Strongly coupled phonon fluid and Goldstone modes in an anharmonic quantum solid: Transport and chaos

Evyatar Tulipman Weizmann Institute of Science, Israel

Based on: ET and Erez Berg PRR 2020, PRB 2021

?

MB quantum chaos "dictates" **transport properties** of strongly correlated systems?

Planckian bound on transport

(Sachdev, Zaanen)

Theoretical side

Bound on chaos

(Maldacena-Shenker-Stanford)

Conjecture: thermal and chaos diffusivities are universally related (Hartnoll, Blake)

Planckian bound on diffusion $D_{th} \gtrsim sv_B^2 \frac{\hbar}{k_B T}$?

True in many generic cases (counterexample: inhomogeneous SYK chains, Gu et al. 17)

Theoretical side

- Planckian dissipation in "bad insulators"?
- oxides like SrTiO₃, with anomalously small thermal diffusivities
- "Bad insulators" = bad thermal conductors

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19)

• Host of complex insulating compounds (many atoms in unit cell), e.g. complex

Motivation **Experimental side**

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19)

 \Rightarrow Analyze in terms of thermal relaxation times averaged speed of sound v_{ph} Parametrize in units of Planckian timescale

Motivation **Experimental side**

τ_{th} =	= α-	ħ	•	Simple insu
		k _B I		Classical, t
Sample	v _{ph} , 10 ⁵ cm/	/s	ℓ _{ph} (300 K), Å	
SrTiO ₃ (20)	7.87	2.7	5.1	
LaAlO ₃ (24, 32)	6.72	2.9	3.86	
KTaO ₃ (24, 33)	7.5	3.1	5.56	Inalve dime
KNbO ₃ (24, 34)	7.0	1.6	2.69	
NdGaO ₃ (24, 35)	6.5	1.65	2.61	
YAIO ₃ (24, 36)	8.25	1.8	3.54	
MgSiO ₃ (37, 38)	8.0	1.05	2.1	
Disordered SrTiO ₃ (24)	7.87	1.9	3.57	
GGG (39, 40)	6.55	2.5	3.98	
PbWO ₄ (41, 42)	3.47	3.0	2.65	
BeO (43, 44)	11.3	41	46	
Silicon (20)	8.43	23	202	
Natural diamond (45–47)	18.0	50	55,000	

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19)

- ulators: $\alpha \sim \mathcal{O}(50) \gg 1$
- textbook ph-ph umklapp $D_{th} \sim 1/T$
- ensional analysis $\alpha \sim \sqrt{M_{\rm ion}/m_{\rm electron}} \gg 1$
- Complex insulators: $\alpha \sim 1$
- No phonon quasiparticles? (Phonon fluid?)
 - Empirically bounded $\alpha \geq 1$

Motivation **Experimental side**

Is $D_{th} \sim 1/T$ regime classical in complex insulators?

Host optical branches well above RT

Structurally complex: pronounced anharmonicities

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19)

Motivation Theoretical + experimental

Sample

SrTiO ₃ (20)
LaAlO ₃ (24, 32)
KTaO ₃ (24, 33)
KNbO ₃ (24, 34)
NdGaO ₃ (24, 35)
YAlO ₃ (24, 36)
MgSiO ₃ (37, 38)
Disordered SrTiO ₃ (24)
GGG (39, 40)
PbWO ₄ (41, 42)
BeO (43, 44)
Silicon (20)
Natural diamond (45–47)

Planckian diffusivity from a strongly coupled "phonon fluid"?

Bound on diffusion?

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19)

v _{ph} , 10 ⁵ cm/s	S	ℓ _{ph} (300 K), Å
7.87	2.7	5.1
6.72	2.9	3.86
7.5	3.1	5.56
7.0	1.6	2.69
6.5	1.65	2.61
8.25	1.8	3.54
8.0	1.05	2.1
7.87	1.9	3.57
6.55	2.5	3.98
3.47	3.0	2.65
11.3	11	46
8.43	23	202
18.0	50	55,000

Relation to MB quantum chaos?

Model of strongly coupled phonons

Phase diagram and relation to SYK model

Dynamics, thermal transport and MB quantum chaos

Summary

Outline of talk

Model

Hamiltonian and some preliminaries

Gaussian cubic couplings: $\overline{v_{ijk}} = 0, \quad \overline{v_{iik}^2} = 2v^2$ Strong coupling: $\Omega_i \sim \Omega_v \sim \Omega_u$ $\Omega_{i,v,u}$ - energy scales Solvable in 'weakly dispersive' limit: $\Omega_{i,v,u} \gg \Omega_{d}$ Convenient to consider $\Omega_i = \Omega_0$

(2) lattice with a single optical branch (3) lattice with optical and acoustic branches

Unit cell with a single optical branch $\Omega_i \equiv \Omega_0$:

$$H = \sum_{i=1}^{N} \frac{\pi_i^2}{2} + \frac{\Omega_0^2}{2} \phi_i^2 + \frac{1}{N} \sum_{ijk} v_{ijk} \phi_i \phi_j \phi_j$$

 $N \rightarrow \infty$ saddle-point equations for replica diagonal solution:

$$G(i\omega) = \frac{1}{\omega^2 + \Omega_0^2 - \Pi(i\omega)}$$

<u>Comment:</u> 0+1 model similar to quantum spherical p-spin glass model (Cugliandolo et al. 'oo)

0+1 model

Saddle-point equations

$\phi_k + \frac{u}{4N} \left(\sum_{i=1}^N \phi_i^2 \right)^2$

O+1 model Phase diagram

- Phase diagram crucial to study dynamics in self-averaging phase
- Cranking up cubic anharmonicities v_{ijk} induces a 1st order transition to a replica-symmetry breaking phase
 - 1st order
- Phase diagram of lattice model is essentially identical

 Ω_0

0+1 model **Relation to the SYK model**

• Can we tune to an SYK-like critical point? Naively, $\Omega_0 \to \Omega_*$, $u \to 0$: $G(i\omega) \approx \frac{1}{\Omega_*^2 - \Pi(i\omega)}$ $\Pi(\tau) = v^2 G(\tau)^2$ $G(\tau) \sim |\tau|^{-2\Delta}$

SYK-like solution is not realized: (1) Saddle-point solution at Ω_* is RSB (2) CFT has complex scaling dimensions (3) Even without randomness: a thermodynamically-favorable, gapped solution exists

0+1 model **Dynamical regimes**

- Dynamical regimes via phonon lifetime τ_{ph} : $G_R(t) \sim \exp\left(-t/\tau_{ph}\right)$
- Generic behavior in strongly coupled regime: Phonon lifetime $\overline{(\hbar/k_BT)}$ Semiclassical $\mathcal{O}(100)$ α Phonon fluid $\tau_{ph} \approx \alpha \hbar / k_B T$ $\mathcal{O}(1)$ $\sim v$

Wide intermediate-T Planckian regime

 $\alpha \approx 5 - 15$

Minimal lifetime in line with Planckian bound

$\alpha \gtrsim 1$, minimal in vicinity of glass transition

Lattice model - single optical branch Saddle point equation and reminder

• Saddle point equations for a single optical branch: (d=1)

$$G(i\omega,k) = \frac{1}{\omega^2 + \Omega_o^2}$$

$$\Pi(\tau, r) = v^2 G(\tau, r)^2 - u G(\tau, r) \delta(\tau) \delta(\tau)$$

- Weakly dispersive limit $\Omega_d \ll \Omega_0$: $\Pi(i\omega, k) \approx \Pi(i\omega)$ \Rightarrow single particle dynamics inherited from 0+1 model
- frequency

 $+4\Omega_d^2\sin^2(k/2) - \Pi(i\omega,k)$

• A single velocity scale $v_0 \equiv \Omega_d^2 / \overline{\Omega_o}$, where $\overline{\Omega_o^2} = \Omega_o^2 - \Pi(0)$ is the renormalized

Lattice model - single optical branch

Transport and chaos

• Consider thermal and chaos diffusivities

$$D_{\rm th} = \kappa_{\rm th}/c$$
 OT

Diffusivities are related: $D_L \approx \gamma D_{\rm th}, \quad \gamma \sim 1-3$

Planckian dissipation in phonon fluid regime:

$$\tau \approx \alpha \frac{\hbar}{k_B T}, \quad \alpha \sim 5 - 15$$

 $v_B \approx v_{\text{optical}}$ weakly *T*-dependent at intermediate temperatures

$\operatorname{TOC}(t, \mathbf{r}) \sim \frac{1}{N} \exp\left(\lambda_L t - \frac{r^2}{D_L t}\right)$

Adding acoustic (Goldstone) modes **Towards a more realistic model**

- Acoustic phonons weakly coupled, fast and long lived at $k \rightarrow 0$
 - au_{acoustic}
- N_0 optical modes + N_a acoustic modes

$$\phi_{i,r} \mapsto \phi_{i,r+1}$$

• Large N limit: fixed $n_0 = N_0/N$, $n_a = N_a/N$

$$G_{\rm ac}(i\omega,k) = \frac{1}{\omega^2 + 4\Omega_{\rm a}^2 \sin^2(k/2) - \Pi_{\rm a}(i\omega,k)}, \ \Pi_{\rm acoustic}(i\omega,k) = 4\sin^2\left(\frac{k}{2}\right)\Pi_{\rm optical}(i\omega,k)$$

$$c(k) \sim 1/k^2$$

 $_{+1} - \phi_{i,r} \quad (\approx \partial_r \phi_{i,r})$

Consider small fractions of acoustic modes: $n_a \ll n_o$ (optical phonons = bath)

Adding acoustic (Goldstone) modes Towards a more realistic model

Coexistence of short-lived phonon fluid and long-lived Goldstone modes

What dominates thermal transport? MB quantum chaos?

Transport vs. Chaos take 2 **Coexistence of acoustic and optical modes**

• Lower dimensions d = 1,2: Acoustic modes dominate thermal transport, but not chaos! For any $n_a > 0$,

 $D_{th} \to \infty, \quad D_L < \infty$

• In d = 3, relation generically restored (but anisotropy can break off relation again)

Transport vs. Chaos take 2 **Coexistence of acoustic and optical modes**

• Intuitively:

$\tau_{\rm th}$ dominated by longest-lived op's

τ_L dominated by shortest-lived op's

If short-lived op's = long-lived op's, expect $D_L \sim D_{th}$, otherwise, relation can be broken

Summary

- Motivation: Planckian thermal diffusivities in complex insulators and possible relation to many-body quantum chaos
- Theoretical model shows emergent Planckian dissipation at intermediate-T
- Transport and chaos are related, but relation can be infinitely violated for coexisting phonon fluid and Goldstone modes
- Also in papers: Multiple optical branches, scrambling with multiple scales, and more...

of talk

Thank you for your attention!

20

