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Motivation 
Theoretical side

MB quantum chaos “dictates” transport properties of strongly correlated systems?

Planckian bound on transport

(Sachdev, Zaanen) (Maldacena-Shenker-Stanford)

τtr ≥ s
ℏ

kBT

Bound on chaos

τL ≥
ℏ

2πkBT

?



Motivation 
Theoretical side

Conjecture: thermal and chaos diffusivities are universally related (Hartnoll, Blake)

Dth ∼ DL
Dth =

1
d

v2τth DL =
1
d

v2
BτL

True in many generic cases (counterexample: inhomogeneous SYK chains, Gu et al. 17) 

Planckian bound on diffusion  ?Dth ≳ sv2
B

ℏ
kBT



Motivation

• Planckian dissipation in “bad insulators”  ? 

• Host of complex insulating compounds (many atoms in unit cell), e.g. complex 
oxides like SrTiO3, with anomalously small thermal diffusivities 

• “Bad insulators” = bad thermal conductors

Experimental side

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19) 



Motivation
Experimental side

Dth ∼ 1/T

‘Simple’

‘Complex’

 Analyze in terms of  
thermal relaxation times
⇒

 τth ≡
dDth

v2

averaged speed of sound vph

τth = α
ℏ

kBT

Parametrize in units of  
Planckian timescale

 (1)

 (2)
Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19) 



Motivation
Experimental side

 Complex insulators:  α ∼ 1

τth = α
ℏ

kBT
α

 Simple insulators: α ∼ 𝒪(50) ≫ 1

Classical, textbook ph-ph umklapp   Dth ∼ 1/T

 Naive dimensional analysis  α ∼ Mion/melectron ≫ 1

No phonon quasiparticles? (Phonon fluid?)

Empirically bounded α ≥ 1
Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19) 



Motivation
Experimental side

Is   regime classical in complex insulators?Dth ∼ 1/T

Host optical branches  
well above RT

Structurally complex: pronounced anharmonicities 

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19) 



Motivation
Theoretical + experimental 

Relation to MB quantum chaos?Bound on diffusion?

Planckian diffusivity from a strongly coupled “phonon fluid"?

Zhang, Martelli, Behnia, Kapitulnik et al. (PRL 18, PNAS 18, PRB 21, Journal of Physics: Condensed Matter 19) 



Outline
of talk 

Phase diagram and relation to SYK model

Summary

Model of strongly coupled phonons

Dynamics, thermal transport and MB quantum chaos



Model
Hamiltonian and some preliminaries

 strongly coupled optical phonons (+ acoustic modes, later) in a -dimensional 
lattice,  
N ≫ 1 d

H = ∑
r

(Hr,0 + Hr,int)

Hr,0 =
N

∑
i=1

π2
i,r

2
+

Ω2
i

2
ϕ2

i,r +
Ω2

d,i

2 ∑
δ

(ϕi,r+δ − ϕi,r)2

Hr,int =
1
N ∑

ijk

vijkϕi,rϕj,rϕk,r +
u

4N (
N

∑
i=1

ϕ2
i,r)

2

Unit cell Lattice
Gaussian cubic couplings: 

  

Strong coupling: 
    

  - energy scales 
Solvable in ‘weakly dispersive’ limit: 

 
Convenient to consider 

vijk = 0, v2
ijk = 2v2

Ωi ∼ Ωv ∼ Ωu
Ωi,v,u

Ωi,v,u ≫ Ωd
Ωi = Ω0

In this talk, 3 simple variants of : 
(1) single unit cell (  dimensional model) 
(2) lattice with a single optical branch 
(3) lattice with optical and acoustic branches

H
0 + 1



0+1 model
Saddle-point equations

Unit cell with a single optical branch : Ωi ≡ Ω0

H =
N

∑
i=1

π2
i

2
+

Ω2
0

2
ϕ2

i +
1
N ∑

ijk

vijkϕiϕjϕk +
u

4N (
N

∑
i=1

ϕ2
i )

2

 saddle-point equations for replica diagonal solution:N → ∞

G(iω) =
1

ω2 + Ω2
0 − Π(iω) Π(τ) = v2G2(τ)−uG(τ)δ(τ)

Π =
G G
G

Comment: 0+1 model similar to 
quantum spherical p-spin glass model  

(Cugliandolo et al. ’00) 



0+1 model
Phase diagram

• Phase diagram crucial to study  
dynamics in self-averaging phase 

• Cranking up cubic anharmonicities   
induces a  order transition to  
a replica-symmetry breaking phase 

• Phase diagram of lattice model  
is essentially identical

vijk

1st

  order1st



0+1 model
Relation to the SYK model

• Can we tune to an SYK-like critical point?  
Naively, :  
 
 
 
 
 
SYK-like solution is not realized: 
(1) Saddle-point solution at   is RSB 
(2) CFT has complex scaling dimensions 
(3) Even without randomness: a  
thermodynamically-favorable, gapped solution exists

Ω0 → Ω*, u → 0

Ω*

G (τ) ∼ |τ |−2Δ

G (iω) ≈
1

Ω2
* − Π(iω) Π(τ) = v2G(τ)2

SYK-like critical pt.  Ω*



0+1 model
Dynamical regimes

• Dynamical regimes via phonon lifetime :     

• Generic behavior in strongly coupled regime: 

τph GR (t) ∼ exp (−t/τph)

Wide intermediate-   Planckian regimeT

α Generically, at strong coupling 
 α ≈ 5 − 15



0+1 model
Minimal lifetime in line with Planckian bound

α

Phonon fluid regime corresponds to Planckian dissipation?

, minimal in  
vicinity of glass transition

α ≳ 1

Minimal lifetime  
from numerics:  

τph ≈ ℏ/kBT



Lattice model - single optical branch
Saddle point equation and reminder

• Saddle point equations for a single optical branch: (d=1) 
 
 
 
 

• Weakly dispersive limit :     
 single particle dynamics inherited from 0+1 model 

• A single velocity scale ,  where  is the renormalized 
frequency

Ωd ≪ Ω0 Π(iω, k) ≈ Π(iω)
⇒

vo ≡ Ω2
d /Ωo Ωo

2 = Ω2
o − Π(0)

G(iω, k) =
1

ω2 + Ω2
o + 4Ω2

d sin2(k/2) − Π(iω, k)

Π(τ, r) = v2G(τ, r)2 − uG(τ, r)δ(τ)δ(r)



Lattice model - single optical branch
Transport and chaos 

• Consider thermal and chaos diffusivities 
 
 
 
Diffusivities are related: 

 
 
Planckian dissipation in phonon fluid  
regime: 
     
         

 weakly dependent at  
intermediate temperatures   

DL ≈ γDth, γ ∼ 1 − 3

vB ≈ voptical T−

Dth = κth/c OTOC(t, r) ∼
1
N

exp (λLt −
r2

DLt )

τ ≈ α
ℏ

kBT
, α ∼ 5 − 15



Adding acoustic (Goldstone) modes
Towards a more realistic model

• Acoustic phonons weakly coupled, fast and long lived at  

•  optical modes +  acoustic modes 

• Large  limit: fixed  
Consider small fractions of acoustic modes:   (optical phonons = bath) 
 

k → 0

No Na

N no = No/N, na = Na/N
na ≪ no

ϕi,r ↦ ϕi,r+1 − ϕi,r ( ≈ ∂rϕi,r)

τacoustic(k) ∼ 1/k2

Gac(iω, k) =
1

ω2 + 4Ω2
a sin2(k/2) − Πa(iω, k)

, Πacoustic(iω, k) = 4 sin2 ( k
2 ) Πoptical(iω)



Adding acoustic (Goldstone) modes
Towards a more realistic model

Coexistence of short-lived phonon fluid and long-lived Goldstone modes 

What dominates thermal transport? MB quantum chaos?



• Lower dimensions : 
Acoustic modes dominate thermal transport, but not chaos! 
For any ,  

• In , relation generically restored (but anisotropy can break off relation again)

d = 1,2

na > 0

d = 3

Transport vs. Chaos take 2
Coexistence of acoustic and optical modes

Dth → ∞, DL < ∞

DL ≈ γDth
γ

d = 3



• Intuitively:

Transport vs. Chaos take 2
Coexistence of acoustic and optical modes

 dominated by longest-lived op’sτth  dominated by shortest-lived op’sτL

If short-lived op’s = long-lived op’s, expect , otherwise, relation can be brokenDL ∼ Dth



• Motivation: Planckian thermal diffusivities in  
complex insulators and possible relation to  
many-body quantum chaos 

• Theoretical model shows  
emergent Planckian dissipation 
at intermediate-  

• Transport and chaos are related,  
but relation can be infinitely  
violated for coexisting phonon fluid 
and Goldstone modes 

• Also in papers: Multiple optical  
branches, scrambling with  
multiple scales, and more… 

T

Summary
of talk

τ ≈ αℏ/kBT

Thank you for your attention!


