Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates

PROUST

LNCM

CINIS

Laboratoire National des Champs Magnétiques Intenses oulouse

Collaborations

- D. Vignolles
- B. Vignolle
- C. Jaudet
- J. Levallois
- A. Audouard

M. Nardone

K. Behnia

L. Taillefer N. Doiron-Leyraud D. LeBœuf J-B Bonnemaison

D. Bonn B. Ramshaw

- J. Day R. Liang
- W. Hardy

- N. Hussey
- A. Carrington
- A. Bangura
- J. Fletcher
- R. A. Cooper
- M. M. J. French

A.P. Mackenzie

Outline

• Introduction to quantum oscillations

• Quantum oscillations on both sides of the phase diagram

• The case for an electron pocket

• Cartography of the electron pocket

•Fermi surface reconstruction scenarios

Quantum theory

$$E = E_z + E_{\perp} = \frac{\hbar^2 k_z^2}{2m} + \hbar \omega_c \left(n + \frac{1}{2} \right) \qquad \omega_c = \frac{qB}{m_c}$$

$$n(E) = 2\pi V \left(\frac{2m}{\hbar^2}\right)^{3/2} \hbar \omega_c \sum_{n=0}^{\infty} \frac{1}{\sqrt{E - \hbar \omega_c (n + 0.5)}}$$

Density of states

Quantum theory

Temperature / Disorder effects on quantum oscillations

• Low T measurements

 $\hbar \omega_c > k_B T$

• Need high quality single crystals

$$\hbar \omega_c > \frac{\hbar}{\tau} \Rightarrow \omega_c \tau > 1$$

Quantum theory

Lifshitz-Kosevich theory (1956)

$$\Delta \mathbf{R}, \Delta \mathbf{M} \propto \mathbf{R}_{\mathrm{T}} \mathbf{R}_{\mathrm{D}} R_{\mathrm{S}} \sin \left[2\pi \left(\frac{\mathbf{F}}{\mathbf{B}} - \gamma \right) \right]$$

Direct measure of the Fermi surface extremal area (but number of orbits ? location in k-space ?)

Outline

• Introduction to quantum oscillations

• Quantum oscillations on both sides of the phase diagram

• The case for an electron pocket

• Cartography of the electron pocket

•Fermi surface reconstruction scenarios

The overdoped case: $TI_2Ba_2CuO_{6+\delta}$

The overdoped case: $TI_2Ba_2CuO_{6+\delta}$

All the numbers are in excellent agreement with

- in-field probes: AMRO, Hall effect
- zero field probes: ARPES, thermodynamic ...

Quantum oscillations in UD $YBa_2Cu_3O_{6.5}$

Shubnikov - de Haas

 $F = \frac{\phi_0}{2\pi^2} A_k$ de Haas – van Alphen

Quantum oscillations in UD $YBa_2Cu_4O_8$

Quantum oscillations in HTSC

Implication of quantum oscillations

Scenarios for the Fermi surface

Doped Mott insulator scenario

four-nodal hole pockets e.g. doped Mott insulator

ARPES in Na-CCOC

K. Shen et al., Science (2005)

BUT• Negative Hall effect (electron like)• Luttinger theorem for 2D FS: $n = \frac{2A_k}{(2\pi)^2} = \frac{F}{\phi_0}$ $YBa_2Cu_3O_{6.5}$ $F = 530 T \Rightarrow 0.15$ carriers per planar Cu atom !!! (0.1) $YBa_2Cu_4O_8$ $F = 660 T \Rightarrow n = 0.19$ carriers per planar Cu atom !!! (0.14)

Scenarios for the Fermi surface

Fermi surface reconstruction

AF / d-DW order

(Field induced) SDW

(Rice, Chakravarty)

(Sachdev, Harrison)

Stripes

(Millis and Norman, Vojta)

Fermi surface reconstruction scenarios \Rightarrow electron pocket at the anti-node

Outline

• Introduction to quantum oscillations

• Quantum oscillations on both sides of the phase diagram

• The case for an electron pocket

• Cartography of the electron pocket

•Fermi surface reconstruction scenarios

Hall and Seebeck coefficients

LeBoeuf et al, Nature'07

Seebeck

Chang et al, PRL'10

Two bands model in Y248

π -shift in Rxx and Rxy

Outline

• Introduction to quantum oscillations

• Quantum oscillations on both sides of the phase diagram

• The case for an electron pocket

• Cartography of the electron pocket

•Fermi surface reconstruction scenarios

Angle-dependence of QO in $YBa_2Cu_3O_{6.6}$

	Surface 1	Surface 2
F(T)	478	526
$\Delta F(T)$	37.7	3 .5
m^*/m_e	1.5	1.7
gm_s/m_e	2.1	3.2
$T_D(K)$	5.8	6.4
γ	3 .5	1.1
A	13	18.5

Bilayer splitting + Warping

c-axis coherence

Spin zero phenomena

 \Rightarrow Staggered moments have a large component along the field direction Not compatible with a pure AF scenario !

B. Ramshaw et al, to be published in Nature Physics

Location of the electron pocket

<u>Scenario</u>: Charge confinement in the CuO₂ plane ($\rho_c \rightarrow \infty$ as T \rightarrow 0) ?

c-axis magnetoresistance in UD YBCO

Extrapolation of the magnetoresistance

Two-band model:
$$\rho(B) = \frac{(\mu_h + \mu_e) + \mu_h \mu_e (\mu_h R_h^2 + \mu_e R_e^2) B^2}{(\mu_h + \mu_e)^2 + \mu_h^2 \mu_e^2 (R_h + R_e)^2 B^2} = \rho_0 + \frac{\alpha B^2}{1 + \beta B^2}$$

 $\rho_{c}(0)$: extrapolated zero-field resistivity

Temperature dependence of $\rho_c(0)$

Phase diagram

Electron pocket at the anti-node

Doping dependence of QO

c-axis magnetoresistance in underdoped $YBa_2Cu_3O_v$

Doping dependence of the Hall effect

No sign change below p~0.08

D. LeBoeuf et al, arXiv: 1009.2078

Phase diagram

B. Vignolle et al, unpublished

Outline

• Introduction to quantum oscillations

• Quantum oscillations on both sides of the phase diagram

• The case for an electron pocket

• Cartography of the electron pocket

• Fermi surface reconstruction scenarios

Lifshitz transition

Only one QO frequency

Stripe scenario

Metal-insulator cross-over

Y. Ando et al, PRL'02

Conclusion

✓ Evidence of closed and coherent FS in UD YBCO and OD TI-2201

✓ Small pockets vs large orbit Evidence of electron pocket ↓

Reconstruction of the FS

- ✓ If pseudogap causes
 reconstruction ⇒ results in
 overdoped TI2201 argue for a
 QCP hidden by the SC dome
- ✓ Restoration of the coherence along *c*-axis at low T in underdoped YBCO

3D Fermi surface Fermi liquid behavior

