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The 122 Phase AFe2As2 (A=Ba, Sr, Ca, Eu) 

Ba2+, Sr2+, Ca2+, .. 

Possibility to get large single crystals 

K+ 
Hole-doped 
Tc

max =37K 

Co : 3d7 

Ni : 3d8 

Electron-doped 

Tc
max =25K 

Rh : 4d7 

Ir : 5d9 

Ru on Fe site 
P on As Site 

Isovalent  
substitution 

Ru 
44 

Pr3+, La3+ 

Electron-doped 

Tc
max ~ 45K in CaFe2As2 



122 Phase BaFe2As2 : crystal growth 

Ba + FeAs, with excess of CoAs 
 

Ba(Fe1-xCox)2As2 

Self flux method 
 Fe + As            FeAs  
 Fe + Co            CoAs  

Synthesis in quartz tubes, sealed under vacuum 
Kept at 1180°C for 4h and cooling at 5°C/h 

800°C 

700°C 

1000°C for 6h 
Cooled down to room T 

b) a) 

Mechanical extraction of  
platelets single crystals, 

1 mm 

Co  content determined by wave length  
dispersive X-ray spectroscopy 

1 mm 1 mm

Measurements of  
Transport properties 

Thickness between 10 to 30 mm 



Transport properties of Ba(Fe1-xCox)2As2 single crystals  

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

undoped
1.4%
2%
3%
4%
4.5%
5.5%
6%
7%
8%
12%
14%
20%
30%






.c
m

)

T (K)

Structural and magnetic 
 transitions 

-2

-1.5

-1

-0.5

0

0.5

40 50 60 70 80 90

d
/d

T 
(


.c
m

/K
)

T (K)

structural 

magnetic 

Tc 

TS 
TM 

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2

T 
(K

)
x

Co

Tetragonal 
Paramagnetic 

Ortho 
AF 

SC 
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Coexistence of AF and SC states  
at local scale 

NMR : Y. Laplace et al. PRB (2009) 

Ni et al. PRB (2008), J.H. Chu et al., PRB (2009), L. Fang et al., PRB 2009 



Transport properties of Ba1-xKxFe2As2 single crystals  

B. Shen et al., PRB (2011) 

No splitting between structural 
and AF transitions 

Ba1-xKxFe2As2 

T (K) 

Potassium content 



Resistivity evolution by substitution in the BaFe2As2 family 

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

undoped
1.4%
2%
3%
4%
4.5%
5.5%
6%
7%
8%
12%
14%
20%
30%






.c
m

)

T (K)

0

100

200

300

0 100 200 300






.c
m

)

0

5
15

44%

35

18
26

T (K)

Ba(Fe1-xCox)2As2 

Ba(Fe1-xRux)2As2 

BaFe2(As1-xPx)2 

S. Kasahara et al., PRB 2010 F. R.A. et al., PRL 2009 

F. R.A. et al., PRB 2010 B. Shen et al., PRB (2011) 

Electron doped 

Hole doped 

Isovalent 

Isovalent 



The CaFe2As2 family 

Ca(Fe1-xCox)2As2 

Ca1-xRxFe2As2 

L. Harnagea et al., arXiv 1011.2085 

S.R. Saha et al., arXiv 1105.4798 



Hall effect : Large variation with temperature 
Ba(Fe1-xCox)2As2 BaFe2(As1-xPx)2 

S. Kasahara et al., PRB 2010 

Ba(Fe1-xRux)2As2 Ba1-xKxFe2As2 

B. Shen et al., PRB (2011) 

F. R.A. et al., PRL 2009 

F. R.A. et al., PRB 2010 

Electron doped 

Hole doped 

Isovalent 

Isovalent 



The Iron based superconductors: multiband structure 

Electronic structure: band structure calculation electrons 

BaFe2As2 

Multiband effects Strong influence on transport properties 
Modification by doping Resistivity, Hall effect, magnetoresistance, … 

Compensated semimetal: ne = nh 

holes 



One-band versus multiband 

Single band metal 
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Hall effect: Ba(Fe1-xCox)2As2 and Ba(Fe1-xNix)2As2  

Transport dominated by the electrons all over the phase diagram 

Co Ni 

T (K) 

Drastic change of the Hall coefficient  
in the AFM state near x~0.02 

Seen also by thermopower measurements 

E.D. Mun et al. PRB (2009) 



Hall number: Ba(Fe1-xCox)2As2 and Ba(Fe1-xNix)2As2  
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Analysis in a two-band model 
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One electron band and one hole band : 4 unknown quantities : ne, nh, e, h 

Cohe xnn 

Conductivity:   

Hall effect: 

he  

Experimentally : 3 equations  

Charge conservation: 

Estimate of the electron density : ARPES measurements 



Using ARPES measurements to determine ne and nh 

V. Brouet et al., PRB (2009) 
Hole bands: two 2D, one 3D 

2 degenerate electron bands: 2D 

4% Co 

7% Co 

Holes not directly visible in the transport properties 

Good agreement between ARPES  
and transport data 

Hall number 

 at lowT 

ne – nh = xCo 



Electronic scattering rates  
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Electron and hole mobilities in Ba(Fe1-xCox)2As2 

Superconducting state for x=7% 

The holes are 15 times more scattered  
than the electrons 

Interband scattering more efficient  
for the holes than for the electrons 

E. Van Heumen et al.,  arXiv 0912.0636 

Holes more strongly scattered than electrons 

electron bands 

hole bands 

Electronic Raman scattering 
R. Hackl et al. 

Optical measurements 



Anisotropy of the scattering rates along the FS sheets 

Transport dominated by small parts of the electron FS sheets with dxy character 
with long lifetimes and large vF 

A.F. Kemper et al. PRB 2011 

Scattering by spin fluctuations 

Multiorbital composition of each Fermi pocket 

dxz, dyz, dxy 

Anisotropy of the effective mass and Fermi velocity 

One  particle scattering rates affected by 
- the orbital character of the initial and final states 
- momentum dependence of the spin susceptibility 

Strong anisotropy of the scattering rates 



 
lifetimes about twice longer  

on the dxy parts of the SF sheets 
both for the hole and electrons pockets 

Anisotropy of the scattering rates along the FS sheets 
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Transport properties of Ru-substituted BaFe2As2 
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Comparaison with ARPES measurements 
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V. Brouet et al, PRL (2010) 

For the hole pockets:  
FS significantly warped along kZ 

Fennn he /11.0

Ru : isovalent substitution 

x ~0.35 

vF nearly three times larger 

Might explain the increase of 
the hole mobility 

BaFe2As2 

Ba(Fe1-xRux)2As2 

Electronic correlations  
strongly reduced 

But other ARPES studies show 
no change of the carrier concentration 

R. Dhaka et al. PRL(2011), N. Xu et al. PRL (2012) 

  

Modification of the band structure 
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LiFeAs 
Tc ~ 17-18K 
Stoechiometric 
Nearly compensated semi-metal 
 
Defect free 
Small upper-critical fields 
Quantum oscillation measurements 
 
Non polar surface : ARPES 
 
Drawback: Very sensitive to air 

Mechanism of superconductivity? 
- Absence of nesting: Spin fluctuations? 
- Orbital fluctuations : s++ 



ARPES results on LiFeAs 

Two hole bands 
Two electron bands 

LDA 
+DMFT 

LDA 

Good agreement with  
calculations if correlations  
are taken into account 

Borisenko et al. PRL (2010) 

Yin et al., Nature materials  

ne nh0.2carriers/Fe 



De Haas van Alphen experiments on LiFeAs 

3 different frequencies 

Electron bands 

area of the FS sheets 

Inner band :  ~ 0.08 el/Fe 
 
Outer band:   ~ 0.11 el/Fe 

C. Putzke et al., PRL (2011) 



Transport properties of LiFeAs : resistivity 
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LiFeAs : a Fermi liquid compound? 
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Transport properties of LiFeAs : Hall effect 
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Transport properties of LiFeAs : Magnetoresistance 
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Interpretation of the transport data in a two-band model 
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Beyond the two band-model - 1 

4 electronic bands with 4 different mobilities 

Number of carriers taken from ARPES and dHvA data 
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Beyond the two band-model - 2 
Four different unknown parameters and only three experimental equations   

A unique solution cannot be acquired 

FehnFeh eff

h /06.0/02.0 oeie  Good solution must be such as  and 

For instance :  Fehneff

h /05.0 independent of T 
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For all the carriers : 

2/1 T

Feeneff

e /13.0

ARPES measurements give a MDC half width: k = 18 meV 

 (m*/m0)(1/) ~ 8 1013 s-1 comparable with ~ 2 1013 s-1 found here by transport 

(A.A. Kordyuk et al. PRB 2011) 

For the outer hole band  

Measurements of the lifetimes for the other pockets should be very interesting 



Conclusion 
- Multiband description of the transport properties 
 
- For the compounds with isovalent substitution Ru/Fe   - 

Description in a two band model seems reasonable 
  - Number of carriers compatible with ARPES (Ru/Fe) 
  - Fermi liquid behavior for both the holes and the electrons 
  - Mobilities of holes and electrons comparable 
 
- LiFeAs: low defect content 
  - Comparison with ARPES and quantum oscillation measurements 
  - Description more realistic of the transport properties by taking into 

account four different bands. 
 
- Co substitution in BaFe2As2 

  - Strong electron-hole asymmetry in the scattering rates: holes not 
visible in the transport properties 

  - Difficult to reconcile with the ARPES data on the different lifetimes 
  - Many theoretical questions…. 
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