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- Recent experimental realization  of syntethic gauge fields 

is providing new challenging many-body configurations in 

ultra-cold atomic gases 

 

- Conservation laws are modified due to spin coupling 

 

 - New quantum phases (stripes, spin polarized, vortices)  

   and new phase transitions in both Bose and Fermi gases 

 

- New dynamic properties 

 

- Center of mass oscillation in harmonic trap does not obey 

Kohn’s theorem. Consequence of violation of Galilean 

invariance. (Experiments already available) 

 

- Elementary  excitations in uniform gases: quenching of  

sound velocity, appearence of rotons  



Two detuned and polarized laser 

beams provide Raman transitions 

between two spin states giving rise 

to the Hamitonian 

The Hamiltonian is not  

translationally invariant.  

It is however invariant  

with respect to helicoidal  

translations of the form  

(continuous symmetry) 

 

 

consisting of a rigid translation  

plus rotation in spin space   
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The peculiar symmetry property of 

suggests the introduction of  the unitary transformation  

 

                        with  

 

In the spin rotated frame      takes the spin-orbit  form 

 

 

 

 

 

characterized by equal Rashba and Dresselhaus coupling 

plus Raman  and effective Zeeman field  

 

The two body interaction term is not affected by the 

transformation.  
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 Different strategies (both pursued by Spielman team at Nist) 

 

- Spatially dependent detuning (           ) in the strong Raman 

coupling (    ) regime gives rise to effective Lorentz force and  

vortices. The method is not subject 

to limitations of rotating systems.  

Possible route to quantum Hall regime.  
(Lin et al., Nature 2009) 

 

 

- Working with vanishing effective Zeeman field and small  

Raman coupling gives rise to the  

appearence  of two minima which  

can host a Bose-Einstein condensate.  
(Lin et al., Nature 2011) 

Strategy of lectures 3 and 4 
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Differently from         the Hamiltonian in  the spin rotatated 

frame is translationally invariant , so, unless translational 

invariance is spontaneously broken (stripe phase),  

the density of the ground state configuration is uniform ! 

 

The full Hamitonian is given by 

 

 

with  

 

 

Interactions are treated in the mean field approximation. 

We make the simplifying choice  

 

If                  one can choose an  

effective magnetic field to compensate the effect of asymmetry.  
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Experimental implementation of the  

SO hamiltonian with BECs  by  

the Spielman team at NIST  

(Nature 2011) 

 

Theory of the new quantum phases: 

Ho and Zhang (PRL 2011)  

Many theoretical papers (……) 

Recent Trento paper  

(Yun Li, Pitaevskii, S. PRL 2012) 
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Order parameter of the new phases 

 

- Stripe phase                                 

 

                                                                                                                                             

                                                                                                                                                                                         
                                                                                                     

                                                                                                                                                                                                                                                                                                                   

-  Plane wave (or spin polarized) phase.  

   BEC occupies state 

 

 

   with 

 

- Zero momentum phase (         ) 
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The transition between the  

stripe and  the plane wave    

phase is of first order nature. 

It has been observed at  

the predicted value of the 

Raman coupling            

(eq. holding in the  

small coupling limit 

                           ) 
Lin et al.,  

Nature 2011 
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Density modulations  are  not visible in the  

in situ profile of the stripe phase  

(contrast  and distance between stripes are too small) 

Effects of stripes  more easily revealed in the  

excitation spectrum (Lecture 4) 

Nature of phase transitions 
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The transition between the  

plane wave and the k=0   

phase is second order.  

It has been observed at  

the predicted value of the  

Raman coupling  

 

 

 

in small coupling limit 

At the transition the spin polarizability diverges, 

with peculiar consequences on the collective 

oscillations and the propagation of sound.  

Nature of phase transitions 
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Tricritical point 
(Li et al. PRL 2012)   

Above the critical density 

 

The plane wave phase disappears 

and the transition takes place directly between the  

stripe and the zero momentum phases 

 

Value of critical density is very large in the case of Rb  

because coupling constants                       are practically equal 
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Consequences of spin-orbit coupling  

on the dynamics of BECs 

 

Center of mass oscillation in harmonic trap 

 

Sound and rotons in uniform gases 

This lecture only  phases with uniform density  

(plane wave and k=0 phases)  

 

Next lecture: sound in stripe phase (supersolidity)  



Semi-classical argument: 

 

The single-particle Hamiltonian                     

gives rise to two branches  

with single-particle energy: 

 

 

 

 

Important spin-orbit effect on the effective mass of lower branch. 

Second derivative calculated at the stationary point (local minima): 

 

 

 

 

 

vanishes at the second order phase transition  

Profound effect on center of mass frequency and sound velocity 
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Center of mass oscillation 

Oscillation in the presence of harmonic trapping: 
                                                            (Yun Li, G. Martone  

                                                           and S.S, EPL 2012) 

 

Coupling between center of mass (             )  and  

Spin (               ) degrees of freedom   

Explicitly revealed by commutation rule 

 

 

-  Reflects modification of equation of continuity  

- Implies new dynamic behavior of center of mass coordinate 
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In the absence of spin-orbit coupling dipole operator X  

excites a single mode with frequency      (Kohn’s theorem). 

Kohn’s theorem is violated by spin-orbit coupling  
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Sum rule approach to the center of mass excitation 

Energy weigthed  (k=1) sum rule (f-sum rule) :            

                  

 

 

 

- Comment: Despite the fact that                is affected by 

spin-orbit   the double commutator is not. 

 

-   Universal and model independent  f-sum rule.  
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Inverse energy weigthed (k=-1) sum rule  

(dipole polarizability sum rule) :     

 

The             sum rule  can be calculated exactly in the presence 

of harmonic trapping using the (exact) commutation relation: 

 

 

(follows from translation invariance of two-body interaction)   

 

One finds:                       

 

 

 

 

- Neither energy weighted nor inverse-energy weighted sum 

rules are  affected by spin-orbit coupling 
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Where does the spin orbit coupling enter dynamics  ? 

Cubic inverse energy weigthed  (k=-3) sum rule 

 

- Very sensitive to low energy part of excitation spectrum 

(low branch of excitation spectrum).  

- Can be worked out using  exact commutation rules 

 

First step: use commutation relation  

 

 

 

 

 

 

Second step: use commutation rule 

and identify spin polarizability  
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Cubic inverse energy weigthed  (k=-3) sum rule 

 

 

 

With                               spin polarizability. 

 

Comments on sum rules: 

 

- Results for k=1, k=-1 and k=-3 sum rules hold  exactly  

    for  spin-orbit Hamiltonian + 2-body int. + harmonic trapping 

 

- Hold for both Bose and Fermi statistics. 

 

- Are not restricted to mean field regime  

 

- k=-3 sum rule emphasizes key role played by spin-orbit 

coupling through the spin polarizability 
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Frequency of lowest dipole mode 

 

The ratio between              and              sum rules provides   

useful estimate for the frequency of the dipole oscillation: 

 

 

Comments: 

 

-       provides rigorous upper bound to lowest frequency  

    excited by dipole operator X 

  

- f-sum rule               useless to describe lowest frequency 

    mode in the presence of spin-orbit coupling 

 

- result for         is  accurate for               . For smaller values 

    of Raman coupling,  lowest dipole mode is a pure spin 

    oscillation with no coupling with center of mass oscillation  
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Behavior of spin polarizability  

 

- Calculation of           based on standard definition:  evaluate 

spin polarization induced by external magnetic field  

 

-  results for polarizability depend  on the phase considered 

 

- Non trivial results for the  

    behavior of            at the  

    transition between the    

    quantum phases 
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Spin polarizability of spin-orbit coupled BEC 

(weak coupling limit                        )  

 

PLANE WAVE PHASE  
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  k=0 MOMENTUM PHASE 

 

 

 

 

2

02

2
)(

k
z




- Spin polarizability diverges at the transition               between  

  plane wave and k=0 phases (second order phase transition). 

 

- Spin polarizabilities are  density independent  in the  

   weak coupling limit (genuine effect of spin-orbit coupling) 
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Nonlinear 

   effect 

Spin polarizability and dipole frequency  

 in weak coupling regime (exp: Zhang  et al. PRL 2012) 

- Divergent behavior of spin polarizability results in strong 

quenching of center of mass oscillation ! 



- During  dipole oscillation,  center of mass position     ,    

    momentum        and magnetization        oscillate in time  

 

- Coupling between relative 

    amplitudes   determined by  

    value of  spin polarizability                    

 
 

 

Effect of spin orbit coupling on amplitudes of oscillations 

X

XP
Z

)(1

)(

)(1

1
)(

2

0

2

0

0

2

0

0

z

zP

z

zxX

k

k

k

A
A

k
kAA


















Experimental evidence of coupling used to 

measure spin polarizability (Zhang et al. PRL2012) 

 

 

  

 

 

 



Open question raised by experiment on center of 

mass oscillation 

- Why is the collective oscillation NOT observed in 

the Raman interval below the second order phase 

transition                ? 

 

- Ocurrence of dynamic instability ! Lecture 4 
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Center of mass oscillation dramatically affected by 

spin-orbit coupling.  

What about Bogoliubov modes in uniform 

configurations ? 

- Bogoliubov modes can be obtained by solving 

linarized time-dependent Gross Pitaevskii equations 
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- A useful quantity: the dynamic response function: 

add a perturbation of the form                                 

and evaluate induced density fluctuations: 
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Result for density response function 
(G. Martone et al. PRA 2012) 

- Poles of response function give rise to two branches 

  

- f-sum rule easily recovered for large  

 

- Response is not symmetric by exchange of q in – q in 

plane wave phase. Consequence of breaking of parity and 

time reversal inavariance of Hamiltonian.  

 

- Values of  functions                                     depend on 

whether one is in plane wave or single momentum phase 

  

)()()(4

)](4[
),(

0112

3

1

4

1

22

qbqqbkqbqk

qaqkNq
q











22 /),(  qq 

)(),(),(),( 210 qbqbqbqa





       PLANE WAVE PHASE 
 

BEC occupies state with 

 

 

 
- Lower branch of excitation spectrum 

exhibits maxon-roton structure 

which becomes more pronounced as 

one lowers Raman coupling towards 

     the transition to the stripe phase  

 

- Lower branch contributes to static 

structure factor 

 

- Parity violation in excitation pectrum: 

 

 

22

0

2

01
]2/)(2[

1







ggnk
kk

)(qS
Lower branch 

contribution 
)()( qq 



FROM PLANE WAVE TO  

ZERO  MOMENTUM PHASE 

  
- Sound velocity vanishes at the transition 

Raman frequency despite value of 

compressibility is unchanged. 

Consequence of divergent behavior of 

spin polarizability 

 

 

- Sound wawes have mixed density and 

spin nature. Analogy with center of mass 

mode: 

 

 

- Sound velocity depends on sign of q with 

respect to 

 

- In k=0 phase excitation spectrum is 

symmetric by exchange of q in to –q 
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Conclusions and questions 

 
Spin orbit coupling deeply affects the dynamic behavior of BEC gases 

 

- Violation of Kohn theorem and strong quenching of dipole oscillation 

in harmonic trap 

- Strong suppression of sound velocity near the transition between 

plane wave and zero momentum phase 

- Emergence of rotonic structure. More and more pronounced as one 

approaches transition to the stripe phase 

 

Questions addressed in Lecture 4 

 

- Instability of supercurrents in the presence of spin-orbit coupling 

- Excitation spectrum in stripe phase and manifestation of typical 

supersolidity effects 

 

Other questions: 

-    Phase diagram and dynamics at finite temperature 

- Dynamics of spin-orbit coupled Fermi superfluids 

- Dynamics in Rashba configurations 


