magnetic fluctuations in so many
different scans unambiguously documents the existence
of sizeable QFM fluctuations. The analysis furthermore
yields the absolute scale of the magnetic response through-
out the entire Brillouin zone, which allows us to construct a
model for the full susceptibility χ00ðq; EÞ. The calibration
into absolute susceptibility units has been performed by the
comparison with the scattering intensity arising from an
acoustic phonon, similar to the procedure described in
Ref. [50]. This calibration can be performed with high
precision in the case of Sr2RuO4, because the phonon

(a) (b)

(c)

(d) (e) (f)

(g)

(h)

FIG. 1. (a) 2D reciprocal space of Sr2RuO4; QFM scattering is
indicated by large (gray) discs and the IC signal by small (yellow)
circles. Arrows show typical scan directions. (b)–(c) Diagonal
scans at 8 meV and 1.6 K [across ð−0.3; 0.7; 0Þ and (0,1,0)]:
(b) SF count rates, (c) NSF count rates. (d) Magnetic signal along
diagonal scans at 1.6 K; note that the BG is eliminated through
the polarization analysis. Scan paths are not identical, but all run
through oneQIC towards (1,0,0), see (a). The signal in (d)–(g) has
been corrected for the magnetic form factor and the Bose factor
and represents χ00ðq; EÞ convoluted with the resolution function,
labelled ℜ $ χ00ðq; EÞ. In (e) the results of the scans parallel to the
a*/b* axes are shown. Energy scans atQIC andQFM are shown in
(f) and (g), respectively. Lines in (d)–(g) denote the fitted model
folded with the resolution. The unfolded incommensurate and
QFM susceptibilities are shown in (h) (single component).
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χ(0) is incompatible with INS!
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Software

I TRIQS
Toolbox for Research on
Interacting Quantum Systems
github.com/TRIQS/triqs

I TRIQS/cthyb
Continous Time Hybridization Expansion
Quantum Monte Carlo (CTHYB)
github.com/TRIQS/cthyb

I TRIQS/tprf
Two-Particle Response Function (TPRF) toolbox
github.com/TRIQS/tprf

I Python, Numpy, Scipy,
Matplotlib



Computing susceptibilities in DMFT

There are two approaches

1. Static suseptibilities χ(Q) from DMFT calculations in applied field
I Possible for a single Q vector at a time
I Non-zero Q requires super-cell calculations

1. Dynamical susceptibilities χ(Q, iω) from the Bethe-Salpeter Equation (BSE)
I Requires two-particle response functions
I Requires solving large matrix-equations (BSE)

Consider the single-band Hubbard model on the square lattice
with nearest neighbour hopping at half-filling with t = 1, U = 10, β = 1.



1. DMFT calculations in applied field

I Many self-consistent DMFT calculations
I Sweeping the applied magnetic field B
I Measure the induced magnetization M(B)

I A homogeneous B field gives the
Q = 0 response as

χField = χ(0) =
dM

dB

∣∣∣∣
B→0

≈ 0.3479

I For technical details see TRIQS/tprf tutorial

(2)

(3)

        with HDFArchive('data_B_{:f}.h5'.format(p.B), 'w') as a: 
            a['ps'] = ParameterCollections(ps) 

The result is a magnetization  vs. applied magnetic �eld  curve, to which we �t a low order polynomial, and
compute its zero �eld derivative.

The visulaization script is available here: plot_field.py.

The resulting homogenous static spin susceptbility has the value

This concludes the �rst method for computing static susceptibilities within DMFT.

Lattice susceptibility from the Bethe-Salpeter Equation

Instead of multiple calculations in applied �eld the susceptibility  can be obtained from a direct calculation of
the two-particle susceptbility using the DMFT local vertex and the lattice Bethe-Salpeter equation.

To this end one has to perform the steps

1. compute the DMFT impurity two-particle Green’s function ,
2. compute the DMFT impurity two-particle vertex , and
3. solve the lattice Beht-Salpeter Equation for the lattice susceptibility .

DMFT local vertex
To obtain the DMFT impurity magnetic vertex  one �rst computes the DMFT impurity two-particle Green’s
function in the particle-hole channel , where  are spin-orbital indices. The two-particle
Green’s function can be sampled using triqs_cthyb and to compute the static susceptibility it is su�cient to
only keep the zero Bosonic frequency .

For the single band model the magnetic susceptbility  is directly related to  as



2. DMFT susceptibilities from the Bethe-Salpeter Equation

Compute the impurity two-particle (G(2)) and single-particle (G) Green’s functions

G
(2)
abcd(ω, ν, ν

′) ≡ 〈T c†a(ν)cb(ω + ν)c†c(ω + ν ′)cd(ν
′)〉 , Gab(ν) ≡ −〈T ca(ν)c†b〉 ,

where abcd are spin-orbital indices and ω, ν and ν ′ are Matsubara frequencies. Here we
will sample both using TRIQS/cthyb.

From G(2) and G construct the full χ and bare χ(0) generalized susceptibilities

χabcd(ω, ν, ν
′) = G

(2)
abcd(ω, ν, ν

′)− βδ0,ωGba(ν)Gdc(ν
′) ,

χ
(0)
abcd(ω, ν, ν

′) = −βδν,ν′Gda(ν)Gbc(ω + ν) .

Tools for constructing χ and χ(0) are available in TRIQS/tprf.



2. DMFT susceptibilities from the Bethe-Salpeter Equation
Solve the Bethe-Salpeter Equation (BSE) for the impurity vertex function Γ

χ = χ(0) + χ(0)Γχ ⇒ ΓAB(iω) = [χ(0)(ω)]−1
AB − [χ(ω)]−1

AB

by matrix inversion with index grouping χabcd(ω, ν, ν ′) = χ{νab}{ν′dc}(ω) = χAB(ω).

(4)

and the magnetic bubble susceptibility  is given by . The two sus-
ceptibilities are related by the impurity Bethe-Salpeter Equation giving the corresponding magetic vertex function

 as

Starting from the self consistent DMFT solution at zero-�eld we run triqs_cthyb to sample the two-particle
Green’s function and then compute , , and  see below

from common import * 
 

if mpi.is_master_node(): 
    with HDFArchive('data_B_0.000000.h5', 'r') as a: 
        p = a['ps'].objects[-1] 

else: p = None 
p = mpi.bcast(p) 

 

# -- Sample G2 
 

p.solve.n_cycles = int(1e9 / 40.) 

p.solve.measure_G_l = False 
p.solve.measure_G_tau = False 
p.solve.measure_G2_iw_ph = True 
p.solve.measure_G2_blocks = set([('up','up'), ('up','do')]) 

p.solve.measure_G2_n_bosonic = 1 

p.solve.measure_G2_n_fermionic = 20 

 

cthyb = triqs_cthyb.Solver(**p.init.dict()) 

cthyb.G0_iw << p.G0_w 

cthyb.solve(**p.solve.dict()) 

p.G2_iw_ph = cthyb.G2_iw_ph.copy() 

 

# -- Compute DMFT impurity vertex 
 

from triqs_tprf.linalg import inverse_PH 
from triqs_tprf.chi_from_gg2 import chi0_from_gg2_PH 
 

p.chi_m = p.G2_iw_ph[('up','up')] - p.G2_iw_ph[('up','do')] 

p.chi0_m = chi0_from_gg2_PH(p.G_w['up'], p.chi_m) 

p.gamma_m = inverse_PH(p.chi0_m) - inverse_PH(p.chi_m) 

 

del p.solve.measure_G2_blocks 
if mpi.is_master_node(): 
    with HDFArchive('data_g2.h5', 'w') as a: a['p'] = p 

The resulting response functions are plotted below

The visulaization script is available here: plot_g2.py.

Lattice Bethe-Salpeter Equation

Example: Hubbard model on square lattice using TRIQS/cthyb and TRIQS/tprf.



2. DMFT susceptibilities from the Bethe-Salpeter Equation
Lattice susceptibility from the BSE in TRIQS/tprf

χ(Q, ω) =
[
1− Γ(ω)χ(0)(Q, ω)

]−1
χ(0)(Q, ω) ,

using the DMFT local vertex Γ(Q, ω) ≈ Γ(ω).

(6)

(5)

Equipped with the DMFT local vertex  it is possible to compute the DMFT lattice susceptibility  from the
lattice Bethe-Salpeter Equation (BSE)

TPRF comes with an OpenMP amd MPI parallelized BSE solver triqs_tprf.bse.solve_lattice_bse. However,
the calculation is done with a �xed number of frequencies  in the fermionic frequencies  and , and the solu-
tion converges only linearly with the size of the frequency window. Therefore we solve the BSE for a range of win-
dow sizes to enable extrapolation .

The resuls along the high symmetry path of the Brillouin zone is shown below for �xed  (left panel) and the ex-
trapolation for the -point is also shown (right panel).

The visulaization script is available here: plot_bse.py.

The result for the homogeneous magnetic susceptbilitiy  from the BSE is

from common import * 
 

from triqs_tprf.linalg import inverse_PH 
from triqs_tprf.chi_from_gg2 import chi0_from_gg2_PH 
from triqs_tprf.utilities import G2_loc_fixed_fermionic_window_python 
from triqs_tprf.lattice import lattice_dyson_g_wk 
from triqs_tprf.bse import solve_lattice_bse 
 

# -- Solve the lattice BSE for several fermionic window sizes 
for nwf in [8, 10, 12, 20]: 
 

    with HDFArchive('data_g2.h5', 'r') as a: p = a['p'] 
    p.nwf, p.tail_corr_nwf = nwf, 100 

     

    # -- DMFT impurity vertex 
    p.chi_m = p.G2_iw_ph[('up','up')] - p.G2_iw_ph[('up','do')] 

    p.chi_m = G2_loc_fixed_fermionic_window_python(p.chi_m, nwf=p.nwf) 

    p.chi0_m = chi0_from_gg2_PH(p.G_w['up'], p.chi_m) 

    p.gamma_m = inverse_PH(p.chi0_m) - inverse_PH(p.chi_m) 

 

    # -- Lattice BSE 
    g_wk = lattice_dyson_g_wk(mu=p.mu, e_k=p.e_k, sigma_w=p.sigma_w)[0:1, 0:1] 

    p.chi_kw, p.chi0_kw = solve_lattice_bse(g_wk, p.gamma_m, tail_corr_nwf=p.tail_corr_nwf) 

 

    with HDFArchive('data_bse_nwf{:03d}.h5'.format(nwf), 'w') as a: a['p'] = p 

I Linear convergence with Nν

I Extrapolate to 1/Nν → 0

I Compare with applied field
@ Q = 0

χBSE(0) ≈ 0.3472

χField(0) ≈ 0.3479

I Quantitative agreement
I Thermodynamic consistency

Hafermann et al. PRB 90 235105 (2014)



Application to magnetic susceptibility of Sr2RuO4

HURS, Zingl, Wentzell, Parcollet, Georges arXiv:1904.07324

I DFT + Wannierization
I Three band effective t2g model
I Kanamori interaction U=2.3eV, J=0.4eV
I Dynamical Mean-Field Theory (DMFT)

I Applied field in super-cells
1× 1,
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I Dynamical vertex corrections Γabcd(iω, iν, iν
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Spin susceptiblitiy χSzSz
(Q)

HURS, Zingl, Wentzell, Parcollet, Georges arXiv:1904.07324

DMFT (BSE) @ T = 464 K
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I Qualitative agreement Γ vs X!

dispersion is well known and a lattice dynamical model
exists that was used to calculate the phonon signal strength
at finite propagation vectors [47,48], while in most cases
the q → 0 limit is used as an approximation. Note,
however, that the INS signal does not directly correspond
to χ00ðq; EÞ but to its folding with the resolution function,
ℜ # χ00ðq; EÞ, see Figs. 1(d)–(g). Only if the resolution is
much better than the typical variation of χ00ðq; EÞ the
convolution has no visible effect.
The quantitative model fitted to the data consists of two

parts: the IC peaks centered at QIC and the broad and
weaklyq-dependent QFM part at the zone center. We write
χ00ðq; EÞ ¼ χ00ICðq; EÞ þ χ00FMðq; EÞ, where

χ00ICðq; EÞ ¼ χ0IC
ΓICE

E2 þ Γ2
IC½1þ ξ2ICð2πa ΔqÞ2'2

ð1Þ

is the single-relaxor formula with both ðΓqÞ−1 and χ0ðq; 0Þ
decaying with the same correlation length ξIC. Here
Δq ¼ jq−qICj, and is measured in the reciprocal lattice
units, (r.l.u.), equal to 2π=a.
Equation (1) describes a typical magnetic response near

an AFM instability [51]. The QFM term was described by a
broad Gaussian, and its energy dependence in the single-
relaxor form with the constant parameter ΓFM:

χ00FMðq; EÞ ¼ χ0FM
ΓFME

E2 þ Γ2
FM

exp
!
−

q2

W2
4 lnð2Þ

"
ð2Þ

and q is the distance to the nearest 2D Bragg point. The
parameters resulting from a global fit to the whole data set
are given in Table I [52]. The model susceptibility was
convoluted with the spectrometer resolution using the reslib
program package [53] and scaled through phonon scatter-
ing [48] yielding the lines in Figs. 1(d)–(g).
The corresponding real part of the susceptibility at zero

energy χ0ðq; E ¼ 0Þ, i.e., the amplitudes of the spectra at
fixed q, as well as χ00ðq; EÞ for qalong the Brillouin zone
diagonal are displayed in Fig. 2. The QFM signal shows no

significant anisotropy and corresponds to the macroscopic
susceptibility, which also exhibits only weak anisotropy
[2,3]. For the IC peak, the model describes the average of
the in plane and out of plane susceptibilities [30], with χ0c
(χ0ab) slightly larger (smaller) than this value. The model
was obtained by refining the only six parameters with the
total set of 120 independent data points at 1.6 K and 76 at
150 K. Thus obtained χ0IC and ΓIC are somewhat higher than
those extracted from unpolarized INS [11,26]. The correla-
tion length ξIC is less accurate but the qualitative decrease at
higher temperature is unambiguous. In principle, one should
consider the in plane and out of plane components of the IC
peak separately and then take their superposition, but the
limited statistics does not allow for that. In contrast to the IC
signal, the QFM one is basically temperature independent,

TABLE I. (Upper part) Parameters of the χ00ðq; EÞ model for Sr2RuO4 refined with the polarized INS data for
T ¼ 1.6 and 150 K. (Lower part) The largest triplet, T, and singlet, S, eigenvalues (in arbitrary units) of the
interaction matrices Vs and Vt, respectively [Eq. (3)], obtained for the isotropic susceptibility, χ0 ¼ χ0ðq; 0Þ or for
the anisotropic components χ0zz and χ0ab; the largest eigenvalues for QFM or IC fluctuations only are shown together
with those for the total susceptibility.

T [K] χ0FM [μ2B=eV] W [r.l.u.] ΓFM [eV] χ0IC [μ2B=eV] ξIC [Å] ΓIC [eV]

1.6 22 ( 1 0.53 ( 0.04 15.5 ( 1.4 213 ( 10 9.7 ( 0.5 11.1 ( 0.8
150 22 ( 2 0.47 ( 0.06 19.0 ( 3.5 89 ( 7 6.1 ( 0.5 17.8 ( 2.9

QFM T QFM S IC T IC S total T total S

χ0 10.6 0.21 16.8 94.8 18 87
χ0zz 11.7 0.23 29.1 164.2 30.3 155.6
χ0ab 9.6 0.19 9.7 54.7 11.3 48.3

FIG. 2. The real part of the static susceptibility χ0ðq; E ¼ 0Þ as
described by Eqs. (1) and (2) along the zone diagonal (a) and for
the entire zone (c) at 1.6 K and (d) at 150 K; in (b) χ00ðq; EÞ is
shown along the Brillouin zone diagonal.
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Spin susceptiblitiy χSzSz
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I Incommensurate (IC)
& ridge response

I Quasi Local/Ferromagnetic
Background response (red)
>50% of Q-average (stars)

I χ(QΓ) > χ(QX) (green)

I Lower temperature (T↓)
I Background ↑
I Local response ↑
I χ(QΓ)/χ(QX) ∼ 4/3
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Comparison to simpler approximations

HURS, Zingl, Wentzell, Parcollet, Georges arXiv:1904.07324

I DMFT lattice susceptibility: χ DMFT

I Bare DFT bubble: χ(0) DFT
(Density Functional Theory)

I Bare DMFT bubble: χ(0) DMFT
I Random Phase Approximation: χ RPA

I Only χ DMFT reproduces expermient
χ(QΓ) > χ(QX)

I DMFT dynamical vertex Γ(ω, ν, ν ′)
effects are essential!

4

FIG. 4. a) Orbitally resolved �
S

(a)
z S

(b)
z

(Q) with a, b 2
{xy, xz, yz} at T = 464 K from DMFT with diagonal xy, xy
(red) and xz, xz (light red) response and o↵-diagonal xy, xz
(blue) and yz, xz response (light blue) which contribute
equally at QSDW (black markers). b) The di↵erence in the
diagonal orbital response (xy, xy) � (xz, xz) (green).

culation which can not be neglected [51]. Indeed, in Fig.
5a the DMFT result is compared to the bare DFT and

DMFT bubbles (�
(0)
DFT, �

(0)
DMFT) and the screened RPA

result �RPA. The RPA calculation uses – in spirit of Ref.
28 – the DMFT bubble �(0) and screened e↵ective in-
teraction parameters Ũ = 1.37 eV and J̃/Ũ = 0.4/2.3,
where Ũ has been taken to reproduce the local suscep-
tibility �(r = 0) ⇡ 7.3 µ2

B/eV of DMFT. The frequency
dependent particle-hole vertex is clearly essential in the

DMFT calculation, as �
(0)
DMFT is much smaller than the

DMFT result �DMFT. �
(0)
DFT is also strongly suppressed

compared to �DMFT, and the X-point response is higher
than both the � and M points (see Fig. 5b). Finally, the
screened RPA using the DMFT bubble �RPA severely
overestimates the strength of the nesting peaks, underes-
timates the constant background response, and fails both
to enhance �(Q�) and to suppress �(QX), see Fig. 5c.

In conclusion, we have analyzed the momentum-
dependent magnetic response of Sr2RuO4 using dynam-
ical mean-field theory, taking full account of vertex cor-
rections. The latter are found to play a crucial role,
leading to key e↵ects absent at the RPA level such as
the suppression of the antiferromagnetic response at QX .
In agreement with neutron scattering experiments [10],
the magnetic response has two main components: an
SDW incommensurate response at QSDW and a quasi-
local weakly momentum-dependent component, which
provides the main contribution to the overall momen-
tum integrated response. Our main result, on a qualita-
tive level, is the demonstration that the physical origin of
the quasi-local magnetic response is the Hund’s coupling,
hence reconciling the experimental emphasis put on spin
fluctuations in this material with the theoretical picture
of Sr2RuO4 as a ‘Hund’s metal’.

This has far-reaching consequences: both our theoreti-

FIG. 5. a) Spin-susceptibility �SzSz (Q) at T = 464 K on the
high-symmetry path �–X–M–�–Z (see Fig. 1). The DMFT
response (blue) is compared to the the screened RPA result
(purple) and the DFT (green) and DMFT (orange) bare bub-

bles �
(0)
SzSz

(Q) / GG. Note the scaling of the dashed lines.
Planar cuts at qz = 0 for b) DFT and c) screened RPA are
also shown, cf. DMFT in Fig. 1.

cal calculations and neutron scattering experiments indi-
cate that there is no dispersing ‘quasi-ferromagnetic’ spin
fluctuation mode in Sr2RuO4. Hence, pairing mecha-
nisms based on a mediating bosonic mode (‘glue’) associ-
ated with ferromagnetic spin fluctuations [11, 12, 14, 52]
have to be seriously reconsidered. The observed sup-
pression of the magnetic response at the X point also
invalidates an antiferromagnetic ‘glue’. Instead, pairing
mechanisms based on a quasi-local mode associated with
Hund’s coupling o↵er a promising route. Recent work has
appeared in this direction for model Hamiltonians [53–55]
and for iron-based superconductors [56]. However, these
mechanisms were proposed in the regime of slow spin fluc-
tuations above the Fermi liquid temperature, and need
to be extended to be applicable to Sr2RuO4. This is a
key agenda for future work aiming at solving the 25-years
old puzzle of superconductivity in this material [30].
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I Hund’s J interaction:
Tune around J = 0.4 eV

I χ(QΓ) and χloc ⇑
I χ(QX) ↓

I J . 0.32 qualitative change

I Hund’s physics controls
χ(QΓ) > χ(QX)
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Orbital contributions
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I Γ enhancement from xy
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Summary
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I Dynamical Mean Field Theory
I Magnetic resp. χSzSz(Q)

I Hund’s metal Sr2RuO4

I Suppression of AFM @ X

I Hund’s coupling drive:
I Quasi Ferromagnetic fluct.
I χ(QΓ) > χ(QX)

I Strong orbital mixing
I xy gives Γ enhancement

I For details see
arXiv:1904.07324

dispersion is well known and a lattice dynamical model
exists that was used to calculate the phonon signal strength
at finite propagation vectors [47,48], while in most cases
the q → 0 limit is used as an approximation. Note,
however, that the INS signal does not directly correspond
to χ00ðq; EÞ but to its folding with the resolution function,
ℜ # χ00ðq; EÞ, see Figs. 1(d)–(g). Only if the resolution is
much better than the typical variation of χ00ðq; EÞ the
convolution has no visible effect.
The quantitative model fitted to the data consists of two

parts: the IC peaks centered at QIC and the broad and
weaklyq-dependent QFM part at the zone center. We write
χ00ðq; EÞ ¼ χ00ICðq; EÞ þ χ00FMðq; EÞ, where

χ00ICðq; EÞ ¼ χ0IC
ΓICE

E2 þ Γ2
IC½1þ ξ2ICð2πa ΔqÞ2'2

ð1Þ

is the single-relaxor formula with both ðΓqÞ−1 and χ0ðq; 0Þ
decaying with the same correlation length ξIC. Here
Δq ¼ jq−qICj, and is measured in the reciprocal lattice
units, (r.l.u.), equal to 2π=a.
Equation (1) describes a typical magnetic response near

an AFM instability [51]. The QFM term was described by a
broad Gaussian, and its energy dependence in the single-
relaxor form with the constant parameter ΓFM:

χ00FMðq; EÞ ¼ χ0FM
ΓFME

E2 þ Γ2
FM

exp
!
−

q2

W2
4 lnð2Þ

"
ð2Þ

and q is the distance to the nearest 2D Bragg point. The
parameters resulting from a global fit to the whole data set
are given in Table I [52]. The model susceptibility was
convoluted with the spectrometer resolution using the reslib
program package [53] and scaled through phonon scatter-
ing [48] yielding the lines in Figs. 1(d)–(g).
The corresponding real part of the susceptibility at zero

energy χ0ðq; E ¼ 0Þ, i.e., the amplitudes of the spectra at
fixed q, as well as χ00ðq; EÞ for qalong the Brillouin zone
diagonal are displayed in Fig. 2. The QFM signal shows no

significant anisotropy and corresponds to the macroscopic
susceptibility, which also exhibits only weak anisotropy
[2,3]. For the IC peak, the model describes the average of
the in plane and out of plane susceptibilities [30], with χ0c
(χ0ab) slightly larger (smaller) than this value. The model
was obtained by refining the only six parameters with the
total set of 120 independent data points at 1.6 K and 76 at
150 K. Thus obtained χ0IC and ΓIC are somewhat higher than
those extracted from unpolarized INS [11,26]. The correla-
tion length ξIC is less accurate but the qualitative decrease at
higher temperature is unambiguous. In principle, one should
consider the in plane and out of plane components of the IC
peak separately and then take their superposition, but the
limited statistics does not allow for that. In contrast to the IC
signal, the QFM one is basically temperature independent,

TABLE I. (Upper part) Parameters of the χ00ðq; EÞ model for Sr2RuO4 refined with the polarized INS data for
T ¼ 1.6 and 150 K. (Lower part) The largest triplet, T, and singlet, S, eigenvalues (in arbitrary units) of the
interaction matrices Vs and Vt, respectively [Eq. (3)], obtained for the isotropic susceptibility, χ0 ¼ χ0ðq; 0Þ or for
the anisotropic components χ0zz and χ0ab; the largest eigenvalues for QFM or IC fluctuations only are shown together
with those for the total susceptibility.

T [K] χ0FM [μ2B=eV] W [r.l.u.] ΓFM [eV] χ0IC [μ2B=eV] ξIC [Å] ΓIC [eV]

1.6 22 ( 1 0.53 ( 0.04 15.5 ( 1.4 213 ( 10 9.7 ( 0.5 11.1 ( 0.8
150 22 ( 2 0.47 ( 0.06 19.0 ( 3.5 89 ( 7 6.1 ( 0.5 17.8 ( 2.9

QFM T QFM S IC T IC S total T total S

χ0 10.6 0.21 16.8 94.8 18 87
χ0zz 11.7 0.23 29.1 164.2 30.3 155.6
χ0ab 9.6 0.19 9.7 54.7 11.3 48.3

FIG. 2. The real part of the static susceptibility χ0ðq; E ¼ 0Þ as
described by Eqs. (1) and (2) along the zone diagonal (a) and for
the entire zone (c) at 1.6 K and (d) at 150 K; in (b) χ00ðq; EÞ is
shown along the Brillouin zone diagonal.
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