Multiband effect and electron-hole asymmetry in the transport properties of iron pnictides

F. Rullier-Albenque

Service de Physique de l'Etat Condensé, CEA Saclay

The different families of pnictides

1111 SmFeAsO_{1-x} F_x Highest T_c =57K Synthesis of single crystals difficult Few results Chemical composition

122

 $BaFe_2As_2$ SrFe_2As_2 CaFe_2As_2

A very rich family Good single crystals

111 LiFeAs

Good single crystals Stoechiometric→low defect content Very sensitive to air

Chalcogenides

The different families of pnictides

1111 SmFeAsO_{1-x} F_x Highest T_c =57K Synthesis of single crystals difficult Few results Chemical composition

Chalcogenides

Outline

Transport measurements in the 122 family : Overview of the resistivity and Hall effect data

Necessity of a multiband description

Analysis of the resistivity and Hall effect measurements in a minimal two-band model: electron doped BaFe₂As₂ with Co and Ni substitution Strong electron-hole asymmetry in the scattering rates Comparison with ARPES results

Isovalent substitution: Ru/Fe Resistivity, Hall effect and magnetoresistance Evidence of a Fermi liquid behavior in a two band model

LiFeAs Resistivity, Hall effect and magnetoresistance Analysis in relation with ARPES and quantum oscillations data Beyond the two-band model

The 122 Phase AFe₂As₂ (A=Ba, Sr, Ca, Eu)

Possibility to get large single crystals

122 Phase BaFe₂As₂: crystal growth

Self flux method

a) Fe + As $\xrightarrow{800^{\circ}C}$ FeAs Fe + Co $\xrightarrow{700^{\circ}C}$ CoAs

Synthesis in quartz tubes, sealed under vacuum Kept at 1180°C for 4h and cooling at 5°C/h —

Mechanical extraction of platelets single crystals,

Co content determined by wave length dispersive X-ray spectroscopy

1000°C for 6h Cooled down to room T

Measurements of Transport properties Thickness between 10 to 30 mm

Transport properties of $Ba(Fe_{1-x}Co_x)_2As_2$ single crystals

FRA et al. PRL 2009

Ni et al. PRB (2008), J.H. Chu et al., PRB (2009), L. Fang et al., PRB 2009

Transport properties of Ba_{1-x}K_xFe₂As₂ single crystals

No splitting between structural and AF transitions

B. Shen et al., PRB (2011)

Resistivity evolution by substitution in the BaFe₂As₂ family

B. Shen et al., PRB (2011)

The CaFe₂As₂ family

 $Ca(Fe_{1-x}Co_x)_2As_2$

S.R. Saha et al., arXiv 1105.4798

Hall effect : Large variation with temperature

The Iron based superconductors: multiband structure

Compensated semimetal: $n_e = n_h$

Multiband effects

Modification by doping

Strong influence on transport properties Resistivity, Hall effect, magnetoresistance, ...

Single band metal

Iron-based superconductors Minimal two-band model

$$\sigma = \sigma_{e} + \sigma_{h} \qquad \rho_{e,h} = \frac{m_{e,h}^{*}}{n_{e,h}e^{2}\tau_{e,h}}$$

$$R_{H} = \frac{1}{e} \frac{(-n_{e}\mu_{e}^{2} + n_{h}\mu_{h}^{2})}{(n_{e}\mu_{e} + n_{h}\mu_{h})^{2}}$$

$$\frac{\delta\rho}{\rho(0)} = \frac{\sigma_{e}\sigma_{h}(\mu_{e} + \mu_{h})^{2}}{(\sigma_{e} + \sigma_{h})^{2}}H^{2}$$

$$\mu_{e,h} = \frac{e\tau_{e,h}}{m_{e,h}^{*}}$$

Outline

Transport measurements in the 122 family : Overview of the resistivity and Hall effect data

Necessity of a multiband description

Analysis of the resistivity and Hall effect measurements in a minimal two-band model: electron doped BaFe₂As₂ with Co and Ni substitution Strong electron-hole asymmetry in the scattering rates Comparison with ARPES results

Isovalent substitution: Ru/Fe Resistivity, Hall effect and magnetoresistance Evidence of a Fermi liquid behavior in a two band model

LiFeAs Resistivity, Hall effect and magnetoresistance Analysis in relation with ARPES and quantum oscillations data Beyond the two-band model

Hall effect: Ba(Fe_{1-x}Co_x)₂As₂ and Ba(Fe_{1-x}Ni_x)₂As₂

Transport dominated by the electrons all over the phase diagram

Drastic change of the Hall coefficient in the AFM state near x~0.02 Seen also by thermopower measurements

Hall number: $Ba(Fe_{1-x}Co_x)_2As_2$ and $Ba(Fe_{1-x}Ni_x)_2As_2$

One electron band and one hole band : 4 unknown quantities : n_e , n_h , τ_e , τ_h

Experimentally : 3 equationsConductivity:
$$\sigma = \sigma_e + \sigma_h$$
Hall effect: $\frac{1}{n_H e} = |R_H| = \frac{|-R_e \sigma_e^2 + R_h \sigma_h^2|}{(\sigma_e + \sigma_h)^2}$ Charge conservation: $n_e = n_h + x_{Co}$

Estimate of the electron density : ARPES measurements

Good agreement between ARPES and transport data

Holes not directly visible in the transport properties

Electronic scattering rates

 $1/\tau_0$ independent on Co doping for $x \le 20\%$

No contribution of phonons nor spin fluctuations to the electronic scattering rates

Electron and hole mobilities in Ba(Fe_{1-x}Co_x)₂As₂

Holes more strongly scattered than electrons

Optical measurements

E. Van Heumen et al., arXiv 0912.0636

The holes are 15 times more scattered than the electrons

Interband scattering more efficient for the holes than for the electrons

Electronic Raman scattering

R. Hackl et al.

Multiorbital composition of each Fermi pocket

A.F. Kemper et al. PRB 2011

 $\mathbf{d}_{xz},\,\mathbf{d}_{yz},\,\mathbf{d}_{xy}$

Anisotropy of the effective mass and Fermi velocity

Scattering by spin fluctuations

One particle scattering rates affected by

- the orbital character of the initial and final states
- momentum dependence of the spin susceptibility

Strong anisotropy of the scattering rates

Transport dominated by small parts of the electron FS sheets with d_{xy} character with long lifetimes and large $v_{\rm F}$

Anisotropy of the scattering rates along the FS sheets

Seems difficult to reconcile with the Hall effect dominated by the electrons

0.04

5/2.9

electron d_{xy}

0.30

0.7/1.2

22/38

Outline

Transport measurements in the 122 family : Overview of the resistivity and Hall effect data

Necessity of a multiband description

Analysis of the resistivity and Hall effect measurements in a minimal two-band model: electron doped BaFe₂As₂ with Co and Ni substitution Strong electron-hole asymmetry in the scattering rates Comparison with ARPES results

Isovalent substitution: Ru/Fe Resistivity, Hall effect and magnetoresistance Evidence of a Fermi liquid behavior in a two band model

LiFeAs Resistivity, Hall effect and magnetoresistance Analysis in relation with ARPES and quantum oscillations data Beyond the two-band model

Transport properties of Ru-substituted BaFe₂As₂

mobility of holes overcomes that of electrons at low T for x > 0.25

$Ba(Fe_{1-x}Ru_x)_2As_2 : \rho, R_H$, Magnetoresistance

For a compensated semi-metal: $n_e = n_h = n_h$

T² behavior for both holes and electrons

Comparaison with ARPES measurements

V. Brouet et al, PRL (2010)

Modification of the band structure

For the hole pockets: FS significantly warped along k_7

Ru : isovalent substitution

$$n_e = n_h = n \approx 0.11 / Fe$$

But other ARPES studies show no change of the carrier concentration *R. Dhaka et al. PRL(2011), N. Xu et al. PRL (2012)*

Electronic correlations strongly reduced v_F nearly three times larger

Might explain the increase of the hole mobility

Outline

Transport measurements in the 122 family : Overview of the resistivity and Hall effect data

Necessity of a multiband description

Analysis of the resistivity and Hall effect measurements in a minimal two-band model: electron doped BaFe₂As₂ with Co and Ni substitution Strong electron-hole asymmetry in the scattering rates Comparison with ARPES results

Isovalent substitution: Ru/Fe Resistivity, Hall effect and magnetoresistance Description in a two band model

LiFeAs Resistivity, Hall effect and magnetoresistance Analysis in relation with ARPES and quantum oscillations data Beyond the two-band model

LiFeAs

a=*b*=3.7715(2)Å, *c*=6.3574(3)Å

Mechanism of superconductivity? - Absence of nesting: Spin fluctuations?

- Orbital fluctuations : s₊₊

T_c ~ 17-18K **Stoechiometric** Nearly compensated semi-metal

Defect free Small upper-critical fields Quantum oscillation measurements

Non polar surface : ARPES

Drawback: Very sensitive to air

ARPES results on LiFeAs

Good agreement with calculations if correlations are taken into account

Two hole bands Two electron bands $n_e \approx n_h \approx 0.2$ carriers/Fe

Yin et al., Nature materials

De Haas van Alphen experiments on LiFeAs

Outer band: $\sim 0.11 \text{ el/Fe}$

Transport properties of LiFeAs : resistivity

Compared to previous reports

Lower residual resistivity larger RRR = $\rho(300K)/\rho_0 \approx 250$

LiFeAs : a Fermi liquid compound?

The Hall coefficient is negative

Transport dominated by the electrons as in BaFe₂As₂

Small minimum in R_H : corresponds to the change in curvature of $\rho(T)$

Transport properties of LiFeAs : Magnetoresistance

In a single band metal : $\delta \rho / \rho(0) \approx (\mu H)^2 \propto (H / \rho)^2$

Interpretation of the transport data in a two-band model

4 electronic bands with 4 different mobilities

Number of carriers taken from ARPES and dHvA data

$$\frac{1}{H^{2}} \frac{\delta \rho}{\rho(0)} = a(T) = \frac{\sigma_{e} \sigma_{h} (\mu_{e} + \mu_{h})^{2}}{(\sigma_{e} + \sigma_{h})^{2}} + \frac{\sigma_{h}}{(\sigma_{e} + \sigma_{h})} A_{h} + \frac{\sigma_{e}}{(\sigma_{e} + \sigma_{h})} A_{e} \qquad A_{h} = \frac{\sigma_{ih} \sigma_{oh} (\mu_{ih} - \mu_{oh})^{2}}{\sigma_{h}^{2}}$$
Effective mobility
$$\mu_{h} = \frac{\sigma_{ih}}{\sigma_{h}} \mu_{ih} + \frac{\sigma_{oh}}{\sigma_{h}} \mu_{oh}$$
Effective number of
carrier
$$\sigma_{h} = n_{h}^{eff} e \mu_{h}$$
Can vary with temperature

Effective electron band

Two-band model with a Hall coefficient

carriers

$$R_{H} = \frac{\left(-n_{e}^{eff}\mu_{e}^{2} + n_{h}^{eff}\mu_{h}^{2}\right)e}{\left(\sigma_{e} + \sigma_{h}\right)^{2}}$$

Four different unknown parameters and only three experimental equations

For the outer hole band

ARPES measurements give a MDC half width: $\delta k = 18 \text{ meV}$ (A.A. Kordyuk et al. PRB 2011) (m*/m₀)(1/ τ) ~ 8 10¹³ s⁻¹ comparable with ~ 2 10¹³ s⁻¹ found here by transport Measurements of the lifetimes for the other pockets should be very interesting

Conclusion

- Multiband description of the transport properties
- For the compounds with isovalent substitution Ru/Fe Description in a two band model seems reasonable
 - Number of carriers compatible with ARPES (Ru/Fe)
 - Fermi liquid behavior for both the holes and the electrons
 - Mobilities of holes and electrons comparable
- LiFeAs: low defect content
 - Comparison with ARPES and quantum oscillation measurements

- Description more realistic of the transport properties by taking into account four different bands.

- Co substitution in BaFe₂As₂

- Strong electron-hole asymmetry in the scattering rates: holes not visible in the transport properties

- Difficult to reconcile with the ARPES data on the different lifetimes
- Many theoretical questions....

Collaborators

- SPEC Dorothée Colson, Anne Forget Areta Olariu (post-doc) P. Bonville (Mössbauer)
- LPS Véronique Brouet (ARPES) H. Alloul J. Bobroff , Y. Laplace, Y. Texier (RMN)
 - Co: Transport: FRA et al., Phys. Rev. Lett. **103** (2009). ARPES: V. Brouet et al., Phys. Rev. B **80**, (2009). RMN: Y. Laplace et al., PRB **80** (2009). Mössbauer: P. Bonville, FRA et al. Europhys. Lett. **89** (2010)
 - Ni: Transport: A. Olariu, FRA et al., Phys. Rev. B **83** (2011). Mössbauer: A. Olariu et al. arXiv 1106.1332.
 - Ru: Transport: FRA et al., Phys. Rev. B **81** (2010). ARPES: V. Brouet, FRA et al., Phys. Rev. Lett. **105** (2010)
 - LiFeAs: Transport: FRA et al, submitted (2012).

