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Lightening Summary of last lecture

Calculation of the two self energies proceeds by one of three methods.

Expansion in parameter λ analogous to 1/(2S) in spin wave theory, by a self consistent skeleton graph expansion (numerically implemented).  

Formulas for self energies look like bubble graphs in Fermi liquid theory- self consistently lead to FL type behaviour

Phenomenological models for Ψ and Φ based on Fermi liquid type hypothesis from the λ expansion 

Low k,ω expansion of the self energies Ψ and Φ, inspired by the comparison with DMFT-
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g(k,iω)
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auxiliary Greens function
caparison function

ECFL form gives instead:
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Usual Dyson type theory
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gðkÞ: (15)

In this formalism, at k& kF, x ¼ 0 that is relevant to the

LW sum rule, the RegðkÞ dominates ReGð ~k; 0Þ (since

Re!ð ~k; 0Þ is smooth through the FS). Requiring consis-
tency with the LW theorem forces us to pin any sign change

of Regð ~k; 0Þ to the free case, whereby we impose a second
level sum rule
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This can be viewed as a splitting of the usual number sum
rule Eq. (15) [9]. With Eðp1; p2Þ ¼ ½"p1

þ "p2
þ 1

2 Ĵð0Þ þ
1
2 Ĵðp1 % p2Þ( we find
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(17)

and the spin labels are from paper I with the usual signifi-
cance #ðaÞ ¼ #ð2Þ %#ð3Þ ¼ 1

2#
ðsÞ % 3

2#
ðtÞ.

Next we introduce the spectral representation of various

functions Q that vanish at infinity: Qði!QÞ ¼
R1
%1 dx

"QðxÞ
i!Q%x and "QðxÞ ¼ % 1

# ImQðxþ i0þÞ, with xþ )
xþ i0þ. The Matsubara frequency !Q is fermionic
(bosonic) if Q is fermionic (bosonic). Proceeding further,
at any order in !, the two hierarchies give us coupled
equations for the spectral densities of the physical particles

"Gð ~k; xÞ as well as the underlying Fermi liquid "gð ~k; xÞ, in
terms of the two objects " $"ð ~k; xÞ and "!ð ~k; xÞ and their
Hilbert transforms. The Lehmann representation implies

that "Gð ~k; xÞ is positive at all ~k, x. In making approxima-
tions, this important and challenging constraint must be
kept in mind.

Solution of g%1 and$ to orderOð!Þ2.—We next discuss
a systematic expansion in powers of ! [8], obtained by
taking functional derivatives of Eq. (10) and (12) to gen-
erate expressions for the vertices given the Green’s func-
tions via#&% %

%V g%1 andU& %
%V $. To lowest order in

!, the bare vertex #ðaÞ ¼ %1, this term is absorbed in a
renormalization of the band dispersion to $"k in Eq. (14)
[10], and the remaining term denoted by $"ðkÞ. To this
order UðaÞ ¼ 0. Proceeding to the next non trivial order
in !, by taking the functional derivative of Eq. (10) and
(12) we find after a brief calculation:
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(18)

From Eq. (14) we note that these expressions Eq. (18) lead
to a calculation of g%1 and $ correct up to Oð!2Þ.
Frequency dependent corrections arise only to second or-
der in !, which is analogous to the structure of the canoni-
cal many body theory within the skeleton graph expansion.
We may now set ! ¼ 1 and study the resulting theory as
the first step in exploring this formalism.
Denote fðxÞ ¼ 1

ðexp&xÞþ1 as the Fermi distribution func-

tions and $fðxÞ ¼ 1% fðxÞ, and denote the usual Fermi
factors from second order theory

W ¼ ffðuÞfðwÞ $fðvÞþfðvÞ $fðuÞ $fðwÞg%ðuþw%v%xÞ;

a function of the frequencies u, v, w, x, and

Y ¼
Z
u;v;w

W"gð ~q; wÞ"gð ~p; uÞ"gð ~qþ ~p% ~k; vÞ; (19)

a function of ~k, ~p, ~q, and x. We may then write the spectral
functions corresponding to Eq. (18)
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Eð ~k; ~pÞY: (20)

The functions appearing in Eq. (20) are familiar from
Fermi liquids [4,5], and encode the usual phase space
constraints of that theory. This leads to the low tempera-
tures behavior &maxfx2; ð#kBTÞ2g, for both objects
Im!ðk; x; TÞ and Im $"ðk; x; TÞ. The real parts of these
objects are smooth through the Fermi surface, as one
expects from the real part of the self energy in a FL, and
hence motivates the second level sum rule Eq. (16).
From Eq. (14) we write the exact expression for the

physical spectral function "G:

"Gð ~k; xÞ ¼ "gð ~k; xÞ
!#
1% n

2

$
þ 'k % x

%ð ~k; xÞ
þ (ð ~k; xÞ

"
; (21)

where 'k ¼ "̂k %!, and the important energy scale

%ð ~k; xÞ and the term ( is defined as

%ð ~k; xÞ ¼ %" $"ð ~k; xÞ
"!ð ~k; xÞ

; (22)

(ð ~k; xÞ ¼ Re!ð ~k; xþÞ þ 1

%ð ~k; xÞ
Re"ð ~k; xþÞ: (23)

The sign of the energy scale % in Eq. (22) is expected to be
positive from Eq. (20). The dimensionless term ( aug-
ments the spectral weight at the Fermi level. The equations
necessary to solve the theory to Oð!2Þmay be summarized
as Eq. (14), (16), and (18) and Ref. [10] giving rise to the
spectral function Eq. (21). These require further numerical
work that is underway, it leads to spectral functions in 2
and 3 dimensions that will be published separately.
However it also provides a very interesting insight about
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AsECFL(ω) =
1
π

Γ(ω)
Γ2(ω) + (ω − k̂vF − h(ω))2

× (1− ω

∆
+ ck̂vF )

Φ(ω) =
�

dx
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iω − x

Γ(ω) =
ω2 + π2T 2

ω0
e−(π2T 2+ω2)/Ω2

0 h(ω) = P
�

Γ(ω�)
(ω − ω�)

dω� = error function

AFL(ω) =
Γ(ω)

Γ2(ω) + (ω − k̂vF − h(ω))2

Fermi liquid spectral functions
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Lorentzian, sharp, dispersive, T dependent
with width  as T2

Phenomenological spectral function  s-ECFL
(Shastry PRL 2011, Gweon et al PRL 2011)

Ψ(ω) ∼ − 1
∆

Φ(ω)
Dimensional/engineering approximation
of O(λ2) equations.

Remarkably light description
 with only three parameters: (c is fixed, Δ computed).
1) η (Impurity scattering- extrinsic) so that Γ →Γ+η.
(needed for Laser vs synchrotron ARPES)
2) Ω0 (strength of FL)
3) ω0  (High frequncy cut off of FL)

∆ =
�

dωf(ω)�AFL(k,ω)(� − µ − ω)�k
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U = ∞ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation

below generalizes that to include a momentum dependence that is absent in high dimensions, and is

supplemented by a discussion of the behavior of the various coefficients as the density of electrons n

approaches unity, or equivalently the hole density δ → 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to

the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives

the limit of small hold density δ → 0. In reality at very small δ several other broken symmetry states

would compete and presumably win over the liquid state, so that this Fermi liquid state would be

metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing iω → ω + i0
+
and write

g(−1)
0

(�k, iω) = ω + µ −
�
1 − n

2

�
εk. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (�k − �kF ).�kF/|�kF |, and the

frequently occurring Fermi liquid function

R = π{ω2 + (πkBT )2}. (23)

We carry out a low frequency expansion as follows:

1 − n

2
+ Ψ (�k, ω) = α0 + cΨ (ω + νΨ k̂ vf ) + iR/γΨ + O(ω3), (24)

where α0 = 1− n

2
+Ψ0 is the constant term at the Fermi surface, and a similar expansion for Φ(�k, ω)

so that

ω + µ −
�
1 − n

2

�
εk − Φ(k, ω) = (1 + cΦ)

�
ω − νΦ k̂ vf + iR/ΩΦ + O(ω3)

�
, (25)

where vf = (∂kεk)kF is the bare Fermi velocity. The expansion coefficients above are in principle

functions of the location of �kF on the Fermi surface, and have suitable dimensions to ensure that Ψ is

dimensionless and Φ is an energy. The dimensionless velocity renormalization constants νΦ and νΨ

capture the momentum dependence normal to the Fermi surface, arising from the two respective self

energies. The Greens function near the Fermi surface can now be written as

G(�k, ω) ∼ z0

α0

�
α0 + cΨ (ω + νΨ k̂ vf ) + iR/γΨ

ω − νΦ k̂ vf + iR/ΩΦ

�

(26)

where z0 = α0/(1 + cΦ) is the net quasiparticle renormalization constant. The spectral function can

be computed from A(�k, ω) = − 1

π
�m G(�k, ω + i0

+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k, ω) as follows:

A(�k, ω) = z0

π

Γ0

(ω − νΦ k̂ vf )2 + Γ 2

0

× µ(k, ω), (27)

where the (Fermi liquid) width function

Γ0(k̂, ω) = η + π(ω2 + (πkBT )2)

ΩΦ

, (28)

with an extra phenomenological parameter η required to describe elastic scattering [14] in impure

systems. The caparison function is

µ(k̂, ω) = 1 − ω

∆0

+ ν0 k̂ vf

∆0

, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

∆0 = α0

γΨ

ΩΦ − cΨ γΨ

(30)
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Non Lorentzian Spectral function with 5 parameters

Expand both the self energies at small (k, ω) assuming a 
Fermi liquid structure. 
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Long wavelength expansion

{∆0, z0,ΩΦ, ν0, νΦ} vF → bare Fermi velocity

Wednesday, April 9, 2014



Comments:

Notable feature of all the ECFL spectral functions is the non Lorentzian nature- due to the multiplying factor (caparison 

factor) that depends on  k and ω.

 As a result  different “spectra”- locating the maxima of A(k,ω)-are  definable: 

at fixed k  scan various ω (EDC’s)

at fixed ω scan versus k (MDC’s)

  The MDC spectrum and EDC spectrum differ  at very low energies  in  the  spectral function AECFL(k,ω)- the caparison 

factor makes the difference.  

The story has a parallel in neutron scattering,   See- the notorious case of spin waves in Iron above Tc, (1978-81).

 Here locating spin waves  from constant k scans is right,  often constant ω scans were  used to make dramatic, but ultimately 

incorrect claims.  

 

ANATOMY OF THE SELF-ENERGY PHYSICAL REVIEW B 84, 165112 (2011)

FIG. 3. (Color online) The ECFL (top left) and the auxiliary FL spectral functions (bottom left) at density n = 0.85, T = 180 K, !0 =
0.12 eV, η = 0.12 eV, and the other parameters are from Set II in Eq. (54). Here, ξ and x are in units of eV. In the ECFL curve on left, it is seen
that the excitations near the Fermi energy become broad and dissolve into the continuum at an energy ∼−0.2 eV, and reappear as sharp modes
at a deeper binding energy. In the auxiliary FL, the excitations near the Fermi energy remain sharp and extend to lower energies than in the
ECFL curves. The contour plots of the same functions in the right panel (top ECFL and bottom auxiliary FL) give a complementary perspective
of the spectrum. The two superimposed solid lines at top right are from curves I and II of Fig. 5 and at bottom right curves III and IV of Fig. 5.

parameters;

Set I: C$ = 1 eV−1, ωc = 0.25 eV or

ω0 = 0.5 eV, &0 = 0.318 eV

Set II: C$ = 2.274 eV−1, ωc = 0.568 eV or

ω0 = 0.5 eV, &0 = 0.14 eV. (54)

Set I was used in Ref. 1 for schematic plots employing a simple
band density of states gB (ε) = 1

2W
((W 2 − ε2). Set II was used

in Ref. 3 employing a more elaborate dispersion described
therein to successfully fit data on various high-temperature
superconductors at optimal doping. The value of η is displayed
in different plots. In Eq. (39), the spectral function ρg of
the aux-FL is defined. The chemical potential is fixed by the
number sum rule with ξ = ε − µ

n

2
=

∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − µ,x), (55)

where f (x) = (1 + eβx)−1 is the Fermi function. We now write
the contributions from extreme correlations that are described

in Ref. 1. The inelastic energy scale !0 is found from the sum
rule:

!0 =
∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − µ,x) (ε − µ − x).

(56)

Thus at a given density and temperature n,T , the model has
only two parameters ωc and C$ so that !0 is fixed from
Eq. (56). We study the details of the spectra next.

V. THE SPECTRAL CHARACTERISTICS OF THE
HIGH-DIMENSIONAL ECFL MODEL (37)

A. Global view of the spectral function

We display in Fig. 3 the spectral function for the ECFL
model Eq. (37) in three-dimensional (3D) plots and contour
plots. Two distinct perspectives of the spectrum are found in
the figure from the 3D and the contour plots. In both of these
plots, we see that the excitations are sharply defined only for
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FIG. 4. (Color online) The contour plots of the aux-FL (left) and the ECFL model from Fig. 3 (right) with the same parameters as in
Fig. 3 but over a smaller energy window. We superimpose the constant-wave-vector dispersion and MDC dispersion, with a value of η = 0.12
common to the contour plots. The energy scale of the feature near the chemical potential is considerably reduced in the ECFL, and the “jump”
in the EDC dispersion occurs at roughly half the corresponding energy in the aux-FL.

a certain range near the Fermi energy, and then merge into
the continuum. At higher binding energies, the spectrum again
looks quite sharp. For comparison, in Fig. 3, we also display
the aux-FL spectral function. We note that the aux-FL spectra
also become sharp at higher binding energies. This sharpening
is modeled by the Gaussian in Eq. (39), its basic origin is
the decrease in the weight of physical processes capable of
quasiparticle damping as we move toward the band bottom.
In order to look more closely at the low-energy part of the
spectrum of the aux-FL and the ECFL, we show in Fig. 4 the
contour plots of both over a smaller energy range.

We see that viewed in this rather broad sense, dispersions
of the aux-FL and the model ECFL spectra share many char-
acteristics, with somewhat different energy scales. However,
there are crucial differences that emerge when we look at the
distribution of spectral weight that arises in the ECFL, where
the caparison factor in Eq. (37) pushes weight to higher binding
energies. This is reflected most significantly in the line shapes
that we study below. Since we use the momentum-independent
self-energy for the aux-FL in this model calculation, we
obtain very detailed EDC and MDC plots below. However,
it must be borne in mind that refined calculations within the
ECFL framework must necessarily introduce some momentum
dependence, and hence several details are likely to change, in
particular the structure far from the chemical potential would
change somewhat more. Our view is that, this caveat apart, it
is very useful to take the Eq. (37) seriously since it gives a
simple framework to correlate different data.

B. Dispersion relations in EDC and MDC

In Fig. 5, the EDC dispersion relation (i.e., locus of
peaks of the spectral function at fixed ξ , found by numerical
maximization), is plotted versus ξ along with the MDC
spectrum Eq. (51). We recall that the latter expression is exact
at all ξ and x, whereas Eq. (48) is not quite exact for the EDC
dispersion. For comparison, we also show the corresponding
figures for the aux-FL spectral function in Eq. (39), with the

same parameters. The dispersion relations Eq. (48) is displayed
in the inset of Fig. 5, where it is compared with the result of
numerically maximizing the spectral function at a fixed ξ . We
see that Eq. (48) is only good for a range of energies near the
Fermi energy.

We see that both sets of spectra for the aux-FL as well as the
ECFL model exhibit similar global features, but with different
scales of energy. In both cases, the constant energy scans show
a jump discontinuity, whereas the MDC spectra show an “S”
type or re-entrant type behavior. The origin of the latter is easy
to see in the aux-FL, here a peak in −"e#(x) occurs at an
energy approximately 2ω0, so that as x decreases from zero,
ξ ∗

aux−FL = x − "e#(x) goes back up for a certain range. In
the case of the ECFL, Eq. (51) shows that the energy scale
ε0 enters the expression when &(x) becomes comparable to
ε0 − "e#(x), and the net result is that the re-entrant behavior
is pushed to lower binding energies.
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FIG. 5. (Color online) Energy dispersion curves in the ECFL and
the aux-FL models. Here, the parameters are from set II in Eq. (54),
with n = 0.85 and T = 180 K. With η = 0.12, curves I and II have
the peaks in constant-wave-vector and constant-energy scans of the
spectral function (37), and curves III and IV are corresponding figures
for the aux-FL in Eq. (39). The inset compares Eq. (48) (the truncated
curve) with the exact locus found by numerical maximization.
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than in the minimal case, and correlates well with experimental
observations in Ref. 31.

We note in Fig. 4 (right) that the case t ′/t = −0.4 has
no measurable waterfall near the ! point. The background
at negative frequency is essentially featureless, and the QP
peaks maintain their spectral weight. However, at positive
frequencies, an inverted waterfall-like feature develops near
k = (π,π ). This particular parametrization is often invoked
to rectify the electronlike curvature of the minimal model
(t ′ = 0), but ends up giving a very flat band bottom at !. This
is unlike the more sophisticated band parameters in Ref. 28,
where the curvature is also holelike, and now the band regains
significant curvature at its bottom, resulting in the observed
kink.

E. Detailed spectral line shapes (EDCs)

In this section, we present detailed line shapes for the
spectral function. In an earlier work,3 we have compared the
results of the simplified ECFL formalism. These included
some phenomenological inputs, with the experimental data
at somewhat higher particle densities n ∼ 0.85, and found
remarkably good agreement with the line shapes. We are
content in this work to present the results at lower particle
densities, but from a microscopic calculation of ECFL. This
is made possible by solving the O(λ2) equations in Eq. (6)
numerically. The line shapes obtained here have a similar
general nature as the ones in Ref. 3, giving support to that work.
However, as one expects from a lower-density situation, we
find somewhat less dynamical asymmetry about zero energy.
More detailed comparison with data near optimal doping with
the microscopic ECFL theory must await the solution of the
third- or higher-order equations, where the criterion for validity
discussed above [see paragraph following Eq. (8)] is satisfied
more closely than here.

Let us first examine the local density of states (LDOS)
at n = 0.75 for both cases at low T in Fig. 5. A prominent
feature is that the main peak is much narrower than in the bare
LDOS. Furthermore, there is a long tail extending to (negative)
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FIG. 5. (Color online) n = 0.75. The LDOS of the physical G
(auxiliary g) is in black (dotted blue), and the bare DOS is the dashed
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at ω < 0. The LDOS develops a second spectral peak for ω > 0 from
a strongly k-dependent feature in the self-energy.
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ρG [= A(k,ω)] at several k points along the 〈11〉 direction and T . We
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reveal the heights. The linewidth near kF is seen to be strongly effected
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tails exhibit a secondary broad peak near ω = −0.4 eV, giving rise
to the high-energy kink (waterfall).

frequencies, much greater than those seen in the bare LDOS.
Finally, we note that the LDOS acquires a second peak at
positive frequency. This peak arises due to some k-dependent
features in the self-energy (discussed below), resulting in
sharper QP at positive frequency.

We next discuss Fig. 6, displaying the nodal spectral
function at three different temperatures. The lines are quite
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FIG. 3. (Color online) L = 60, (n,T ) = (0.75,300) K. Density
plot of A(k,ω) of the minimal model (top) and the refined model
Ref. 28 (bottom). (Here and below, red denotes high intensity and
blue denotes low intensity). Ek , E∗

k , and EMDC(k) spectra are white,
green, and black, respectively. Near kF we see that the three spectra
coincide. In the region near k = (0,0), EMDC(k) is at a significantly
higher energy scale than Ek or E∗

k , signifying the high-energy kink
(waterfall) effect. Also, the EDC peak loses weight in this regime. A
new feature arises at near k = (π,π ) resembling an inverted waterfall.

spread out to high negative frequencies. In this region EMDC

differs considerably from E∗
k and recovers the scale of the

bare dispersion εk . The right panel of Fig. 3 shows the spectral
function as calculated using the tight binding parameters of
BISSCO given in Ref. 28. These parameters result in a
holelike FS around the $ point, unlike the minimal model
with an electronlike FS. However, we observe in Fig. 3 that
the high-energy kink occurs for both sets of parameters.

The occurrence of the high-energy kink is understandable as
a straightforward consequence of additional broad peaks in the

FIG. 4. (Color online) L = 60, (n,T ) = (0.75,300) K. (Top)
t ′/t = 0.4 is used to model electron-doped high-Tc superconductors.
The kink feature is prominent here. (Bottom) Uses t ′/t = −0.4 to
crudely model a holelike FS. In this case the kink near (0,0) is lost,
unlike in Fig. 3, correlating with a flat (bare) band dispersion.

spectral function, separated from the quasiparticle-type peaks.
In an energy range where they exist, these are particularly
effective in dominating EMDC and less prominent in EEDC ,
therefore resulting in the separation between these dispersions.

While the qualitative picture of the kinks is reasonably
clear, it is not immediately clear what accounts for the slightly
different magnitude of the scale of the high-energy kink
in Fig. 3. In Fig. 4 we show density plots of the spectral
function with t ′/t = ±0.4. The case t ′ = 0.4 × t on the left has
greater curvature at the band bottom and is identified with the
phenomenology of the electron-doped cuprates (Refs. 22,30).
The QP peaks lose most of their weight, unlike in the minimal
case. The resulting scale of the drop in the waterfall is bigger
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Extremely correlated Fermi liquids: Self-consistent solution of the second-order theory
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We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied
to the t-J model in two dimensions, developed recently by Shastry [Phys. Rev. Lett. 107, 056403 (2011); Phys.
Rev. B 87, 125124 (2013)]. The second-order theory in the parameter λ, related to the density, is argued to
be quantitatively valid in the overdoped regime for 0 ! n " 0.75, with n denoting the particle density. The
calculation involves the self-consistent solution of equations for an auxiliary Fermi liquid Green’s function and
an adaptive spectral weight. We present numerical results at low as well as high T , at various low to intermediate
densities in the normal phase, using a minimal set of band parameters relevant to the cuprate superconductors.
We display the momentum space occupation function mk , energy dispersion curves locating the peaks of spectral
functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions on
an absolute scale. The line shapes have an asymmetric shape and a broad background that is also seen in
experiments, and our calculations validate approximate recent versions of the theory. The results also display the
experimentally noted high-energy kink and provide an in-depth understanding of its origin and dependence on
band parameters.

DOI: 10.1103/PhysRevB.87.245101 PACS number(s): 71.10.−w, 71.10.Fd

I. INTRODUCTION

The t-J model describes the physics of very strongly inter-
acting electrons, made especially difficult by the requirement
of (at most) single occupancy of the lattice sites. It is the
subject of many recent works in the context of the cuprate
superconductors, and also other correlated systems such as
sodium cobaltates. This problem is very hard since it precludes
the application of standard perturbative methods. This conun-
drum has motivated a new strong-coupling approach, resulting
in the theory of extremely correlated Fermi liquids (ECFLs).1,2

Previous applications of the methodology of Ref. 1 to the
cuprates has given encouraging results. These include spectral
functions that compare very well with the experimental
angle-resolved photoemission spectroscopy (ARPES) data,3–6

providing natural explanations of the “high-energy kink,” and
also the more subtle “low-energy kink” seen in experiments.
The theory also has led to interesting predictions for the
asymmetry of line shapes.6

The formalism initiated in Ref. 1 charted out an approach
to the problem of the t-J model using basic insights from
Schwinger’s powerful approach to field theory, using source
fields to write down exact functional differential equations for
the propagator. In the next crucial step, it was recognized
that complexity arising from the noncanonical nature of
the (projected) electrons can be circumvented by a product
ansatz. This involves decomposing the propagator as the
space time convolution of a canonical electron propagator,
and an adaptive spectral weight factor termed the caparison
factor satisfying coupled equations of motion. A recent work2

develops this idea in a systematic fashion, emphasizing the
role of expanding in a parameter λ (0 ! λ ! 1), related to
the particle density, or more closely to λ ∼ (1 − 4

n2 d), where
d is the double occupancy (0 ! d ! n2

4 ). It further explores
the implications of a novel set of identities for the t-J model,
termed the shift identities. These simple but crucial identities
provide an important constraint on the λ expansion. A method
for generating a systematic set of equations for the propagator

to any orders in λ is given, along with explicit equations
to second order in λ that manifestly obey the shift identity
constraints. We will refer to this theory as (I) here and prefix
equations of that paper with (I). A detailed numerical solution
of this O(λ2) ECFL propagator is the main focus of this work.
We obtained and benchmark the results of these equations
against known results, and thereby provide a solid platform for
further developments of the method, as well as a validation of
the phenomenological versions of ECFL. With the confidence
gained by the benchmarking, we further study and report the
hopping parameter sensitivity of the kink effect.

Broadly speaking, the O(λm) equations resemble the
fully self-consistent mth-order skeleton diagram expansion
of the standard Feynman-diagram-based theory, as described
in standard texts,7–9 but generalize to the case of extreme
correlations. Summarizing the arguments in Refs. 1 and 2,
a low-order theory in λ is already expected to capture features
of extreme correlations. This perhaps initially surprising
expectation arises in view of the non-Dysonian representation
of the Green’s function in terms of two self-energies " and #,
within the ECFL formalism. The self-energy # resides in the
numerator of the Green’s function, as in Eqs. (1) and (2) . It
plays the role of an adaptive spectral weight that balances
the somewhat opposing requirements of the “high-energy”
weight 1 − n

2 and the low-energy Luttinger theorem. The latter
requires a greater magnitude of the numerator than 1 − n

2 to
accommodate the particles into a Fermi surface (FS) with the
same volume as in the Fermi gas. A further tactical advantage
of this method is due to the finite range of variation of λ,
namely, 0 ! λ ! 1, that suffices to interpolate between the
Fermi gas and the extreme correlation limit. This is in contrast
to controlling the double occupancy d using a repulsive energy
U , with its range of values 0 ! U ! ∞. Experience shows
that U must be tuned to a very large value U $ |t | in
order to achieve the same end, thereby invalidating low-order
expansions in U . In summary, within the present formalism, a
low-order theory in λ seems well worth examining in detail;
this is our task here.
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A strong-coupling series expansion for the Green’s function and the extremely correlated Fermi liquid (ECFL)
theory are used to calculate the moments of the electronic spectral functions of the infinite-U Hubbard model.
Results from these two complementary methods agree very well at both low densities, where the ECFL solution
is the most accurate, and at high to intermediate temperatures, where the series converge. We find that a modified
first moment, which underestimates the contributions from the occupied states and is accessible in the series
through the time-dependent Green’s function, best describes the peak location of the spectral function in the
strongly correlated regime. This is examined by the ECFL results at low temperatures, where it is shown that the
spectral function is largely skewed towards the occupied states.

DOI: 10.1103/PhysRevB.87.161120 PACS number(s): 71.10.Fd

I. INTRODUCTION

A long-standing theme in the dynamics of strongly interact-
ing systems is the reconstruction of dynamics from the knowl-
edge of the first few moments.1 Its appeal lies in the relative
ease with which these moments can be computed, in contrast to
computing the complete dynamical correlation functions. The
method of moments works well in cases where the qualitative
features of the correlation functions are somewhat understood
by other arguments, including conservation laws in the case
of spin dynamics. In the important problem of the strong-
coupling Hubbard model, the moments are dominated by the
energy scale U ,2 the on-site repulsive Coulomb interaction,
and hence rendered useless. In contrast, for the t-J model
embodying extreme correlations, i.e., U → ∞ at the very
outset, a better prospect exists. The moments are blind to the
scale of U , since it does not occur in the Hamiltonian, and
therefore one expects them to be meaningful in determining
the broad features of the dynamics. With this in mind, we
study a simple version of the t-J model by focusing on
J = 0, which is identical to the U = ∞ Hubbard model,
thereby making more tools available for the analysis. As
we show in what follows, we have developed the capability
to compute the moments of the electron spectral function
of this model by utilizing series expansions.3,4 Experiments
using angle-resolved photoemission spectroscopy (ARPES)5–8

directly measure this spectral function, providing an added
impetus.

An independent source of information about the electronic
spectral function is the recent analytical theory of extremely
correlated Fermi liquids (ECFL). This theory has been devel-
oped in recent publications,9,10 and several results of the model
pertaining to the detailed line shapes find close agreement with
experiment.5 On the calculational front, the theory provides a
systematic methodology for computation, and the initial low
order implementation yields the single-electron spectral func-
tion for particle densities in the range 0 ! n " 0.7. The line
shapes of this calculation for n # 0.5 display a characteristic
skewed shape found in the experimental curves in ARPES, as
detailed in Ref. 10. The computed spectra are available at any
temperature (high or low), and the only limitation at present

is the inability to access the regime close to half filling with
density greater than n ∼ 0.75. Given the inherent complexity
of the newly developed ECFL formalism, the possibility of
an objective cross-check using series expansions is a very
attractive one, and here we provide a comparison.

We compute and compare the moments of the t-J model
with J = 0 in two dimensions by utilizing a series expansion11

and the ECFL theory. The two techniques are largely com-
plementary. While they individually run into difficulties in
different regimes, namely, at low temperatures for the series
expansion and high densities for the ECFL, there is sufficient
overlap in densities and temperatures where both methods give
reliable results. This provides us with a unique opportunity to
test the validity of the answers. For ECFL, this provides a
stringent test of the resulting moments by comparing with the
series expansion. For the series expansion, the availability of
an analytical theory and hence, of the entire spectrum, is of
great advantage in interpreting the distinctions between three
types of moments that can be computed [see Eq. (7) below].
We find that especially at high densities, the line shape of
the spectral function is skewed towards occupied energies,
ω ! 0, therefore the spectral peak (SP) location (the maximum
location in the energy distributed curves) is best estimated
by the first moment of a modified function with dominant
contribution from unoccupied states.

In the rest of this Rapid Communication, we first explain
how the series expansion and ECFL results are obtained
(Sec. II). In Sec. III, we compare the results from the two meth-
ods, and discuss our findings. A summary follows in Sec. IV.

II. PRELIMINARIES

A. Definitions of computed coefficients

We denote the imaginary-time Green’s function for the U =
∞ Hubbard model, or equivalently, the t-J model with J =
0, as G(i,τi ; j,τj ) = − 〈Tτ Ĉiσ (τi)Ĉ

†
jσ (τj )〉, where Tτ is the

time-ordering operator and 〈.〉 denotes the thermal expectation
value. We thus study the limit of extreme correlations. The
operators are Gutzwiller-projected Fermi objects and related
to the Hubbard X operators as Ĉiσ ≡ X0σ

i , etc. As usual,12
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FIG. 1. (Color online) The first symmetric moment ε0
1(k) at T =

0.77 vs momentum around the irreducible wedge of the Brillouin zone
(the path is shown in the right inset). Lines are results from the series
and symbols for n ! 0.7 are from ECFL calculations. Left inset:
ε0

1(k) for n = 0.2 at k = (π/2,π/2) from the ECFL (diamonds), up
to orders seven and eight of the series (labeled Series7 and Series8),
and up to the eighth order after various Padé approximations, vs
temperature on a logarithmic scale. The numbers in the subscripts of
“Padé” labels represent the order of the polynomial in the numerator
and in the denominator of the Padé ratio, respectively. “Avg.” denotes
the average between Padé{4,5} and Padé{5,4}. In the main panel, the
results for the series are either the average between Padé{4,5} and
Padé{5,4} or Padé{5,5} and Padé{5,4},16 with the “error bars” defined as
the differences between the two.17

in the series is large enough to justify the utilization of Padé
approximations in order to extend the convergence to lower
temperatures. A comparison of several of these approximations
with the ECFL results for a (low) density of n = 0.2 is shown
in the inset of Fig. 1. In that case, we see that the agreement
between the two methods extends to temperatures as low as
T = 0.3 using Padé approximations.

The greater moment ε>
1 (k) is plotted in Fig. 2(a) at the

same temperature and densities as in Fig. 1. For ε>
1 (k), the

overall agreement between the series expansions and the ECFL
results for all n ! 0.7 is better than for ε0

1(k), especially
around the X point. We also note that ε>

1 (k) exhibits a more
intriguing behavior than ε0

1(k). One of the prominent features
of the former, seen in Fig. 2(a), is the significant narrowing
of the band by increasing the density. In Fig. 2(b), we plot
the bandwidth [i.e., max(ε>

1 ) − min(ε>
1 )] from the series as

a function of density at T = 1.52, 1.00, and 0.77. It appears
that the bandwidth deviates from a linear dependence on n
by decreasing the temperature, and saturates for n → 1 at a
nonzero value that decreases towards zero with decreasing
T . Close to n = 1 at T = 0.77, we find a weaker agreement
between different Padé approximations, leading to larger error
bars. The version of ECFL in Ref. 10 cannot be used to study
this effect as the high-density region n ∼ 1 is beyond its regime
of validity.

Another interesting feature of ε>
1 (k) [Fig. 2(a)] is the change

in sign of its slope near the # point as the density increases
towards unity. To better study this feature, in Fig. 2(c), we
report only the results along the nodal direction. We find
that for n " 0.7, the greater moment initially decreases as
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FIG. 2. (Color online) (a) The first greater moment ε>
1 (k) at T =

0.77 vs momentum for the same path around the irreducible wedge of
the Brillouin zone as in Fig. 1. Lines and symbols are also the same
as in Fig. 1. (b) The bandwidth of ε>

1 (k), defined as the difference
between its maximum and minimum values at momenta shown in
panel (a), vs density for T = 1.52,1.00, and 0.77. Panel (c) zooms
in the results in panel (a) for k along the nodal direction. The two
methods more or less agree with each other, within the error bars,
in this window for n ! 0.7, and therefore, we show only the ECFL
results for the latter cases.

the momentum increases from zero, leading to a negative
curvature, or effective mass, at the # point. This feature
becomes more pronounced as we increase the density, or
decrease the temperature (see Fig. 3). These results hint at a
possible reconstruction of the Fermi surface, i.e., the negative
mass persisting and extending in k space so as to reach the
Fermi momentum. The appearance of such a hole pocket in
the (hole) underdoped regime, could be of interest in ARPES
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FIG. 3. (Color online) Comparison of the SP location εSP(k)
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(a) n = 0.2, (b) n = 0.5, and (c) n = 0.7. Right panels show the
corresponding spectral functions and their products to f̄ (ω) and f (ω)
at # for the same densities shown in the left panels. Dark (light)
arrows show the values of ε0

1 (ε>
1 ). At low densities, the SP location

is estimated well by the first symmetric moment. At higher density,
the spectral function is skewed and the greater moment, which is
calculated for the spectral function after most of its weight in the
negative frequency region is cut off, provides a better estimate.
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in the series is large enough to justify the utilization of Padé
approximations in order to extend the convergence to lower
temperatures. A comparison of several of these approximations
with the ECFL results for a (low) density of n = 0.2 is shown
in the inset of Fig. 1. In that case, we see that the agreement
between the two methods extends to temperatures as low as
T = 0.3 using Padé approximations.

The greater moment ε>
1 (k) is plotted in Fig. 2(a) at the

same temperature and densities as in Fig. 1. For ε>
1 (k), the

overall agreement between the series expansions and the ECFL
results for all n ! 0.7 is better than for ε0

1(k), especially
around the X point. We also note that ε>

1 (k) exhibits a more
intriguing behavior than ε0

1(k). One of the prominent features
of the former, seen in Fig. 2(a), is the significant narrowing
of the band by increasing the density. In Fig. 2(b), we plot
the bandwidth [i.e., max(ε>

1 ) − min(ε>
1 )] from the series as

a function of density at T = 1.52, 1.00, and 0.77. It appears
that the bandwidth deviates from a linear dependence on n
by decreasing the temperature, and saturates for n → 1 at a
nonzero value that decreases towards zero with decreasing
T . Close to n = 1 at T = 0.77, we find a weaker agreement
between different Padé approximations, leading to larger error
bars. The version of ECFL in Ref. 10 cannot be used to study
this effect as the high-density region n ∼ 1 is beyond its regime
of validity.

Another interesting feature of ε>
1 (k) [Fig. 2(a)] is the change

in sign of its slope near the # point as the density increases
towards unity. To better study this feature, in Fig. 2(c), we
report only the results along the nodal direction. We find
that for n " 0.7, the greater moment initially decreases as
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in the results in panel (a) for k along the nodal direction. The two
methods more or less agree with each other, within the error bars,
in this window for n ! 0.7, and therefore, we show only the ECFL
results for the latter cases.

the momentum increases from zero, leading to a negative
curvature, or effective mass, at the # point. This feature
becomes more pronounced as we increase the density, or
decrease the temperature (see Fig. 3). These results hint at a
possible reconstruction of the Fermi surface, i.e., the negative
mass persisting and extending in k space so as to reach the
Fermi momentum. The appearance of such a hole pocket in
the (hole) underdoped regime, could be of interest in ARPES
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is estimated well by the first symmetric moment. At higher density,
the spectral function is skewed and the greater moment, which is
calculated for the spectral function after most of its weight in the
negative frequency region is cut off, provides a better estimate.
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In high dimensions we can show that these are further related through
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1.2. Results in the limit of infinite dimensions

We show that in the large d limit, the two self energies Φ(k) and Ψ (k) simplify in the following

way.

Ψ (k) = Ψ (iωk), (9)

Φ(k) = χ(iωk) + �kΨ (iωk). (10)

These in turn show that the Dyson–Mori self energy behaves as

ΣDM(k) = ΣDM(iωk) = (iωk + µ)Ψ (iωk) +
�
1 − n

2

�
χ(iωk)

1 − n

2
+ Ψ (iωk)

, (11)

and is therefore local in the limit of infinite dimensions.We show that to each order in theλ expansion,

Ψ (iωk) andχ(iωk) are each a product of an arbitrary number of factors, each ofwhich take on the form�
�p g(�p, iωp)�

m

�p , with m equal to zero or one, and with arbitrarily complex frequency dependence of

the individual factors.

We show that just as in the finite U case [10,11], the optical conductivity is given by the expression

σαβ(ω) = 2

iω

�

�p,iωp

G(�p, iωp)v
α
�p v

β
�p [G(�p, ω + iη + iωp) − G(�p, iη + iωp)], (12)

where vα
�p is the component of the velocity in the α direction (Eq. (39)). We show that this formula can

be applied at each order of the λ expansion.

We show that there is a self consistent mapping between the ECFL theory of the infinite-

dimensional t–J model and the ECFL theory of the infinite-U Anderson impurity model (AIM) [22].

This mapping is similar in spirit to themapping first discussed by Georges and Kotliar for the Hubbard

model [8], but is made directly in the infinite U limit here. In this mapping, gi,i[τi, τf ] and µi,i[τi, τf ]
of the t–J model are mapped to the objects g[τi, τf ] and µ[τi, τf ] of the Anderson model, written with

the same symbols, but without the spatial or momentum labels. This mapping is valid under the self-

consistency condition

�

�k
��kg(k) =

�

�k

|V�k|2
iωn − ���k

g(iωk), (13)

where ��k is the dispersion of the lattice in the t–J model, and V�k and ���k are the hybridization and

dispersion of the bath respectively in the Anderson impurity model. This self-consistency condition

is shown to be equivalent to the standard self-consistency condition from DMFT [8,9]. We also show

that the mapping holds to each order in λ under the same self-consistency condition. We note that

this implies that ECFL computations for the infinite-dimensional t–J model can be done with a DMFT-

like self-consistency loop involving ECFL computations for the AIM. However, since the λ expansion

provides integral equations which are relatively straightforward to solve numerically, this is not

necessary as the t–J model equations can be solved directly.

1.3. Outline of the paper

The paper is structured as follows. In Section 2, some basic facts about lattice sums in the limit

of large dimensions and the ECFL equations of motion as well as the λ expansion are reviewed.

Additionally, the spatial dependence of various standard and ECFL specific objects in the limit of large

dimensions is stated. Finally, we introduce a class of local functions denoted as class-L functions; these

turn out to play a central role in the ECFL in the limit of large dimensions. In Sections 3.1 and 3.2,

Eqs. (9) and (10) are proven in general and to each order in λ, and the locality of the Dyson–Mori self

energy is shown as a consequence. In Section 3.3, Eq. (12) is shown to hold in general and to each

order in λ. In Section 3.4, the ECFL self-consistent integral equations are derived to O(λ2) in the large-

d limit. Finally, in Section 4, the ECFL of the infinite dimensional t–J model is mapped onto the ECFL of

the infinite-U AIM under the self-consistency condition (Eq. (13)). This is done in general and to each

order in λ.
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µ� = µ − u0

�
λ
n

2
− λ2

n
2

8

�
+ λ

�

p

εpg(p) − aG
u0

2
, (59)

Ψ (iωk) = −λu0I000(iωk) + 2λI010(iωk), (60)

χ(iωk) = −u0

2
Ψ (iωk) − u0λI001(iωk) + 2λI011(iωk). (61)

Before solving the equations, one must set λ = 1. The two Lagrange multipliers µ and u0 are

determined by the two sum rules:

�

k

g(k) = n

2
;

�

k

G(k) = n

2
. (62)

The objects gloc,m(iωk) are given by an appropriate integral over the non-interacting density of states of

a function composed of the two self energiesχ(iωk) andΨ (iωk) and the energy � (Eq. (57)). Therefore,

these constitute a self-consistent set of equations for the two self energies. These equations have been

solved numerically and compared to DMFT calculations in Ref. [23].

4. Anderson model

A word is needed at this point on the notation used, since similar looking symbols represent

quite different objects in the t–J model and the AIM. We use the functions G({τj}), g({τj}), µ({τj}) or
G({iωj}), g({iωj}), µ({iωj}) and the related vertex functions for the impurity site of theAIMaswell, but

distinguish them from the t–J model variables by dropping the spatial ormomentum labels. Therefore

in an equation such as Eq. (88), the object on the left (right) hand side corresponds to the t–J model

(AIM).

4.1. Equations of motion for the Anderson model

In DMFT [8,9], the local Green’s function of the infinite-dimensional finite-U Hubbard model is

mapped onto the impurity Green’s function of the finite-U AIM, with a self-consistently determined

set of parameters. Using the ECFL equations of motion for both models, we show that the same

mapping can be made between the infinite-dimensional t–J model and the infinite-U AIM. Further,

we show that this mapping also extends to the auxiliary Green’s function g, and the caparison factor

µ individually. In this section, we briefly review the ECFL theory of the AIM [22], and we establish the

mapping in the following section.

Consider the AIM in the limit U → ∞ which has the following Hamiltonian:

H =
�

σ

�dX
σσ +

�

kσ

��knkσ +
�

kσ

(Vk X
σ0

ckσ + V
∗
k
c
Ď
kσ X

0σ ), (63)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity Green’s

function is given by the following expression:

Gσiσf [τi, τf ] = −�� X0σi(τi) X
σf 0(τf )��. (64)

The ECFL solution of the Anderson model is presented in Ref. [22]. The impurity Green’s function is

factored into the auxiliary Green’s function and the caparison factor:

G[τi, τf ] = g[τi, τj] · µ[τj, τf ]. (65)

The equations of motion for g and µ can be written as

(∂τi + �d + V(τi))g[τi, τf ] = −δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τj] · g[τj, τf ]
− λ ξ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τy; τi] · g[τy, τf ], (66)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λ ξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi], (67)
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where the number m is arbitrary. In the base case of zeroth order, the objects Ψi, χi, and γ [i] are

Ψ
(0)
i

[τi, τm] = 0; γ (0)[i] = g(k)[i, i];

χ
(0)
i

[τi, τm] = −
�

ti,j − i

�

α

κα
j (τi)v

α
ij

�

ξ ∗ · gj,i[τi, τi]δ[τi, τm].
(52)

We note that
�

δ
δκα

i

wx,j(τn) gj,x[τn, τm]
�(l)

A→0
is given by Eq. (48) with the appropriate objects on the

RHS evaluated to the appropriate order in λ. An analogous formula holds for
�

δ
δκα

i

gx,x[τn, τm]
�(l)

A→0
.

Using these formulas with l = 0 shows that the hypothesis is satisfied for the base case.
We now prove the inductive step. Eq. (28) continues to hold with ti,j → wi,j(τn) (the time index is

again arbitrary). Therefore, using the notation�Ri = [Ri]ti,j→wi,j(τn), we may write

�
δ

δκα
i

Lx

�(n+1)

A→0
=

n+1�

r=0

λr

�
δ

δκα
i

(�Rx)
m

�(n+1−r)

A→0
. (53)

Substituting the formulas for
�

δ
δκα

i

wx,j(τn) gj,x[τn, τm]
�(l)

A→0
and

�
δ

δκα
i

gx,x[τn, τm]
�(l)

A→0
(Eq. (48)) for

l ≤ n + 1 into Eq. (53), and using the inductive hypothesis, shows that
�

δ
δκα

i

Ψx

�(n+1)

A→0
,
�

δ
δκα

i

χx

�(n+1)

A→0
,

and
�

δ
δκα

i

γ [x]
�(n+1)

A→0
all have the desired form (Eq. (51)). Thus, Eq. (51) holds to all orders in λ.

Substituting Eq. (47) into
�

i−f
Παβ [i, f ] (Eq. (44)), and using Eq. (51), the only non vanishing terms

are those which involve a derivative of the explicit factor (tx,y − i
�

α κα
y vα

x,y) from Eq. (47). The other
terms vanish due to the following reasoning. Upon substituting Eq. (51), in each of these terms there
are two paths from i to f , both of which pass through the point x as well as the points x1 . . . xm−1 in
Eq. (51). Hence, in the large d limit, all of these points must be chosen to be either i or f for these terms
to be non vanishing. Then, if we choose xm−1 = i, the term vanishes due to parity, while if we choose
xm−1 = f , the term vanishes due to parity combinedwith the sum

�
i−f

. Therefore, aftermaking these
simplifications, we find that Eq. (49) and consequently Eq. (50) hold to each order in λ.

3.4. O
�
λ2

�
theory in the limit of large dimensions

To obtain self-consistent integral equations to any order in λ for the objects g−1[i, f ] and µ[i, f ],
we expand Eqs. (22) through (25) iteratively in λ, and set the sources to zero. Once the sources are set
to zero, the system becomes translationally invariant in both space and time and we may express the
equations in momentum/frequency space. Using the definitions

gloc,m(iωk) ≡
�

�k
g(k)�m

�k , (54)

Im1m2m3(iωk) ≡ −
�

ωp,ωq

gloc,m1(iωq)gloc,m2(iωp)gloc,m3(iωq + iωp − iωk), (55)

the resulting equations to O
�
λ2

�
are

aG ≡ 1 − λ
n

2
+ λ2 n

2

4
, (56)

g−1(k) = iωk + µ� − aG

�
εk − u0

2

�
− λ

�
��k − u0

2

�
Ψ (iωk) − λχ(iωk), (57)

µ(iωk) = aG + λΨ (iωk), (58)
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µ� = µ − u0

�
λ
n

2
− λ2

n
2

8

�
+ λ

�

p

εpg(p) − aG
u0

2
, (59)

Ψ (iωk) = −λu0I000(iωk) + 2λI010(iωk), (60)

χ(iωk) = −u0

2
Ψ (iωk) − u0λI001(iωk) + 2λI011(iωk). (61)

Before solving the equations, one must set λ = 1. The two Lagrange multipliers µ and u0 are

determined by the two sum rules:

�

k

g(k) = n

2
;

�

k

G(k) = n

2
. (62)

The objects gloc,m(iωk) are given by an appropriate integral over the non-interacting density of states of

a function composed of the two self energiesχ(iωk) andΨ (iωk) and the energy � (Eq. (57)). Therefore,

these constitute a self-consistent set of equations for the two self energies. These equations have been

solved numerically and compared to DMFT calculations in Ref. [23].

4. Anderson model

A word is needed at this point on the notation used, since similar looking symbols represent

quite different objects in the t–J model and the AIM. We use the functions G({τj}), g({τj}), µ({τj}) or
G({iωj}), g({iωj}), µ({iωj}) and the related vertex functions for the impurity site of theAIMaswell, but

distinguish them from the t–J model variables by dropping the spatial ormomentum labels. Therefore

in an equation such as Eq. (88), the object on the left (right) hand side corresponds to the t–J model

(AIM).

4.1. Equations of motion for the Anderson model

In DMFT [8,9], the local Green’s function of the infinite-dimensional finite-U Hubbard model is

mapped onto the impurity Green’s function of the finite-U AIM, with a self-consistently determined

set of parameters. Using the ECFL equations of motion for both models, we show that the same

mapping can be made between the infinite-dimensional t–J model and the infinite-U AIM. Further,

we show that this mapping also extends to the auxiliary Green’s function g, and the caparison factor

µ individually. In this section, we briefly review the ECFL theory of the AIM [22], and we establish the

mapping in the following section.

Consider the AIM in the limit U → ∞ which has the following Hamiltonian:

H =
�

σ

�dX
σσ +

�

kσ

��knkσ +
�

kσ

(Vk X
σ0

ckσ + V
∗
k
c
Ď
kσ X

0σ ), (63)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity Green’s

function is given by the following expression:

Gσiσf [τi, τf ] = −�� X0σi(τi) X
σf 0(τf )��. (64)

The ECFL solution of the Anderson model is presented in Ref. [22]. The impurity Green’s function is

factored into the auxiliary Green’s function and the caparison factor:

G[τi, τf ] = g[τi, τj] · µ[τj, τf ]. (65)

The equations of motion for g and µ can be written as

(∂τi + �d + V(τi))g[τi, τf ] = −δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τj] · g[τj, τf ]
− λ ξ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τy; τi] · g[τy, τf ], (66)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λ ξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi], (67)
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We consider a doped Mott insulator in the large dimensionality limit within both the recently developed
extremely correlated Fermi liquid (ECFL) theory and the dynamical mean-field theory (DMFT). We show that
the general structure of the ECFL sheds light on the rich frequency dependence of the DMFT self-energy. Using
the leading Fermi liquid form of the two key auxiliary functions introduced in the ECFL theory, we obtain
an analytical ansatz, which provides a good quantitative description of the DMFT self-energy down to hole
doping level δ ! 0.2. In particular, the deviation from Fermi liquid behavior and the corresponding particle-hole
asymmetry developing at a low-energy scale are well reproduced by this ansatz. The DMFT being exact at
large dimensionality, our study also provides a benchmark of the ECFL in this limit. We find that the main
features of the self-energy and spectral line shape are well reproduced by the ECFL calculations in the O(λ2)
minimal scheme, for not too low doping level δ ! 0.3. The DMFT calculations reported here are performed
using a state-of-the-art numerical renormalization-group impurity solver, which yields accurate results down to
an unprecedentedly small doping level δ " 0.001.

DOI: 10.1103/PhysRevB.88.235132 PACS number(s): 71.10.Ay, 71.10.Fd, 71.30.+h

I. INTRODUCTION

Strong electronic correlations constitute one of the major
challenges in condensed-matter physics and continue to inspire
new theoretical approaches. In search for novel functionalities,
new materials are being synthesized on a regular basis,
giving the field a steady impetus. Significant progress in the
understanding of electronic correlations has been achieved
from the dynamical mean-field theory (DMFT), in which the
self-energy is assumed to be momentum independent (see
Ref. 1 for a review). This theory becomes exact in the limit of
infinite dimensionality.

The situation in low dimensions has further challenges
relating to the k dependence of the self-energy, and thus
new methods for strongly correlated electrons continue to be
developed. One promising approach is Shastry’s extremely
correlated Fermi liquid theory (ECFL), developed in a recent
series of papers.2–5 This theory starts from the infinite-U
limit and is based on the Schwinger equation of motion for
Gutzwiller projected electrons, these noncanonical objects
requiring special attention. The theory leads to a set of
analytical expressions that are in principle exact. So far,
solutions of the second-order expansion of these expressions
in a partial projection parameter λ are available. They can be
obtained for any lattice by an iterative process analogous to the
skeleton diagram method. The ECFL theory expressions have
been successfully applied to account for the angle resolved
photoemission spectroscopy (ARPES) line shapes of cuprate
superconductors6,7 in the normal state.

In this work, we perform a comparative study of these
two methods. We use as a test bed the single-band doped
Hubbard model at strong coupling U , in the limit of large

dimensionality. This limit leads to simplifications in the ECFL
theory, which we introduce here (the details of the formalism
are provided elsewhere8). The comparison focuses on the
frequency dependence of the self-energy and single-particle
spectral line shapes, and their evolution as the Mott insulator is
approached by reducing the doping level δ [defined in Eq. (5)].

The first outcome of the present work is that, by looking
at the DMFT results within an ECFL perspective, we are able
to obtain new analytical insights into the DMFT description
of the doping-driven Mott transition. Within the DMFT, the
single-particle self-energy #(ω) displays a rich and complex
frequency dependence. This has been known for some time
(see, e.g., Ref. 9 for a recent study), but is further investigated
in the present work down to unprecedentedly low doping levels
δ " 0.001 using a state-of-the-art numerical renormalization
group (NRG) solution of the DMFT equations. Local Fermi
liquid behavior Im# ∝ ω2 + (πT )2 is obeyed only below a
very low energy scale. Above this energy scale, a marked
particle-hole asymmetry develops, a feature that is beyond
the Fermi liquid theory. Furthermore, the strong suppression
of spectral weight in the intermediate range of energies
separating the quasiparticle peak from the lower Hubbard band
corresponds to a marked quasipole in the self-energy.

We show that all of these features can be well reproduced
by constructing an analytical ansatz for the one-particle self-
energy, which is directly motivated by the ECFL construction.
The ECFL introduces two key quantities, & and χ , which
play the role of auxiliary self-energies in the Schwinger
construction. The proposed analytical ansatz is obtained by
retaining only the dominant Fermi liquid terms in the low-
frequency expansion of these auxiliary quantities. This is
found to provide a satisfactory fit of the DMFT results for
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FIG. 2. (Color online) (a) Overview plot showing the full struc-
ture of spectra on high-frequency scales (lower Hubbard band,
quasiparticle band, upper Hubbard band) at finite U = 4D. We show
the DMFT local spectral function (top panel) and the imaginary part
of the self-energy (bottom panel). (b) Closeup on the quasiparticle
band at low frequencies.

behavior is more apparent on the ω > 0 side, in accordance
with the particle-hole asymmetry discussed above and as
pointed out in previous studies.9,38 Re" deviates from linearity
and flattens upwards for ω > 0, resulting in the bending of the
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FIG. 3. Local spectral function and the imaginary part of the
self-energy for large doping δ = 0.2 (left) and small doping δ = 0.005
(right), for U = ∞.

FIG. 4. (Color online) Intensity plots of the momentum (εk-)
resolved spectral function A(ε,ω) for U = ∞ at four different doping
levels, plotted as a function of ε/D and ω/ZD. The plain line locates
the solution of the QP pole equation ω + µ − Re"(ω) − ε = 0
(neglecting Im"). By definition of the QP excitations, this line has
slope unity (cf. dashed line) at low-ω when plotted in this manner
since ωQP = Z(ε − εF ) (i.e., v%

F = ZvF ) within the DMFT.

dispersion of ω > 0 quasiparticles towards the noninteracting
bare dispersion, displayed above on Fig. 4. Accordingly, the
deviations from parabolic behavior in Im"(ω) are much more
pronounced on the positive frequency side.

Zooming further on the low-frequency range [Figs. 6(c) and
6(f)] allows one to locate more quantitatively the deviation
from the FL behavior. At U = ∞, it is seen to occur at ω%

FL #
0.1 ZD, which is of order 0.025δD to 0.05δD depending on δ.
In agreement with previous studies9 at finite U , the scale below
which FL is found to apply is seen to be a very low one. It is
one order of magnitude smaller than the Brinkman-Rice scale
≈δD, which corresponds to scaling the bare bandwidth by the
(inverse) of the effective mass. When converted to a tempera-
ture scale, the Brinkman-Rice scale roughly corresponds to the
temperature at which QP excitations disappear altogether (and
the resistivity approaches the Mott-Ioffe-Regel limit),9 but it
should not be identified with the much lower scale associated
with deviations from FL behavior.

The low-frequency zooms in Figs. 6(c) and 6(f) actually
reveal that the deviations from FL behavior are seen both on
the ω < 0 and ω > 0 side, at similar scales ±ω%

FL. This scale
corresponds to a low-energy kink in Re". The corresponding
low-energy kink in the QP dispersion39–41 is actually visible
upon close examination of Fig. 4.

As seen on Figs. 5(b) and 5(c), the full collapse of the data is
limited to very low frequencies. Two kinds of deviations from
the universal behavior can be recognized. On the negative
frequency side, at moderate doping the deviations occur at the
onset of the Hubbard band as the quasiparticle peak is not
clearly separated from the LHB. On the positive frequency
side, the different curves deviate from each other also in the
small doping limit. Comparing the two lowest dopings, for

235132-8

Very high precision low-T DMFT results for
local spectral function (k- averged)
and Imaginary self energy

Same picture zooming into low ω.
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FIG. 5: The left and right panel show the ε resolved spectral function for ε/D = −1 (i.e. deep interior of the band) and εF ,
respectively for n = .7, T/D = 1/400. Each panel compares the ECFL and the DMFT results at U/D = 4 and U = ∞. In

general, the agreement is impressive. At the bottom of the band (left panel), DMFT has a deeper minimum between the QP

and the secondary feature at high binding energy than is seen in ECFL, but the position of the ECFL peaks agrees well with

that of the DMFT peaks. At εF (right panel) we can examine the frequency dependence of the incoherent spectral weight

surrounding the QP peak (the QP are of similar width but different values of Zk, as discussed above). The background lies

over essentially the same frequency range for all three calculations (width ∼ D ) and has a peak at negative frequency near

ω = −.5D which is in approximately the same position for each data set. However, the height of the peak is less pronounced

for the ECFL than the DMFT. At positive frequency the spectral functions are in excellent agreement. We emphasize that

while there are subtle differences, the primary features of the all three calculations match at high and low frequency

FIG. 6: The physical spectral function. From left to right, U = ∞, U = 4, ECFL. Hot colors represent high intensity, darker

blue represents low intensity. Noting in Fig. (5) that the QP band has a slightly different width, we plot the spectral function

here as a function of
ω

DZ . This brings the low energy features of the spectral function into impressive agreement.

H. Temperature dependence of high T resistivity

I’ve gone through the argument again and now have something that makes sense with the data. We had noticed

that the leading order terms in Φ and Ψ look like u2
0I000 and u0I000, respectively. u0 scales linearly with the

temperature. Previously, I had noted that I000 obeys a sumrule and must therefore be independent of Temperature

in the high T limit. This turns out to be inaccurate because of the broadening of g which broadens I000 in turn.

Thus at all temperatures the width of I000 is double that of the DOS; both widths scale linearly with T. Therefore

Absolute scale comparison of ECFL and DMFT
at different energies.

 ε= -D (left) and ε=0 (right). 
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FIG. 6: The physical spectral function. From left to right, U = 4, U = ∞, ECFL with n = .7 and T/D = .0025. Hot

colors represent high intensity, whiledarker blue represents low intensity. Noting from Fig. (5) that the QP band has a slightly

different width, we plot the spectral function here as a function of
ω

DZ . This brings the low energy (QP) features of the spectral

function into impressive agreement.

H. Temperature dependence of high T resistivity

The high temperature resistivity can be understood simply from the ECFL formalism. Note fist that in the high
temperature limit, both µ�� and u0 scale linearly with temperature. From this fact we can extract the leading order
terms in Ψ and χ at high T. We write

G =
aG + u0I000(ω)

ω + µ�� − u2
0I000(ω)

. (53)

Next we note from converged solutions that at T/D > 1 where TI000(ω/T ) is a constant. In this regime we define

c0 = TI000(
ω

T
) (54)
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FIG. 6: The physical spectral function. From left to right, U = 4, U = ∞, ECFL with n = .7 and T/D = .0025. Hot

colors represent high intensity, whiledarker blue represents low intensity. Noting from Fig. (5) that the QP band has a slightly

different width, we plot the spectral function here as a function of
ω

DZ . This brings the low energy (QP) features of the spectral

function into impressive agreement.

H. Temperature dependence of high T resistivity

The high temperature resistivity can be understood simply from the ECFL formalism. Note fist that in the high
temperature limit, both µ�� and u0 scale linearly with temperature. From this fact we can extract the leading order
terms in Ψ and χ at high T. We write

G =
aG + u0I000(ω)

ω + µ�� − u2
0I000(ω)

. (53)

Next we note from converged solutions that at T/D > 1 where TI000(ω/T ) is a constant. In this regime we define

c0 = TI000(
ω

T
) (54)

A comparison of ECFL and DMFT spectral function color plots after scaling the frequency by
Z (the QP weight).  In this rough representation, it is hard to tell the theories apart!
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A comparison of ECFL and DMFT after scaling the frequency by
Z (the QP weight).  

The O(λ2) version of ECFL used here seems closer to U= 4D, consistent with the interpretation of λ. 

The shapes of the functions are in excellent accord- out to unexpectedly high densities- (ECFL version arguably good for small densities, does  
impressively well at high densities.)

 Note the  strong particle hole assymmetry about ω=0. A strong bias in both theories- discussed later.
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FIG. 8: The ECFL fails to capture the vaishing of Z at low doping and significant U dependence creates differences between the
U/D = 4 and U = ∞ results of the DMFT. Nonetheless, all are show to be overlap well when plotted by the scaled frequency
ω

DZ . Surprisingly, this works even at densities far beyond the expected range of the ECFL. This scaling worsens the agreement
seen at higher frequencies in Fig. (7).

2 Minimal equations large d preprint
3 B. S. Shastry, Phys. Rev. 81 045121 (2010), see Appendix: D, Eq. (D5)
4 The linear term is most simply understood in rewriting the atomic limit self energy ΣAtomic = U n

2 +
U2 n

2 (1−n
2 )

iω+µ−U(1−n
2 ) As U → ∞,

in the regime 0 � |ω| � U , it develops a linear term ΣAtomic ≈ −iω n/2
1−n/2 .
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B. Quasiparticle Occupation

In Fig. (4) we compare the momentum distribution function mk obtained from the Greens function at equal time,
within the two theories. In both cases the large magnitude of this function above kF implies that the spectral
functions for k > kF have substantial weight for occupied frequencies ω < 0, and contribute to what is often discarded
in experiments as background spectrum.
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FIG. 4: Momentum Occupation vs ε with DMFT and ECFL on left and right, respectively. The general features of the DMFT
data are in good qualitative agreement with the ECFL. In each case, the crossing mk = .5 occurs at the noninteracting εF . A
large spillover weight for ε > εF indicates the presence of a particle hole asymmetry on a large energy scale comparable to the
renormalized bandwidth. For both methods, the spillover weight comes to ≈ 0.3 just outside the Fermi surface, even at the
lowest temperatures. Interestingly, the finite U/D in the DMFT calculation allows for better agreement here with the O(λ2)
ECFL. In each case mk ∼ .77 at the bottom of the band, whereas for infinite U Hubbard or an exact treatment of ECFL to all
order in λ it would fall to mk ∼ .65 at this density.

C. EDC Lineshapes

In Fig. (5) we compare the frequency resolved spectral functions at two values of the band energy ε = −D, εF . We
see that the peaks near the Fermi energy have considerable similarity, while at deeper binding, the DMFT results
and ECFL differ in the height and location to some extent. Plotting the spectral function as a function of the scaled
frequency omega

DZ improves the agreement in the position and width of the quasiparticle.

D. Imaginary part of Dyson Σ

E. Imaginary part of Dyson Σ versus ω/Z

F. Real part of Dyson Σ

G. Optical Conductivity

For this section we can emphasize that both ECFL and DMFT follow the scaling form for σ(Ω) but with very
different values of T0 for low hole doping. Note that T0 scales inversely with the fit parameter B discussed above.
This explains the difference of appearance between frequency dependence of conductivity in DMFT and ECFL. Plots
to come later.
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FIG. 4: Momentum Occupation vs ε with DMFT and ECFL on left and right, respectively. The general features of the DMFT
data are in good qualitative agreement with the ECFL. In each case, the crossing mk = .5 occurs at the noninteracting εF . A
large spillover weight for ε > εF indicates the presence of a particle hole asymmetry on a large energy scale comparable to the
renormalized bandwidth. For both methods, the spillover weight comes to ≈ 0.3 just outside the Fermi surface, even at the
lowest temperatures. Interestingly, the finite U/D in the DMFT calculation allows for better agreement here with the O(λ2)
ECFL. In each case mk ∼ .77 at the bottom of the band, whereas for infinite U Hubbard or an exact treatment of ECFL to all
order in λ it would fall to mk ∼ .65 at this density.

C. EDC Lineshapes

In Fig. (5) we compare the frequency resolved spectral functions at two values of the band energy ε = −D, εF . We
see that the peaks near the Fermi energy have considerable similarity, while at deeper binding, the DMFT results
and ECFL differ in the height and location to some extent. Plotting the spectral function as a function of the scaled
frequency omega

DZ improves the agreement in the position and width of the quasiparticle.

D. Imaginary part of Dyson Σ

E. Imaginary part of Dyson Σ versus ω/Z

F. Real part of Dyson Σ

G. Optical Conductivity

For this section we can emphasize that both ECFL and DMFT follow the scaling form for σ(Ω) but with very
different values of T0 for low hole doping. Note that T0 scales inversely with the fit parameter B discussed above.
This explains the difference of appearance between frequency dependence of conductivity in DMFT and ECFL. Plots
to come later.
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U = ∞ DMFT is in red. The resistivity data coincides with the curve τ2 for τ ≤ 0.15. Note that the ECFL and DMFT make
very different predictions for the resistivity at a given temperature primarily because they have different quasiparticle weight
Z. When Z is scaled out of the temperature, the two calculations are in good quantitative agreement.
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approximation of the ECFL data down to T/D ≈ .1. The DMFT and ECFL scale differently with temperature in the high T
limit. Nonetheless, the temperature, TMIR at which they violate the MIR scale is quite similar.
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Exciting because we obtain a promising synthesis between the
analytical power of ECFL and the exact numerical power of DMFT.
Much more to learn from this joint approach.....
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within the ECFL O(λ2
) theory will be accurate through

a density of approximately n = .6. The source of this er-

ror estimate is the high frequency behaviour within the

λ expansion of the Greens function Eq. (29) G ∼ aG
iω , this

deviates from the known exact behaviour G ∼ 1−nd/2
iω .

The error grows with increasing density, but we expect

to have reasonable results even at n = .7.

In Table (I), we show the results for the spectral func-

tion at zero energy in terms of the percentage deviation

from the Friedel sum rule Eq. (34), demonstrating that

the ECFL satisfies the Friedel sum rule to a high degree

of accuracy. We also show the energy �d and quasiparticle

weight z calculated within the ECFL and NRG calcula-

tions. The values of �d are in good agreement between

the two calculations, while there is a discrepancy in z

which becomes more pronounced at higher densities. Its

significance is discussed below.

In Fig. (1) we display the spectral functions at the

indicated densities- indicating a smooth evolution with

density. The Kondo or Abrikosov-Suhl resonance at pos-

itive frequencies becomes sharper as we increase density

and moves closer to ω = 0. If the ECFL and NRG spec-

tral functions are compared (as in right panel of Fig. (2)

for nd = .536), one will find that the peak in the ECFL

spectral function is over broadened. This over broaden-

ing becomes worse at larger densities and better at lower

densities. However, it can be understood completely in

terms of the elevated value of z for ECFL at higher densi-

ties. Hence, before doing the comparison, one must first

rescale the ω axis for both the ECFL and NRG spectral

functions by the appropriate z (as in the left panel of

Fig. (2) for nd = .536 and in Fig. (1) for the other den-

sities). They are then found to be in good agreement.

nd ρG,ECFL(0) �d,ECFL �d,NRG zECFL zNRG

.35 8.69001 +
1.80298 %

-0.00326 -0.00328 0.74919 0.69676

.441 12.9824 +
1.1388 %

-0.00958 -0.0094 0.65796 0.56704

.536 17.7117 +
0.72518%

-0.01518 -0.01473 0.55685 0.41649

.62 21.7744 +
0.49426%

-0.02007 -0.01928 0.46714 0.28192

.7 25.2704 +
0.62054%

-0.02387 -0.02387 0.38711 0.16912

.777 28.0824 +
0.25626%

-0.03147 -0.02947 0.31318 0.08065

.834 29.7154 +
0.20342 %

-0.03744 -0.03519 0.26439 0.03510

TABLE I. The bare impurity level �d as well as the quasi-
particle weight z are displayed for the ECFL and the NRG
calculations for all values of the density. Additionally, the
theoretical value for the Friedel sum rule as well as the ECFL
deviation from it are displayed.

We also found good agreement with the NRG spectral

functions in Ref. (16). The ECFL spectral function ρG
is constructed out of the two spectral functions ρχ and

ρΨ that are shown at various densities in Fig. (3) and

Fig. (4), exhibiting Fermi liquid type quadratic frequency

dependence at low ω.

In Fig. (5) we present the density evolution of the

spectral function for the Dyson Mori self energy (see

Eq. (22)). This exhibits a remarkable similarity to the

analogous spectral density for the t-J model in the limit

of high dimensions Ref. (22) and the Hubbard model at

large U Ref. (23).
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FIG. 1. The spectral density for the physical Green’s function
versus ω

Γ0z
for densities of nd = .35, .441, .62, .7, .777, .834.

The red curve is the ECFL calculation, while the blue curve
is the NRG calculation.
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We apply the recently developed extremely correlated Fermi liquid (ECFL) theory to the Anderson impurity
model, in the extreme correlation limit U → ∞. We develop an expansion in a parameter λ, related to nd , the
average occupation of the localized orbital, and find analytic expressions for the Green’s functions to O(λ2). These
yield the impurity spectral function and also the self-energy "(ω) in terms of the two self-energies of the ECFL
formalism. The imaginary parts of the latter have roughly symmetric low-energy behavior (∝ω2), as predicted
by Fermi liquid theory. However, the inferred impurity self-energy "′′(ω) develops asymmetric corrections near
nd → 1, leading in turn to a strongly asymmetric impurity spectral function with a skew towards the occupied
states. Within this approximation, the Friedel sum rule is satisfied but we overestimate the quasiparticle weight z

relative to the known exact results, resulting in an overbroadening of the Kondo peak. Upon scaling the frequency
by the quasiparticle weight z, the spectrum is found to be in reasonable agreement with numerical renormalization
group results over a wide range of densities.
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I. INTRODUCTION AND MOTIVATION

The extremely correlated Fermi liquid (ECFL) theory
has been recently developed to understand the physics of
correlations in the limit of infinite U and applied to the t-J
model in Refs. 1 and 2. Here, we apply the ECFL theory to
the problem of the spin- 1

2 Anderson impurity model (AIM) at
U = ∞. The ECFL theory is based on a systematic expansion
of the formally exact Schwinger equations of motion of the
model for the (Gutzwiller) projected electrons in powers
of a parameter λ. This parameter is argued to be related
to n the density of particles in the t-J model, and in the
same spirit, to nd the average impurity level occupancy in
the Anderson model considered here. Thus, at low enough
densities of particles, the complete description of the system,
including its dynamics, is expected in quantitative terms, with
just a few terms in the λ expansion. Presently, the theory to
O(λ2) has been evaluated for the t-J model,2 and higher-order
calculations in λ valid up to higher densities could be carried
out in principle. We thus envisage systematically cranking up
the density from the dilute limit, until we hit singularities
arising from phase transitions near n ∼ 1.3 This represents a
possible road map for solving one of the hard problems of
condensed matter physics and is exciting for that reason.

We apply the ECFL theory equations to O(λ2) to the AIM
model in this work. This problem was introduced by Anderson4

in 1961, and has been a fertile ground where several fruitful
ideas and powerful techniques have been developed, and tested
against experiments in Kondo, mixed valency, and heavy-
fermion systems. These include the renormalization group
ideas, from the intuitive poor man’s scaling of Anderson5,6

to the powerful numerical renormalization group (NRG) of
Wilson,7 Krishna-murthy et al.,8 and more recent work in
Refs. 9 and 10. A comprehensive review of the AIM and
many popular techniques used to study it, such as the large-N
expansion,11,12 slave particles,13 and the Bethe ansatz,14 can
be found in Ref. 15. In the AIM, the Wilson renormalization

group method provides an essentially exact solution of the
crossover from weak to strong coupling, without any inter-
vening singularity in the coupling constant. As emphasized in
Refs. 16–18, the ground state is asymptotically a Fermi liquid
at all densities. This implies that as a function of the density
nd (at any U ), the Fermi liquid ground state evolves smoothly
without encountering any singularity, from the low-density
limit (the empty orbital limit) to the intermediate-density limit
(the mixed valent regime), and finally through to the very
high-density limit (Kondo regime). In view of the nonsingular
evolution in density, the AIM provides us with an ideal problem
to benchmark the basic ECFL ideas discussed above.

The current understanding of the AIM model from Refs. 8,
16, and 17 is that Fermi liquid ground state and its attendant
excitation spectrum are reached in the asymptotic sense, i.e.,
at low enough energies and T . Our present study of this model
is somewhat broader. We wish to understand the excitations
of the model in an enlarged region, in order to additionally
obtain an estimate of the magnitude of corrections to the
asymptotic behavior. To motivate this remark, note that the
ECFL formalism yields an asymmetry in the excitations and
the spectral functions of the t-J model for sufficiently high
densities, with a pronounced skew towards ω < 0, arising
fundamentally from Gutzwiller projection. This skew can
be interpreted as an asymmetric correction to the leading
particle-hole-symmetric excitation spectrum of that model19

[e.g., corrections to "′′(ω) ∼ {ω2 + (πkBT )2} behavior of the
Fermi liquid of the form "′′(ω) ∼ ω3]. Such corrections have
been argued to be of central importance in explaining the
anomalous line shapes in the angle-resolved photoemission
spectra of high-Tc superconductors in the normal state.19,20

Therefore, it is useful and important to understand the line
shape and self-energy asymmetry in controlled calculations
of the Anderson model with infinite U , which shares the
local Gutzwiller constraint with the t-J model on a lattice.
A necessary condition for substantial asymmetry of the type

205108-11098-0121/2013/88(20)/205108(9) ©2013 American Physical Society
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The extremely correlated Fermi liquid (ECFL) theory
has been recently developed to understand the physics of
correlations in the limit of infinite U and applied to the t-J
model in Refs. 1 and 2. Here, we apply the ECFL theory to
the problem of the spin- 1

2 Anderson impurity model (AIM) at
U = ∞. The ECFL theory is based on a systematic expansion
of the formally exact Schwinger equations of motion of the
model for the (Gutzwiller) projected electrons in powers
of a parameter λ. This parameter is argued to be related
to n the density of particles in the t-J model, and in the
same spirit, to nd the average impurity level occupancy in
the Anderson model considered here. Thus, at low enough
densities of particles, the complete description of the system,
including its dynamics, is expected in quantitative terms, with
just a few terms in the λ expansion. Presently, the theory to
O(λ2) has been evaluated for the t-J model,2 and higher-order
calculations in λ valid up to higher densities could be carried
out in principle. We thus envisage systematically cranking up
the density from the dilute limit, until we hit singularities
arising from phase transitions near n ∼ 1.3 This represents a
possible road map for solving one of the hard problems of
condensed matter physics and is exciting for that reason.

We apply the ECFL theory equations to O(λ2) to the AIM
model in this work. This problem was introduced by Anderson4

in 1961, and has been a fertile ground where several fruitful
ideas and powerful techniques have been developed, and tested
against experiments in Kondo, mixed valency, and heavy-
fermion systems. These include the renormalization group
ideas, from the intuitive poor man’s scaling of Anderson5,6

to the powerful numerical renormalization group (NRG) of
Wilson,7 Krishna-murthy et al.,8 and more recent work in
Refs. 9 and 10. A comprehensive review of the AIM and
many popular techniques used to study it, such as the large-N
expansion,11,12 slave particles,13 and the Bethe ansatz,14 can
be found in Ref. 15. In the AIM, the Wilson renormalization

group method provides an essentially exact solution of the
crossover from weak to strong coupling, without any inter-
vening singularity in the coupling constant. As emphasized in
Refs. 16–18, the ground state is asymptotically a Fermi liquid
at all densities. This implies that as a function of the density
nd (at any U ), the Fermi liquid ground state evolves smoothly
without encountering any singularity, from the low-density
limit (the empty orbital limit) to the intermediate-density limit
(the mixed valent regime), and finally through to the very
high-density limit (Kondo regime). In view of the nonsingular
evolution in density, the AIM provides us with an ideal problem
to benchmark the basic ECFL ideas discussed above.

The current understanding of the AIM model from Refs. 8,
16, and 17 is that Fermi liquid ground state and its attendant
excitation spectrum are reached in the asymptotic sense, i.e.,
at low enough energies and T . Our present study of this model
is somewhat broader. We wish to understand the excitations
of the model in an enlarged region, in order to additionally
obtain an estimate of the magnitude of corrections to the
asymptotic behavior. To motivate this remark, note that the
ECFL formalism yields an asymmetry in the excitations and
the spectral functions of the t-J model for sufficiently high
densities, with a pronounced skew towards ω < 0, arising
fundamentally from Gutzwiller projection. This skew can
be interpreted as an asymmetric correction to the leading
particle-hole-symmetric excitation spectrum of that model19

[e.g., corrections to "′′(ω) ∼ {ω2 + (πkBT )2} behavior of the
Fermi liquid of the form "′′(ω) ∼ ω3]. Such corrections have
been argued to be of central importance in explaining the
anomalous line shapes in the angle-resolved photoemission
spectra of high-Tc superconductors in the normal state.19,20

Therefore, it is useful and important to understand the line
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FIG. 3. The spectral function for χ for densities of nd =
.834, .777, .7, .62, .536, .441, .35.
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FIG. 4. The spectral function for Ψ for densities of nd =
.834, .777, .7, .62, .536, .441, .35.

CONCLUSION

XXX To be revised later after all other changes
are made XXX

We have applied the ECFL formalism to the Anderson
impurity model in the limit U → ∞. In this formal-
ism, the two self energies of the ECFL theory Ψ and χ
are calculated using a skeleton expansion in the auxil-
iary Green’s function g. This is analogous to the skele-
ton expansion in terms of the physical G for the Dyson
self energy Σ in standard perturbation theory in the case
of finite U . These two self energies then go into deter-
mining g, leading to a self-consistent solution. We ob-
tained the equations to second order and solved them
numerically at T = 0. We found that as expected, the
ECFL self-energies have symmetric spectra predicted by
Fermi-Liquid theory (Fig. (4) and Fig. (3).) Combining
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FIG. 5. The spectral function for the Dyson-Mori Self En-
ergy for densities of nd = .874, .777, .7, .62, .536, .441, .35. The
curvature of the quadratic minimum becomes larger with in-
creasing density.

them through the ECFL functional form Eq. (22) yields
a Dyson-Mori self energy with an asymmetric spectrum
displayed in Fig. (5). We found that the spectrum for the
physical Green’s function ρG(ω) satisfies the Friedel sum
rule (Eq. (34)). The peak becomes more narrow and the
spectrum becomes more skewed towards the left of the
peak with increasing density. The location of the peak
is set by �d + ΣDM (0) (Eq. (21)). Using Eq. (33), we
can see that this quantity must decrease with increasing
density. This is consistent with our observation that the
peak shifts to the left with increasing density. We ex-
pect that the location of the peak will approach ω = 0
as nd → 1. This can also be understood from the need
to have more spectral weight to the left of ω = 0 to yield
a higher value of nd.

Appendix A: Calculating the self energies in the

O(λ2) theory

The calculation follows the procedure given in Ref. (2).
A few comments are provided to make the connec-
tions explicit- the zeroeth order vertices are common to
Ref. (2) Eqs. (B3, B14), and the first order U is common
to Eq. (B15). The first order vertex [Λ]1 can be found
parallel to Eq-(B23- B28) from differentiating

[g−1(i, f)]1 = ∆(i, f).g(k)(i, i) + δ(i, f)∆(i,a).g(k)(a, f),
(43)

as

[Λ(a)(i,m; j)]1 = −2∆(i,m)g(i, j).g(j, i)

−2δ(i,m)∆(i,k).g(k, j).g(j, i). (44)
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CONCLUSION

XXX To be revised later after all other changes
are made XXX

We have applied the ECFL formalism to the Anderson
impurity model in the limit U → ∞. In this formal-
ism, the two self energies of the ECFL theory Ψ and χ
are calculated using a skeleton expansion in the auxil-
iary Green’s function g. This is analogous to the skele-
ton expansion in terms of the physical G for the Dyson
self energy Σ in standard perturbation theory in the case
of finite U . These two self energies then go into deter-
mining g, leading to a self-consistent solution. We ob-
tained the equations to second order and solved them
numerically at T = 0. We found that as expected, the
ECFL self-energies have symmetric spectra predicted by
Fermi-Liquid theory (Fig. (4) and Fig. (3).) Combining
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High-resolution angle-resolved photoemission study of the Fermi surface
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High-resolution angle-resolved photoelectron spectroscopic measurements were made of the Fer-
mi edge of a single crystal of Bi&Sr&CaCuz08 at 90 K along several directions in the Brillouin zone.
The resultant Fermi-level crossings are consistent with local-density band calculations, including a
point calculated to be of Bi-0 character. Additional measurements were made where bands crossed
the Fermi level between 100 and 250 K, along with measurements on an adjacent Pt foil. The Fermi
edges of both materials agree to within the noise. Below the Fermi level the spectra show correla-
tion effects in the form of an increased effective mass, but the essence of the single-particle band
structure is retained. The shape of the spectra can be explained by a lifetime-broadened photohole
and secondary electrons. The effective inverse photohole lifetime is linear in energy.

I. INTRODUCTION

Since the discovery of high-T, superconductors, their
electronic structure has been of great interest. Whether
or not the normal states of these materials are Fermi
liquids has been a key question. Is one-electron band
theory adequate as a starting point for describing the
normal-state electronic structure (with added modifica-
tions from correlation effects) or must an alternative
description be devised?' Answers to these questions are
important for the ultimate understanding of the mecha-
nism of superconductivity in these materials.

In an attempt to address some of these questions, we
carried out a detailed angle-resolved photoemission study
on normal-state BizSrzCaCuzOs. The experiment was
performed with high energy and angular resolution, a
prerequisite for studying the details of the states near the
Fermi level. To minimize thermal broadening, measure-
ments were made at temperatures just above T, .

An angle-resolved photoemission study on high-T, su-
perconductors is simplified by the fact that most of the
structures are highly two dimensional. In the photoemis-
sion process momentum parallel to the surface is con-
served. Momentum perpendicular to the surface is not
conserved since the photoelectron transfers a certain per-
pendicular momentum to the crystal when escaping
through the surface barrier. For a two-dimensional sys-
tem, however, the momentum parallel to the surface is
sufBcient to determine the initial state.

Previous measurements on BizSrzCaCuz08 (Ref. 3)
showed that bands are negligibly dispersive in the direc-
tion normal to the a-b plane, consistent with the two-
dimensionality. By measuring photoelectron energy dis-

tribution curves (EDC's) at 90 K (above T, ) as a function
of angle, we were able to isolate a single band dispersing
through the Fermi level, and determine the point in the
Brillouin zone where the band crosses the Fermi level.
The measurement is accurate to 2'. (For 22 eV photon
energy, this corresponds to bk~~ =0.075 A '.) Such mea-
surements were made along major symmetry lines. The
basic features of the Fermi surface were obtained. The
results will be presented and discussed in three sections:
band dispersion and the Fermi surface, a more detailed
analysis of the spectral line shapes, and a comparison of
the filled states at the Fermi level to a conventional Fermi
liquid.

II. EXPERIMENTAL

A single crystal of Bj.zSrzCaCuz08 was cleaved at 20 K
in a vacuum better than 5X10 "Torr. The surface was
a (001) plane. Previous work with the 1:2:3 com-
pounds ' showed that the surface layers sampled by pho-
toelectron spectroscopy degraded rapidly at 50 K, but the
Bi compounds proved to be much more stable. Samples
cleaved in ultrahigh vacuum at 20 K could be cycled to
90 K and back without detectable changes in the photo-
electron spectrum. The samples were stable unless held
at room temperature for many hours. The sample used
had a value of T, of 82 K determined from dc SQUID
magnetization measurements. Photons were provided by
the Ames/Montana ERG/Seya beam line on Aladdin,
using the Seya in the 15—25 eV region. The instrument
function of the monochromator was measured. The
FWHM is 24 meV for 22 eV photons. The photoelec-
trons were energy analyzed by a 50 mm radius hemi-
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spherical analyzer. The analyzer has a Gaussian instru-
ment function with a FTHM of 20 meV at the pass ener-
gy of 2 eV, and 50 meV at a pass energy of 5 eV. The
combined instrument function (FWHM 32 meV and 55
meV, respectively) was verified by measurement of a me-
tallic Fermi level at 20 K. Note that this resolution is
equal to, or better than, the width of the Fermi-Dirac
function (4.4 kT) over the temperatures of the scans we
report here. The analyzer input lens had an angular ac-
ceptance of about 2'. In the spectra to be reported the
energy scale is that of the initial state ("binding energy").

III. RESULTS AND DISCUSSION

A. Band dispersion and Fermi surface

The spectra shown in Fig. 1 are taken at 90 K along a
line parallel to I -F (their positions in the Brillouin zone
are shown as solid dots in Fig. 2), with 22 eV photon en-
ergy. It can be seen that a band disperses toward the Fer-
mi level from at least 350 meV below EF. At 12', the
Lorentzian peak is cut off by the Fermi-Dirac function,
and the leading edge coincides with the Pt edge. This is a
clear indication that the band has just crossed the Fermi
level at this point. As indicated in Fig. 2, the 12' point
almost falls on the Fermi surface predicted by band calcu-
lations. ' At 14', the band has completely passed the
Fermi level. The details of the spectral shapes will be dis-
cussed in the next section.

FIG. 2. Section of the calculated Fermi surface of
Bi&Sr&CaCu20& (from Ref. 8j showing points at which bands
crossing the Fermi level were observed.

The dispersion of this band is shown as the insert of
Fig. 1. The band is less steep and the minimum at I is
closer to EF than predicted by a one-electron band calcu-
lation. It agrees better with the band structure of a
"heavy fermion" state calculated within the formalism of
the Anderson lattice model with a large Coulomb interac-
tion U taken into account. ' The effective mass of this
band is estimated to be 2 from our experimental data. A
similar increase in mass above the calculated mass was
observed by Manzke et ai. "
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FIG. 1. Angle-resolved energy distribution curves for several
angles along the I - F direction in the Brillouin zone using pho-
tons of energy 22 eV. The inset shows the measured band
dispersion (dots) and the calculated bands from Ref. 8.

FIG. 3. Angle-resolved energy distribution curves for several
angles along the I -M direction in the Brillouin zone using pho-
tons of energy 19 eV. The inset shows the measured band
dispersion (dots) and the calculated energy bands of Ref. 8.
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We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on the lay-

ered compound 1-T-TiTe2, whose low-energy properties are those of a normal metal, and analyzed the
experimental line shapes in terms of the Fermi-liquid self-energy. We find excellent agreement between
the measured and theoretical spectral weight distribution, while line profiles expected for other theoreti-
cal models such as the marginal Fermi liquid clearly fail to reproduce the experimental spectra. This
demonstrates that ARPES line shapes are able to reflect the nature of an interacting electron system.

PACS numbers: 71.45.—d, 79.60.—i

Angle-resolved photoemission spectroscopy (ARPES)
has provided deep insight into the electronic structure of
high-temperature superconductors (HTS) by providing
the first evidence of dispersing single-particle excitations
and a Fermi surface in accordance with the Luttinger
counting theorem. Furthermore, the unusual behavior of
the ARPES linewidths and line shapes has been interpret-
ed as an indication for a non-Fermi-liquid-like ground
state [1] such as the marginal Fermi liquid or the Lut-
tinger liquid. However, a detailed analysis of HTS line
shapes [2] showed that conclusions of non-Fermi-liquid
behavior hinge on arguments for a negligible inelastic
background, and pointed out that the spectra have an
unexplained steplike emission at the Fermi energy FF.
Also, a priori it is not at all clear to what extent ARPES
line shapes are really dominated by the single-particle ex-
citation spectrum and how much they may be affected by
transition matrix elements or extrinsic effects like photo-
electron scattering or diffraction. To date, the work by
Kevan [3] on the anomalous broadening of a surface state
in copper is the only systematic study on ARPES line
shapes in the literature. Thus there is a clear need to
calibrate angle-resolved photoemission spectroscopy on a
system with a known many-body ground state. In this
Letter we present high-resolution ARPES data on the
layered compound 1-T-TiTe2 and an analysis of the spec-
tra in terms of Fermi-liquid line profiles, thereby demon-
strating for the first time that ARPES line shapes can
indeed refIect the character of an interacting many-body
system.

It is important to assess the relation between the
ARPES spectrum and the quantity of interest, the sin-
gle-particle excitation spectrum A (k, to). Within the usu-
al three-step model of photoemission and using the sud-
den approximation, the ARPES signal is proportional to

~Mf~2A(k, to), where Mf is the transition matrix ele-
ment. Thus, apart from the modulations by the matrix
elements, ARPES measures essentially the spectral func-
tion. However, when going beyond this simple photo-
emission theory there are additional complications. For
example, in the more comprehensive one-step theory it is
shown that the lifetime of the photoelectron adds to the
total ARPES linewidth. Since the final-state energy
width is mixed in with a weight factor of v&t/v, &, where
vt, & and v, ~ are the band velocities, perpendicular to the
surface, of the photohole and the photoelectron, respec-
tively, the effect of the final electron state broadening can
be suppressed if vt, &((v,& [4]. This is why detailed pho-
tohole line-shape studies can only be done on surface
states or layered systems like the HTS. Other mecha-
nisms that may be capable of distorting the spectral
weight information include scattering and diffraction of
the outgoing photoelectron. Only if all these effects are
negligible, or if their energy dependence is small on the
scale of the intrinsic linewidths, can the ARPES signal be
taken to be representative of the electron removal spec-
trum.

The spectral function A(k, to) itself is simply propor-
tional to the imaginary part of the Green's function
G(k, to) =[co—ek —Z(k, co)] ' of the interacting electron
system, where |.g is the free-particle energy and Z the
se1f-energy containing all many-body aspects of the sys-
tem. In the case where the low-lying excitations can be
well described by quasiparticles, i.e., in a Fermi liquid
(FL), the self-energy near the Fermi energy is well
known [5]:

Z(k, to) =ato+iPto
where we have assumed a three-dimensional isotropic
e1ectron system. Note that this is an approximation that
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It has long been believed that the ‘normal’ (non-
superconducting) state of the high-transition-temperature
superconductors is anything but normal1–3. In particular,
this state, which exists above the superconducting transition
temperature Tc, has very unusual transport properties4,5 and
electron spectral functions6,7, presenting a more difficult,
complex and important problem than the superconductivity
itself. The origin of this difficulty and complexity resides
in the strong electronic correlations, or the many-body
Coulomb interactions between electrons, which cannot be
properly treated within the standard theories of the electronic
structure of solids. A new treatment of these interactions,
on the basis of a Gutzwiller projection—which gives zero
quasiparticle weight at the Fermi surface and removes the
possibility for double electron occupancy on any one site—
has recently been proposed8, but fits to available data were
unsatisfactory. Here, we compare the electron spectral functions
computed within this theoretical treatment with bulk-sensitive
measurements made by low-energy photons, using laser-
excited angle-resolved photoemission spectroscopy of the
superconductor Bi2Sr2CaCu2O8+δ (refs 9,10). The theory captures
the asymmetrical shape of the experimental curves with good
accuracy and in principle has only one free parameter. Moreover,
no background subtraction is necessary.

The most direct way to measure the electronic excitation
spectrum of a solid is angle-resolved photoemission spectroscopy
(ARPES), which gives the energy- and momentum-dependent
spectral function11. Historically, results of these measurements on
cuprate superconductors have given broad spectral features as well
as large backgrounds6,7. These features were not well understood,
but generically have been described as representative of short-lived
electronic states or totally incoherent electronic states such as would
be the case in a system with spin–charge separation. Recently
however, much sharper ‘quasiparticle-like’ electronic excitations
have been observed using the laser-excited ARPES technology
developed in Colorado9,10. The low photon energy in these
experiments (6 eV as compared with the typical 20–50 eV) greatly
increases both the momentum and energy resolution, reduces
the final-state broadening effects, decreases the background and
increases the bulk sensitivity, each of which overcomes concerns
of the previous experiments9,10. Thus, it is believed that the new
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Figure 1 Infrared spectrum exponents for Bi2Sr2CaCu2O8+δ . Data points from
ref. 13 with linear best fit of ref. 13 (dashed line) and predicted value from ref. 8
(solid line). The predicted exponent stems from σ (ω )= (iω )−2+γ with γ = 1+2p,
and p is given in the text.

laser-excited ARPES spectra represent the most accurate cuprate
spectral line shapes so far. A theoretical understanding of these
spectra is clearly required.

One of the most difficult aspects of developing a theory of the
electronic structure of the cuprate superconductors is dealing with
the coulombic interactions between the doped holes (absence of
electrons, which are the carriers of electric current). In particular,
a double occupancy of holes on a single lattice site is energetically
unfavourable compared with single or zero occupancy, a fact that
breaks the electron–hole symmetry about the half-filled case. In
1963, Gutzwiller presented his projection operator to deal with
the Coulomb interactions, by which the probability amplitude for
double occupancy is set to zero12. A formalism to deal with the
Gutzwiller projection for the cuprates has recently been developed
by one of us8, and was found to have the unusual property that
there are no true quasiparticle excitations, that is, the quasiparticle
residue at the Fermi level is zero. Despite this, here we show that
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Figure 2 Laser-excited ARPES EDCs in the strange-metal phase above Tc of optimally doped Bi2Sr2CaCu2O8+δ . a–c, k near kF (a) and at higher quasiparticle energies
(b,c), as quoted. Data points are experimental and dashed curves are fitted lorentzians with background, BL f(ω/T ). Solid curves are theoretical fits from the present paper,
equation (1). Backgrounds are measured in units of the intensity relative to the peak of the EDC.

this quasiparticle-less theory produces excellent fits to the sharp

laser-excited ARPES spectra, which look more quasiparticle-like

than any previous ARPES spectra.

In ref. 8, it was shown that the effect of the Gutzwiller projection

is to multiply the free-particle Green’s function in space-time by

a factor t
−p

, where p is (1/4)(1 − x)2
and x is the hole doping

level. This value of the exponent is approximately confirmed by the

exponent of the infrared conductivity dependence on frequency
13

,

as shown in Fig. 1. Motion of a particle near the Fermi surface

is essentially one-dimensional, so we may take the free-particle

Green’s function in space-time as 1/(x−vFt). To get the imaginary

part of G (the density) in k and frequency space, we must Fourier

transform G(x, t),

G(k,ω) =
� �

dx dt e
i(kx−ωt)

t
−p/(x − vFt).

Doing the x integration by a contour integration (the sign of t

determines which way to close the contour), this becomes,

G(k,ω) =
�

dt t
−p

e
i(vF k−ω)t ∝ (vFk−ω)−1+p .

The imaginary part of this expression is the T = 0 energy

distribution curve (EDC). If p = 0, this is just a delta function at

the quasiparticle energy, vFk, but if p is finite it has an imaginary

part for all ω > vFk. The quasiparticle becomes a cut singularity,

not a pole, in the complex plane and does not have a finite residue

at the singularity, that is, it has quasiparticle residue Z = 0.

The absence of a finite Z has a profound effect on the

temperature behaviour. If there are ordinary quasiparticles, their

energies are not affected by thermal fluctuations. Impurity

scattering, for instance, only changes their spatial wavefunctions—

and there is no tendency towards ‘ω, T scaling’, which we naively

expect from the analogy between the Boltzmann distribution

e
−E/kB T

and the Schrodinger time dependence e
iHt

. In other words,

in that case there are conservation laws, effected by Ward identities,

which restrict the scattering, whereas in the current case there are

only phase space restrictions, so that the effect of raising the energy

is the same as raising the temperature. A heuristic approximation

to the effect of finite T is to insert a relaxation rate Γ = AT , where

A is a constant of order unity, so that we replace t
−p

by t
−p

e
−Γ t

.

Yuval has suggested that for finite T , t → sinh(πTt)/πT (ref. 14),

so that we might expect A ∼ πp, but that is only an estimate. The

excitations into which any decay takes place are fermionic, so that

we must also multiply by the Fermi function of energy hω/2π.

The observed spectra clearly show a broadening that increases

with increasing binding energy. A conventional Fermi liquid would

have the scattering proportional to ω2
, where ω is the difference

from the Fermi energy, producing further decay for the curves with

k farther from kF. In a supplement for ref. 8, it is shown that there

is an underlying, ‘hidden’ Fermi liquid of excitations, which can

therefore be expected to be scattered at the conventional rate ∼ω2

(ref. 15). The final expression for the EDC then becomes,

Intensity = Im{G} = Im

�
f (ω/T)

[(vFk−ω)+ iΓ ]1−p

�

= f (ω/T)
sin[(1−p)(π/2− tan

−1[(ω− vFk)/Γ ])]
[(ω− vFk)2 +Γ 2](1−p)/2

.

(1)

Here, we have expressed all frequencies and temperatures in the

same energy units, and f is the Fermi distribution,

f (ω/T) = 1

eh̄ω/kB T +1
.

The line shape, equation (1), is the Doniach–Sunjic line shape
16

multiplied by the Fermi function. Although it shares with the

simple power law the fact that the singularity is not a pole and has

Z = 0, it was historically often mistaken for a simple lorentzian.

In principle, it is possible to calculate the temperature

dependence of the Green’s function, and its Fourier transform

G(k, ω), in a less heuristic way, because Yuval has given a

prescription for the Green’s function in the X-ray problem at finite
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A(k,ω) =
Γ = aT

At T=0 is a Non Fermi Liquid at any 
density n.
At finite T looks a lot like ECFL 
because  it has the right asymmetry 
built into it
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Figure 2 Laser-excited ARPES EDCs in the strange-metal phase above Tc of optimally doped Bi2Sr2CaCu2O8+δ . a–c, k near kF (a) and at higher quasiparticle energies
(b,c), as quoted. Data points are experimental and dashed curves are fitted lorentzians with background, BL f(ω/T ). Solid curves are theoretical fits from the present paper,
equation (1). Backgrounds are measured in units of the intensity relative to the peak of the EDC.
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laser-excited ARPES spectra, which look more quasiparticle-like

than any previous ARPES spectra.

In ref. 8, it was shown that the effect of the Gutzwiller projection

is to multiply the free-particle Green’s function in space-time by

a factor t
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, where p is (1/4)(1 − x)2
and x is the hole doping

level. This value of the exponent is approximately confirmed by the

exponent of the infrared conductivity dependence on frequency
13
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determines which way to close the contour), this becomes,
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part for all ω > vFk. The quasiparticle becomes a cut singularity,
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Figure 2 Laser-excited ARPES EDCs in the strange-metal phase above Tc of optimally doped Bi2Sr2CaCu2O8+δ . a–c, k near kF (a) and at higher quasiparticle energies
(b,c), as quoted. Data points are experimental and dashed curves are fitted lorentzians with background, BL f(ω/T ). Solid curves are theoretical fits from the present paper,
equation (1). Backgrounds are measured in units of the intensity relative to the peak of the EDC.

this quasiparticle-less theory produces excellent fits to the sharp

laser-excited ARPES spectra, which look more quasiparticle-like

than any previous ARPES spectra.

In ref. 8, it was shown that the effect of the Gutzwiller projection

is to multiply the free-particle Green’s function in space-time by

a factor t
−p

, where p is (1/4)(1 − x)2
and x is the hole doping

level. This value of the exponent is approximately confirmed by the

exponent of the infrared conductivity dependence on frequency
13

,

as shown in Fig. 1. Motion of a particle near the Fermi surface

is essentially one-dimensional, so we may take the free-particle

Green’s function in space-time as 1/(x−vFt). To get the imaginary

part of G (the density) in k and frequency space, we must Fourier

transform G(x, t),

G(k,ω) =
� �

dx dt e
i(kx−ωt)

t
−p/(x − vFt).

Doing the x integration by a contour integration (the sign of t

determines which way to close the contour), this becomes,

G(k,ω) =
�

dt t
−p

e
i(vF k−ω)t ∝ (vFk−ω)−1+p .

The imaginary part of this expression is the T = 0 energy

distribution curve (EDC). If p = 0, this is just a delta function at

the quasiparticle energy, vFk, but if p is finite it has an imaginary

part for all ω > vFk. The quasiparticle becomes a cut singularity,

not a pole, in the complex plane and does not have a finite residue

at the singularity, that is, it has quasiparticle residue Z = 0.

The absence of a finite Z has a profound effect on the

temperature behaviour. If there are ordinary quasiparticles, their

energies are not affected by thermal fluctuations. Impurity

scattering, for instance, only changes their spatial wavefunctions—

and there is no tendency towards ‘ω, T scaling’, which we naively

expect from the analogy between the Boltzmann distribution

e
−E/kB T

and the Schrodinger time dependence e
iHt

. In other words,

in that case there are conservation laws, effected by Ward identities,

which restrict the scattering, whereas in the current case there are

only phase space restrictions, so that the effect of raising the energy

is the same as raising the temperature. A heuristic approximation

to the effect of finite T is to insert a relaxation rate Γ = AT , where

A is a constant of order unity, so that we replace t
−p

by t
−p

e
−Γ t

.

Yuval has suggested that for finite T , t → sinh(πTt)/πT (ref. 14),

so that we might expect A ∼ πp, but that is only an estimate. The

excitations into which any decay takes place are fermionic, so that

we must also multiply by the Fermi function of energy hω/2π.

The observed spectra clearly show a broadening that increases

with increasing binding energy. A conventional Fermi liquid would

have the scattering proportional to ω2
, where ω is the difference

from the Fermi energy, producing further decay for the curves with

k farther from kF. In a supplement for ref. 8, it is shown that there

is an underlying, ‘hidden’ Fermi liquid of excitations, which can

therefore be expected to be scattered at the conventional rate ∼ω2

(ref. 15). The final expression for the EDC then becomes,

Intensity = Im{G} = Im

�
f (ω/T)

[(vFk−ω)+ iΓ ]1−p

�

= f (ω/T)
sin[(1−p)(π/2− tan

−1[(ω− vFk)/Γ ])]
[(ω− vFk)2 +Γ 2](1−p)/2

.

(1)

Here, we have expressed all frequencies and temperatures in the

same energy units, and f is the Fermi distribution,

f (ω/T) = 1

eh̄ω/kB T +1
.

The line shape, equation (1), is the Doniach–Sunjic line shape
16

multiplied by the Fermi function. Although it shares with the

simple power law the fact that the singularity is not a pole and has

Z = 0, it was historically often mistaken for a simple lorentzian.

In principle, it is possible to calculate the temperature

dependence of the Green’s function, and its Fourier transform

G(k, ω), in a less heuristic way, because Yuval has given a

prescription for the Green’s function in the X-ray problem at finite
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equation (1). Backgrounds are measured in units of the intensity relative to the peak of the EDC.
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excitations into which any decay takes place are fermionic, so that

we must also multiply by the Fermi function of energy hω/2π.

The observed spectra clearly show a broadening that increases
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have the scattering proportional to ω2
, where ω is the difference
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multiplied by the Fermi function. Although it shares with the

simple power law the fact that the singularity is not a pole and has

Z = 0, it was historically often mistaken for a simple lorentzian.
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G(k, ω), in a less heuristic way, because Yuval has given a

prescription for the Green’s function in the X-ray problem at finite

2 nature physics ADVANCE ONLINE PUBLICATION www.nature.com/naturephysics

p =
1
4
n2
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.

We also find that the data for a lower-Tc cuprate LSCO
can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-

Synchrotron ARPES data from
J Campuzzanoʼs group compared to  theory.
BISSCO at optimal doping T= 115K along <11> direction.
Note that η =.12 eV (rather large)
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The normal-state single particle spectral function of the high temperature superconducting cuprates,

measured by the angle-resolved photoelectron spectroscopy (ARPES), has been considered both anoma-

lous and crucial to understand. Here, we report an unprecedented success of the new extremely correlated

Fermi liquid theory by one of us [B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)] to describe both laser
and conventional synchrotron ARPES data (nodal cut at optimal doping) on Bi2Sr2CaCu2O8þ! and

synchrotron data on La1:85Sr0:15CuO4. It fits all data sets with the same physical parameter values, satisfies

the particle sum rule and successfully addresses two widely discussed kink anomalies in the dispersion.

DOI: 10.1103/PhysRevLett.107.056404 PACS numbers: 71.10.Ay, 74.25.Jb, 74.72.Gh, 79.60."i

Angle resolved photoelectron spectroscopy (ARPES)
was the first probe to provide a detailed view of the
anomalous nature of high temperature cuprate supercon-
ductors, discovering unexpectedly broad spectra with in-
tense and asymmetric tails that have remained an enduring
mystery for the last two decades. Conventional data taken
with high energy (* 15 eV) photons from synchrotron
light sources have recently been supplemented with laser
ARPES data [1,2] from lower energy (6 or 7 eV) sources.
The latter show considerably sharper features near the
Fermi energy. A drastic possibility to account for this
distinction is that the sudden approximation could
break down for the smaller photon energies used in laser
ARPES [3].

An important unanswered question is whether the results
of the two spectroscopies could be reconciled in a single
theoretical framework that does not abandon the sudden
approximation. More broadly, can we understand the wide
variety of observed lines shapes in a theoretical framework
with a sound microscopic basis and a single set of
parameters?

In this Letter, we confront a recent theory of extremely
correlated Fermi liquids (ECFL) proposed by Shastry [4]
with the above challenge. The new formalism is complex
and requires considerable further effort to yield numerical
results in low dimensions. In the limit of high enough
dimensions, however, a remarkably simple expression for
the Green’s function emerges; it is significantly different
from the standard Fermi-liquid Dyson form, while satisfy-
ing the usual sum rules. We use this simple version of
ECFL Green’s function in this Letter, motivated by the
attractive spectral shapes produced with very few parame-
ters [4]. In this Letter we show that already the simplest
version of the ECFL theory, with very few parameters, is
very successful in detailed fitting of a wide variety of
normal-state cuprate ARPES line shapes. Interesting
predictions are made for the higher temperature spectral
line skew.

Our focus in this Letter is on the data of optimally doped
Bi2Sr2CaCu2O8þ! (Bi2212) and La1:85Sr0:15CuO4 (LSCO)

superconductors in the normal state, taken with ~k along the
nodal direction connecting (0, 0) to ("=a, "=a). Most of
the data is taken from the published literature, while
some original data are also presented (Bi2212 data in
Figs. 4 and 5). Our sample is an optimally doped Bi2212
(Tc ¼ 91 K), grown by the floating zone method at the
Brookhaven National Laboratory (BNL), and was mea-
sured at the Stanford Synchrotron Radiation Lightsource
(SSRL) beam line 5" 4 using 25 eV photons. The reso-
lutions are 15 meV (energy) and 0.3$ (angle).
Line shape model.—The ECFL spectral function is given

as a product of an auxiliary Fermi-liquid (AFL) spectral

function AFLð ~k; !Þ and a second frequency dependent
‘‘caparison’’ factor [4,5]:

Að ~k; !Þ ¼ AFLð ~k; !Þ
!
1" n

2
þ n2

4
' # ~k "!

!0

"

þ
; (1)

where n is the number of electrons per CuO2 unit cell,

ðXÞþ ( maxðX; 0Þ, # ~k ¼ ð1" n
2Þ"ð ~kÞ, where "ð ~kÞ is the

bare one-electron band dispersion (see later). Here,

AFLð ~k; !Þ ¼ 1
" Im

1
!"# ~k""ð!Þ with

Im"ð!Þ ¼ !2 þ $2

#0
exp

!
"!2 þ $2

!2
0

"
þ %; (2)

where $ ¼ "kBT, T is the temperature, and ! is to be
understood as !" i0þ. Here, !0 is the AFL energy scale
(i.e., high ! cutoff), and #0 governs the lifetime, and, by
causality, the quasiparticle weight (i.e., the wave function
renormalization) of the AFL, ZFL ¼ ð1þ !0ffiffiffi

"
p

#0
Þ"1, as iden-

tified from Re" [6].
The ECFL energy scale !0 measures the ‘‘average

intrinsic inelasticity’’ of the AFL. It is given [4] as

PRL 107, 056404 (2011) P HY S I CA L R EV I EW LE T T E R S
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Simplified ECFL  3 parameter fn vs data:

AsECFL(ω) =
1
π

Γ(ω)
Γ2(ω) + (ω − k̂vF − h(ω))2

× (1− ω

∆
+ ck̂vF )

Γ(ω) =
ω2 + π2T 2

ω0
e−(π2T 2+ω2)/Ω2

0

Γ→ (Γ + η)
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well

!"#$

%&'&()&*

%&'&+,&* %&'&,-.&*

"&/012 "&/012

34
50
46
758
&/9
:;
<&=
47
52

"&/012

/92 /;2

/>2

!&'&.<,?&01 !&'&.<,?&01

@A
@A

"&/012

/B2

34
50
46
758
&/9
:;
<&=
47
52

!&'&.<,C&01

!"#$

".&'&.<).&01
".&'&.<C(&01

;D

FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-
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FIG. 1. (a) ∆0 as a function of ω0 for various ZFL. Other
primary ECFL parameter values are n = 0.85, T = 100 K,
and ξ!k as described in the text. A small η value, 0.010 eV, was
used for this plot, which is used as a “lookup table” during the
fit. (b,c) Examples of the spectral function calculated with
different values of the effective sample quality parameter η.
See the caption of the next figure for parameter values used.
The instrumental energy broadening of 10 meV (FWHM) is
included.

The important energy scale ∆0 measures the “average
intrinsic in-elasticity” of the aux-FL. It is given [4] as:

∆0 =

∫ ∞

−∞

dωf(ω)〈AFL("k,ω)(ξ!k − ω)〉BZ (5)

where 〈·〉BZ denotes averaging over the first Brillouin
zone.

The parameters that enter this description are now
listed. The “primary parameters” defining the ECFL fit
consist of the dispersion ξ!k taken from band theory, the
density n, temperature T , and the aux-FL parameters
∆0, ω0, ZFL, Ω0. Of the last four parameters, only two
are free parameters. For instance, ω0 and ZFL can be
taken as free parameters, and Ω0 and ∆0 can be calcu-
lated using Eqs. 4 and 5, respectively.

The parameter η in Eq. (3) is an additional “secondary
parameter” [7] with respect to the ECFL theory [4]. Its
origin is in impurity scattering as argued in [8], and ad-
ditionally, in scattering with surface imperfections. Our
fits determine η ≈ 0.03 eV for laser ARPES and η ≈ 0.15
eV for conventional ARPES. Greater sample penetration
of photons in laser ARPES suggests that it should be less
sensitive to surface imperfections as compared to conven-
tional ARPES, thereby yielding a smaller η. We there-
fore propose that this parameter summarizes the effective
sample quality in different experiments. The difference in
line shapes arising from these values of η is demonstrated
in Figs. 1(b,c).

Our strategy is to fix a common set of intrinsic param-
eters for all the materials, and allow η to be determined
separately for each class of data. The most time consum-
ing part is the calculation of ∆0, the results of which are
summarized in Fig. 1(a).

In our line shape analysis (1) we first set n = 0.85, cor-
responding to the optimal doping. (2) Here ξ!k is taken
to be the un-renormalized band dispersion, taken from
the literature [9], and then scaled to fit the observed oc-
cupied band width, 1.5 eV, of the Bi2212 ARPES result
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FIG. 2. Laser ARPES data (symbols, Bi2212) from Ref. 14 fit
with the ECFL line shape (red lines). The free parameters of
the fit were ω0 (0.5 eV), η (0.032 eV), and ξ!k (shown). Fixed
parameters were n (0.85), ZFL (1/3). Derived parameters
were ∆0 (0.12 eV), Ω0 (0.14 eV). Other than η and ξ!k, the
same parameters are used elsewhere in the Letter. In (a), the
gray line corresponds to the theoretical curve with ξ!k = 0.15
eV.

[10][11]. (3) We choose ZFL = 1/3, to account for the
dispersion renormalization due to the high energy kink
[10, 12], which in this theory is caused by the energy
scale ω0 (cf. Fig. 5). (4) Finally, in all simulations, we
include the finite energy resolution effect and the finite
angle resolution effect as a combined Gaussian broad-
ening (10 meV FWHM for laser ARPES and 25 meV
FWHM for conventional ARPES) in energy [13].

Line shape fit for laser ARPES: Fig. 2 shows the
fit of the laser ARPES data with the ECFL line shape.
These fits were made using a procedure that is somewhat
more restrictive than that in the recent work of Casey
and Anderson [14, 15] invoking the X-ray edge singu-
larity ideas of Doniach and Sunjic [16] (CADS): we are
using global, rather than per-spectrum, fit parameters.
However, our fit is somewhat less restricted than other
fits shown in this Letter: here we allow a small variation
of ξ!k as in Ref. 14. We find an excellent fit quality, at
least comparable to CADS [14], without having to sub-
tract any extrinsic background intensity. The gray line
in panel (a) shows our calculation for k > kF . Our ex-
pectation is that, were the data for k > kF available, we
would find a reasonable fit in this k region as well [17],
as for other data sets below.

Line shape fit for conventional ARPES: Turning
to the conventional ARPES data, we find that the mag-
nitude of the parameter ω0 (0.5 eV) determined from the
fit of the sharp laser data works very well also for the
conventional ARPES data [19]. Thus, for the fit of the

Laser ARPES  BISCO 
2212 η=.032 eV 
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-
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Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates
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The normal state single particle spectral function of the high temperature superconducting
cuprates, measured by the angle resolved photoelectron spectroscopy (ARPES), has been consid-
ered both anomalous and crucial to understand. Here we show that an unprecedentedly detailed
description of the data is provided by a spectral function arising from the Extremely Correlated
Fermi Liquid state of the t-J model proposed recently by Shastry. The description encompasses
both laser and conventional synchrotron ARPES data on optimally doped Bi2Sr2CaCu2O8+δ, and
also conventional synchrotron ARPES data on the La1.85Sr0.15CuO4 materials. It fits all data sets
with the same physical parameter values, satisfies the particle sum rule and successfully addresses
two widely discussed “kink” anomalies in the dispersion.

PACS numbers: 71.10.Ay,74.25.Jb,74.72.Gh,79.60.-i

Angle resolved photo-electron spectroscopy (ARPES)
was the first probe to provide a detailed view of the
anomalous nature of high temperature cuprate supercon-
ductors, discovering unexpectedly broad spectra with in-
tense and asymmetric tails that have remained an endur-
ing mystery for the last two decades. Conventional data
taken with high energy (! 15 eV) photons from syn-
chrotron light sources have recently been supplemented
with laser ARPES data [1, 2] from lower energy (6 or 7
eV) sources. The latter show considerably sharper fea-
tures near the Fermi energy. A drastic possibility to ac-
count for this distinction is that the sudden approxima-
tion could break down for the smaller photon energies
used in laser ARPES [3]

An important un-answered question is whether the re-
sults of the two spectroscopies could be reconciled in a
single theoretical framework that does not abandon the
sudden approximation. More broadly, can we understand
the wide variety of observed lines shapes in a theoretical
framework with a sound microscopic basis and a single
set of parameters?

In this Letter, we confront a recent theory of Extremely
Correlated Fermi Liquids (ECFL) proposed by Shastry
[4] with the above challenge. The new formalism is com-
plex and requires considerable further effort to yield nu-
merical results in low dimensions. In the limit of high
enough dimensions, however, a remarkably simple ex-
pression for the Green’s function emerges; it is signifi-
cantly different from the standard Fermi Liquid Dyson
form, while satisfying the usual sum rules. We use the
above simple version of ECFL Green’s function in this
Letter, motivated by the attractive spectral shapes that
it produces with very few parameters [4]. In this Letter
we show that already the simplest version of the ECFL
theory, with very few parameters, is successful to an un-
precedented extent in detailed fitting of a wide variety
of normal state cuprate ARPES line shapes. Interesting

predictions are made for the higher temperature spectral
line skew.

Our focus in this Letter is on the data of optimally
doped Bi2Sr2CaCu2O8+δ (Bi2212) and La1.85Sr0.15CuO4

(LSCO) superconductors in the normal state, taken
with !k along the nodal direction connecting (0, 0) to
(π/a,π/a). Most of the data is taken from the published
literature, while some original data are also presented
(Bi2212 data in Figs. 4,5). Our sample is an optimally
doped Bi2212 (Tc = 91 K), grown by the floating zone
method at the Brookhaven National Laboratory (BNL),
and was measured at the Stanford Synchrotron Radiation
Lightsource (SSRL) beam line 5-4 using 25 eV photons.
The energy resolution is 15 meV and the angular resolu-
tion is 0.3 degrees.

Line shape model: The ECFL spectral function is
given as a product of an auxiliary Fermi Liquid (aux-
FL) spectral function AFL(!k,ω) and a second frequency
dependent “caparison” factor [4, 5]:

A(!k,ω) = AFL(!k,ω)

(

1−
n

2
+

n2

4
·
ξ"k − ω

∆0

)

+

(1)

where n is the number of electrons per CuO2 unit cell,
(X)+ ≡ max(X, 0), ξ"k =

(

1− n
2

)

ε(!k), where ε(!k) is
the bare one-electron band dispersion (see later). AFL is
taken as

AFL(!k,ω) =
1

π
· #m

1

ω − ξ"k − Φ(ω)
(2)

#m Φ(ω) =
ω2 + τ2

Ω0
exp

(

−
ω2 + τ2

ω2
0

)

+ η, (3)

where τ = πkBT , T is the temperature. From $eΦ [6],
the quasi-particle weight of the aux-FL is given by

ZFL =

(

1 +
ω0√
πΩ0

)−1

(4)
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Linear rise of intensity
for occupied states.
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FIG. 7. (Color online) EDC line shapes at different values of energy ξ displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to ξ close to the chemical potential. Note that the curves are skewed
to the left, i.e., a mirror image of the rightward skew seen in the constant-x MDC scans above Fig. 6, in a comparable range of energies and
wave vectors. Panel (b) corresponds to the higher energy range, and we see that only one broad maximum is found at a given ξ . The inset in
(b) shows the aux-FL constant-ξ scans for the same range; here, each ξ results in a pair of maxima, originating from the functional form of the
self-energy in Eq. (37).

so that ρPeak
G (ξk,ε̄) = ρ∗

G(k)γ (Qk,ε̄), with a characteristic line-
shape function γ given by

γ (Qk,ε̄) =
[

Qk(1 − ε̄)
Qk(1 − ε̄) + ε̄2

]
, (60)

with

Qk = 2
e−uk

cosh (uk)
. (61)

The parameter Qk goes to zero near the Fermi surface at low
T since uk → ∞, but at higher binding energies increases:
Qk → 2.

As we get deeper into the occupied states ξ % 0, we find
a remarkable change in shape of the spectral functions. This
is illustrated in Fig. 10 where we plot γ of Eq. (60) after
normalizing to unit area. In order to have a well-defined
quasiparticle-type peak in ρG for ε ∼ O(1), Qk must be small
enough. This translates to the requirement of ξk being close
to the Fermi surface. By setting Q ∼ 1 as the condition for
losing a peak in the spectrum, we obtain the condition

ε0 + (1 − Zk)ξk = 1√
3
Zk'k, (62)

beyond which it is meaningless to talk of quasiparticles. This
gives ε0 as a rough characteristic scale for the disappearance
of the quasiparticle peaks.

Figure 11 illustrates the change in shape somewhat dif-
ferently by normalizing all curves to unity at the peak as in
Eq. (60). The peak at ε̄ = 0 is sharp and quite symmetric for
Q % 1, and becomes broader and more left skewed as Qk

increases toward its maximum value of two. Attaining the
maximum value is possible, in principle, requirement being
uk = 0 or from Eq. (44):

(0 = n2

4 − 2n
(e )

(
EFL

k

)
. (63)

Unless (0 is very small, this condition is hard to satisfy. If this
possibility is achieved, then there are several interesting conse-
quences. Firstly, we note that from Eq. (49), the magnitude of
the spectral function at uk = 0 becomes insensitive to disorder
and temperature, etc. Its magnitude, n2Zk/(8π(0), should be

useful for finding (0. If this is approximately satisfied, then the
peak structure loses meaning and the spectrum is essentially
flat. Taking ε̄ = −1, the fall off from the peak value of unity
is 80%, and the spectrum becomes essentially featureless.

G. Skewness parameter of the spectrum

We now estimate the skewness of the spectrum. The
function (60) drops to half its peak value at two values of
ε̄L,R to the left and right of the peak given by

ε̄L,R = − 1
2Qk ∓

√
Qk + 1

4Q2
k. (64)

For small Q % 1, the (dimensionless) width of the peak is
small, it increases with Q as discussed further below. We
define a dimensionless skew parameter in terms of the energies
ε∗,εR,L [rather than the ε̄’s that are related via Eq. (59)]:

κ(ξk) = 2ε∗ − εR − εL

ε∗ − εL

= tanh(uk) − 1 +
√

[2 − tanh(uk)]2 − 1, (65)

with the property that near the Fermi level when uk → +∞
the variable κ → 0, and we get a symmetric curve about
the maximum. On the other hand, for deeper occupation,
uk decreases in magnitude toward zero, driving κ → 0.732
and gives a curve that is increasingly biased to the left. The
asymmetry κ grows as O(T 2) at low temperatures, and it is
rather large at room temperature. As a rough estimate, the
quasiparticle peak is lost when Qk ∼ 0.5 where uk ∼ 0.98
and κ(ξk) ∼ 0.5. This loss of quasiparticle peak structure, skew
factor, and its experimental signature is studied in greater detail
in Ref. 3. See Fig. 2 for typical plot of skew parameter κ and
Q versus the hole binding energy Ek .

VI. SELF-ENERGY OF THE SELF-ENERGY AND A
MORI-TYPE PROCEDURE.

Since the construction given above generates ,(z) from
G(z) given only the representation (1), we can as well repeat
the trick. Since ,(z) satisfies Eq. (18) with a density ρ,(x)
that is assumed known, and is analytic in the complex z plane

165112-10

On a larger energy scale
there are often broad peaks beyond which 

the intensity falls. 
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FIG. 1. Line shape fits of EDCs for Bi2212 (x = 0.15) using
(a) sECFL, (b) MD-pECFL, and (c) MI-pECFL. Data and
model parameters are identical with those in Ref. 7 (ZFL =
0.33, ω0 = 0.5 eV, ∆0 = 0.12 eV), except for slightly different

values for η (0.17 → 0.18 eV) and ε($k) [18].

to be of the form

G(!k,ω) =
Qn − n2

4
Φ(ω)
∆0

ω − ε(!k)− Φ(ω)
(2)

where Qn = 1− n
2 = 1+x

2 is the total spectral weight per
!k in the t-J model, and n (x) is the number of electrons
(holes) per unit cell. Φ(ω) is an ordinary Fermi liquid
self energy, described mathematically in Eq. 2 and foot-
note 6 of Ref. 7: here, it suffices to note that Φ(ω) is
completely determined by two intrinsic parameters, ZFL

(quasi-particle weight) and ω0 (cutoff energy scale), and
one extrinsic parameter η (impurity scattering contribu-
tion to ImΦ) [17]. ∆0 is an energy scale parameter, deter-
mined completely by n, ZFL, and ω0, through the global
particle sum rule. MDC fits reported here do not modify
these parameters [17]. Lastly, we now use the symbol
ε(!k), instead of ξ(!k) (Ref. 7), for the one electron energy.
The above Green’s function can be rewritten as

G(!k,ω) =
Qn

γn
+

Cn(!k,ω)

ω − ε(!k)− Φ(ω)
(3)

Cn(!k,ω) = Qn

(

1−
ω − ε(!k)

γn

)

(4)

where Cn(!k,ω) is the “caparison factor” [7, 12] and the
energy scale∆0 is absorbed into γn, which we will discuss
below. As all symbols in Eq. 3 other than Φ(ω) are real,

A(!k,ω) = Cn(!k,ω)AFL(!k,ω) (5)

where AFL is the spectral function for the “auxiliary
Fermi liquid (AFL)” Green’s function [19], AFL =
1
π
ImGFL = 1

π
Im [ω − ε(!k)− Φ(ω)]−1.

The caparison function Cn, summarized concisely in
Eq. 4, played the central role in the sECFL model. In
this work, we show how its role can be extended even fur-
ther by a key phenomenological modification: inspired by
data, we treat the ω dependence and the !k dependence of
Cn as separately adjustable. We shall refer to the modi-
fied model as pECFL, where p stands for “phenomeno-
logical.” We distinguish between MD-pECFL and MI-
pECFL based on whether Cn remains momentum depen-
dent (MD) or made momentum-independent (MI).
With this much introduction to our models, we shall

first discuss line shape fits, before explaining the mod-
els in full. As for free fit parameters, all models have η
and ω0 like sECFL [7, 17]. In addition, the group ve-

locity, vF0, of ε(!k), required small adjustment for differ-
ent models to describe experimental peak positions [18].
There are no additional fit parameters for MI-pECFL,
while there are two more (see later) for MD-pECFL.
Figure 1 shows ARPES line shape fits for the normal

state data for the optimally doped Bi2Sr2CaCu2O8+δ

(Bi2212) sample along the “nodal direction,” (0, 0) →
(π,π). Panel a shows the sECFL fit essentially identical
[20] with the fit in the previous work [7], while panels b,c
show pECFL fits. The fit quality of MI-pECFL is clearly
the best, while that of MD-pECFL is slightly poor, for
the reason to be discussed just before the last figure.
Figure 2 shows ARPES line shape fits for MDCs of the

same data set. Panel a shows clearly that sECFL has
difficulty fitting the data even at ω = 0, i.e. at the Fermi
energy. In panel b, where the MD-pECFL model is used,
the fit improves noticeably. However, the MI-pECFL fit
shown in panel c is definitively the best.

FIG. 2. Line shape fits of MDCs for Bi2212 (x = 0.15) using
(a) sECFL and (b) MD-pECFL and (c) MI-pECFL. Fit pa-
rameters are identical with those used for Fig. 1, except for
the reduced η value (0.13 eV) for (a).
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2 is the total spectral weight per
!k in the t-J model, and n (x) is the number of electrons
(holes) per unit cell. Φ(ω) is an ordinary Fermi liquid
self energy, described mathematically in Eq. 2 and foot-
note 6 of Ref. 7: here, it suffices to note that Φ(ω) is
completely determined by two intrinsic parameters, ZFL

(quasi-particle weight) and ω0 (cutoff energy scale), and
one extrinsic parameter η (impurity scattering contribu-
tion to ImΦ) [17]. ∆0 is an energy scale parameter, deter-
mined completely by n, ZFL, and ω0, through the global
particle sum rule. MDC fits reported here do not modify
these parameters [17]. Lastly, we now use the symbol
ε(!k), instead of ξ(!k) (Ref. 7), for the one electron energy.
The above Green’s function can be rewritten as

G(!k,ω) =
Qn

γn
+

Cn(!k,ω)

ω − ε(!k)− Φ(ω)
(3)

Cn(!k,ω) = Qn

(

1−
ω − ε(!k)

γn

)

(4)

where Cn(!k,ω) is the “caparison factor” [7, 12] and the
energy scale∆0 is absorbed into γn, which we will discuss
below. As all symbols in Eq. 3 other than Φ(ω) are real,

A(!k,ω) = Cn(!k,ω)AFL(!k,ω) (5)

where AFL is the spectral function for the “auxiliary
Fermi liquid (AFL)” Green’s function [19], AFL =
1
π
ImGFL = 1

π
Im [ω − ε(!k)− Φ(ω)]−1.

The caparison function Cn, summarized concisely in
Eq. 4, played the central role in the sECFL model. In
this work, we show how its role can be extended even fur-
ther by a key phenomenological modification: inspired by
data, we treat the ω dependence and the !k dependence of
Cn as separately adjustable. We shall refer to the modi-
fied model as pECFL, where p stands for “phenomeno-
logical.” We distinguish between MD-pECFL and MI-
pECFL based on whether Cn remains momentum depen-
dent (MD) or made momentum-independent (MI).
With this much introduction to our models, we shall

first discuss line shape fits, before explaining the mod-
els in full. As for free fit parameters, all models have η
and ω0 like sECFL [7, 17]. In addition, the group ve-

locity, vF0, of ε(!k), required small adjustment for differ-
ent models to describe experimental peak positions [18].
There are no additional fit parameters for MI-pECFL,
while there are two more (see later) for MD-pECFL.
Figure 1 shows ARPES line shape fits for the normal

state data for the optimally doped Bi2Sr2CaCu2O8+δ

(Bi2212) sample along the “nodal direction,” (0, 0) →
(π,π). Panel a shows the sECFL fit essentially identical
[20] with the fit in the previous work [7], while panels b,c
show pECFL fits. The fit quality of MI-pECFL is clearly
the best, while that of MD-pECFL is slightly poor, for
the reason to be discussed just before the last figure.
Figure 2 shows ARPES line shape fits for MDCs of the

same data set. Panel a shows clearly that sECFL has
difficulty fitting the data even at ω = 0, i.e. at the Fermi
energy. In panel b, where the MD-pECFL model is used,
the fit improves noticeably. However, the MI-pECFL fit
shown in panel c is definitively the best.

FIG. 2. Line shape fits of MDCs for Bi2212 (x = 0.15) using
(a) sECFL and (b) MD-pECFL and (c) MI-pECFL. Fit pa-
rameters are identical with those used for Fig. 1, except for
the reduced η value (0.13 eV) for (a).
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sition defined by a1: ω = ε(#k) + a1γn0. This γn func-
tion ensures that (1) Cn → Qn/ω as ω → ∞, as well as
ω → −∞, as required by the spectral weight sum rule
per #k [24] within the t-J model, and (2) A(#k,ω) ≥ 0 for
any #k,ω values, as long as

a1 ≤ 1 + a2 (1− log a2) ≡ a1,max(a2). (7)

This way, MD-pECFL ensures the sum rule and the non-
negativity of A(#k,ω).
Accordingly, Cn for the MD-pECFLmodel stays clearly

above zero and is smooth (Fig. 3(e)). Cn for the MI-
pECFL model is, by definition, that for the sECFL model
for ε(#k) = 0. However, we find that it can also be taken

to be that for the MD-pECFL model for ε(#k) = 0, as
indicated by labels in this figure, since fit results are very
much comparable between these two choices.

The new parameters a1 and a2 play the role of describ-
ing the MDC asymmetry. To see this, we must first note
that, for a given value of a2, a1 has both an upper bound
(Eq. 7) and a rough lower bound, a1 >

∼ −a2. The lower
bound arises due to the empirical fact that the EDC line
shape cannot be fit with only the AFL theory, which the
MD-pECFL theory converges to (up to an overall scale) if
a1 → −∞. These bounds and the line shape fit severely
restrict values of a1 and a2: a1 lies at about -1 and a2
lies at about 2, both with a small wiggle room of about
±1. The line shape depends little on a2 in this range,
and so we take a2 ≡ 2. Fig. 3(f) shows the reduction
of the MDC asymmetry as the a1 value is reduced, ∞
(sECFL) → 1 → −1 → −∞ (MI-pECFL) [25].

For Bi2212, MD-pECFL is significantly better than
sECFL (see Figs. 2(b),3(b),3(e)). However, it is also sig-
nificantly worse than MI-pECFL. Separately, the a1 →
−∞ MD-pECFL model gives as good an MDC fit as the
MI-pECFL model, while the a1 = 1 MD-pECFL model
gives as good an EDC fit as the MI-pECFL model. The
middle ground is found at a1 = −1, at which value both
the EDC fit and the MDC fit suffer a little.

However, the situation changes when we examine data
of another cuprate family. Figure 4 shows our fit of an
available set of La2−xSrxCuO4 (LSCO) data [26], show-
ing strong MDC asymmetry (panels b–e). Here, identical
fit parameter values [27] as those for Bi2212 are used, ex-
cept for η = 0.12 eV and vF0 [18]. Fig. 4(a) shows an
EDC fit, good by all models [27], similarly as we found for
Bi2212. However, the MDC fit is a different matter. No-
tably, MDCs show significant asymmetry for ω <

∼ −0.07
eV (panel b), and that asymmetry can be described prop-
erly only by the MD-pECFL model, as illustrated clearly
in fits shown in panels b through e [28].

In this Letter, we proposed a phenomenological
ARPES line shape model, based on the ECFL theory
[12, 13]. The essential feature of our model remains the
caparison factor [7, 12, 14], which is capable of describ-
ing both anomalous EDC line shapes [7, 16], universal

FIG. 4. EDC fits and MDC fits to the data of optimally doped
(n = 0.85) LSCO [26], taken along the nodal direction. (a)
EDC fits at k = kF . (b) MDC fits by MD-pECFL. (c-e) MDC
fits by various models.

for high Tc cuprates, and apparently more conventional
MDC line shapes [9, 10]. While our model is not the
first to fit both EDCs and MDCs [9] of high Tc cuprates,
its demonstrated fidelity (including a qualitative descrip-
tion of |Mif |2) and range of applicability is now unprece-
dented. Also unprecedented is the notable fact that our
model requires a Dyson self energy [29], whose form is
drastically different from that assumed by the prevalent,
but incomplete, MDC-only analysis [30, 31]; to our knowl-
edge, ours is the only #k-dependent [29] Dyson self en-
ergy that has fit cuprate MDCs. Thus, extending the
current analysis to wider ranges of momentum, doping,
and temperature and studying its implication on other
properties such as the resistivity [14] seems to make a
great research topic for the immediate future. In addi-
tion, continuing first principles studies [14] indicate that
the interplay between the extreme correlation and the
one electron band structure (e.g., the t′/t ratio) may be
important. We hope to learn, with more experiments
and analysis, whether such interplay accounts for certain
material dependence that we have pointed out here.
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Phenomenological model for the normal state ARPES line shapes of high temperature

superconductors

Kazue Matsuyama1 and G.-H. Gweon1, ∗

1Department of Physics, University of California, Santa Cruz, CA 95064
(Dated: June 4, 2013)

Fully describing the single particle spectral function observed for high temperature superconduc-
tors in the normal state is an important goal, yet unachieved. Here, we present a phenomenological
model that demonstrates the capability to meet such a goal. The model results from employing key
phenomenological improvement of the so-called extremely correlated Fermi liquid (ECFL) model,
and is shown to successfully describe the data as a function of momentum as well as energy, for differ-
ent materials (Bi2Sr2CaCu2O8+δ and La2−xSrxCuO4), with an identical set of intrinsic parameters.
This work goes well beyond the prevalent analysis of momentum dependent curves.

PACS numbers: 71.10.Ay,74.25.Jb,74.72.Gh,79.60.-i

In the sudden approximation theory [1] of the angle
resolved photo-electron spectroscopy (ARPES), photo-
electron counts, I(!k,ω), recorded as a function of mo-

mentum (!k) and energy (ω) [2] are given by

I(!k,ω) = |Mif |
2 f(ω)A(!k,ω) (1)

where Mif is the dipole matrix element for the photo-
excitation, f(ω) is the Fermi-Dirac function, and
A(!k,ω) = 1

π
ImG(!k,ω) is the single particle spectral func-

tion, where G is the single particle Green’s function [3].
As the single particle Green’s function in the nor-

mal state is believed to contain vital information on the
nature of excitations relevant to the high temperature
(“high Tc”) superconductivity, its characterization by
ARPES has been a major line of research. Various ap-
proaches towards getting at this information have been
attempted: a phenomenological approach based on a sim-
ple scaling behavior of the electron self energy [4], an
asymptotic solution to the Gutzwiller projected ground
state of the t-J Hamiltonian [5], application of a non-
Fermi liquid theory [6] for low dimensions, and a newly
proposed solution to the t-J Hamiltonian [7].

For an experimental “cut,” i.e. an experimental data
set taken along a line of !k values, I(!k,ω) is a func-
tion defined on a two dimensional domain. This multi-
dimensionality makes analyzing I(!k,ω) a non-trivial
task. While attempts [8] have been made to analyze the
I(!k,ω) image (e.g., see Fig. 3(a)) as a whole, the current
understanding of line shapes in terms of A(!k,ω) depends
on the analysis of selected energy distribution curves
(EDCs; EDC is a function of ω, defined as I(!k = !k0,ω))
[4, 5, 7, 9] or selected momentum distribution curves
(MDCs; MDC is a function of !k, defined as I(!k,ω = ω0),

with !k varying along a line) [9, 10].
Currently, there is no consensus on a theoretical model

that can suitably describe ARPES data of high Tc mate-
rials. A model that can describe the normal state data,
both EDCs and MDCs, obtained in different experimen-
tal conditions and for different materials, with the same

intrinsic parameters would be a good candidate. Here,
we propose a new such phenomenological model.

The new model arises as the result of critically im-
proving the so-called extremely correlated Fermi liquid
(ECFL) model [7], which was shown to be quite success-
ful in describing EDCs. The new model now makes it
possible to describe other key aspects of the data as well:
MDC fits are excellent and the values of |Mif |2 behave
reasonably. And, it improves EDC fits, to boot. The
result is a phenomenological model in which the appar-
ent dichotomy between the EDCs and the MDCs [6, 11]
are described excellently by two independent aspects of a
single theoretical concept, the caparison factor [7, 12].

A phenomenological study of this kind seems to be
helpful, also in light of the on-going development of
the ECFL theory [13, 14]. The theoretical formalism
of ECFL initiated by Shastry [12, 13] is quite involved,
and, while a numerical solution [14] valid for hole dop-
ing x >

∼ 0.3 is now available, more time seems necessary
to extend these promising results to near-optimal dop-
ing. Thus, a phenomenological model based on the main
feature of the theory, the caparison factor, may be of con-
siderable value at this stage. In this theory [13], the ca-
parison factor is an ω-dependent adaptive spectral weight
that encodes two key pieces of physics: the Gutzwiller
projection that reduces the spectral weight at high ω and
the invariance of the Fermi surface volume at low ω.

In our previous work [7], it has been demonstrated that
the normal state EDCs for optimally doped cuprates for
two different compounds, or for different experimental
conditions (low photon energy or high photon energy),
can be explained using an ECFL line shape model, all
with one set of intrinsic parameters. We will refer to that
model as the “simplified ECFL (sECFL)” model [15],
in relation to the fuller theory in development [13, 14].
While the EDC analysis used there has strong merits
[7, 16], a natural subsequent question is whether MDCs
can be described as well, along the same line of theory.

In the sECFL model [7], the Green’s function is taken
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Low energy and High kinks and ECFL 
(MDC fits here)

already exists in AFL, it cannot be associated with !0 but
rather with !0. The (numerical) dynamical mean field
theory [29] can already account for this feature as can
the present ECFL (analytical) theory.

Turning to the low energy ARPES kink at !70 meV,
Figs. 5(c)–5(e) illustrate the observed weak dispersion
anomaly in the normal-state data (c), reproduced in the
ECFL theory (d) but not in the AFL theory (e). Here we use
a visualization method for momentum distribution curve
(MDC: intensity curve at a fixed ! value), an object
discussed primarily for low energy kinks. Thus this feature
originates from the scale !0, it causes an increased asym-
metry and the (blue) shift of the peak to high hole energy,

when the third term in the caparison factor ( n
2

4
! ~k"!
!0

) of

Eq. (1) becomes important. To our knowledge, the ECFL
theory is a unique analytical theory that has both these kink
features arising from purely electronic (extreme)
correlations.
In Fig. 5(f), we show the temperature dependence of

the dimensionless peak skew or asymmetry, defined as
ðHL" HRÞ=ðHLþ HRÞ, where HR (HL) is the half-width
at half maximum on the right (left) side of the peak. The
predicted T-dependent asymmetry, predicted even greater
for " & 0:15 eV (synchrotron data; not shown), would be
interesting to explore in the future.
Further work is necessary to refine the picture suggested

in this Letter. For example, as"! ~k increases, the line shape
becomes somewhat too asymmetric. Work is also in
progress to apply the theory to two particle response as
seen, e.g., in optical conductivity. We have checked that the
bubble approximation (conductivity as a product of two
G’s) shows an agreement in the order of magnitude of the
frequency scale and the conductivity.
Conclusions.—We have shown that it is possible to

understand both ARPES data sets (laser or conventional)
comprehensively, with identical physical parameters. Work
going beyond the nodal cut and the optimal doping value is
in progress. The theory is very tolerant of the uncertainty in
the background subtraction for the conventional ARPES
data. Additionally, the theory satisfies the global particle
sum rule, and contains two interdependent energy scales
(!0 and!0) that correspond well to the energy scales of the
two kinks. Thus the simplest version of the ECFL theory
using a small number of parameters, provides a framework
to understand the ARPES line shape data for the normal
state of the cuprates: it works extremely well across tech-
niques, samples, and temperatures.
Portions of this research were carried out at the SSRL, a

Directorate of SLAC National Accelerator Laboratory and
an Office of Science User Facility operated for the U.S.
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BNL, supported by the U.S. DOE under Grant No. DE-
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by U.S. DOE under Grant No. FG02-06ER46319.
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Eq. (40) the vanishing of Q implies ( k̂ vf )kink = − ∆0
ν0−νΦ

thus locating the kink momentum. It is negative pro-

vided ν0 > νΦ and sets a constraint on the observability

of the kink. As we see in Fig. (1), the kink becomes sharp

when Γ0 decreases. For these parameters, the MDC spec-

trum formula Eq. (39) does not have a kink. In general

the MDC dispersion Eq. (39) is not very robust against

choices of the velocity renormalization parameters. In

many cases there is no solution with real energy, imply-

ing the absence of a sharp peak in this range of variables.

From Eq. (28) we see various parameters that control Γ0,

in case of laser ARPES, it is argued15 that η is small so

we expect to see sharper kinks in this setup. Further, as

T drops below Tc, the d-wave superconductor has gap-

less excitations along the nodal direction < 11 >, and

the quasiparticles seen in this case are sharper. Theo-

retical considerations54 show that the reduction in the

available gapless states leading to the linewidth in the

superconductor indeed give a reduction of Γ0 and hence

to a sharper kink.

�0.14 �0.08

�0.15
�0.10
�0.05

�0.14 �0.1 �0.06 �0.02
�0.15

�0.10

�0.05

0.00

vF k
�

E�
�k�

FIG. 1: A kink in the EDC dispersion relation from Eq. (38)
with parameters ∆0 = .025 eV, ν0 = 1., νΦ = 0.7 and three
values of Γ0 = 0., .01, .02 in eV from top to bottom. Inset The
MDC dispersion Eq. (39) (upper) and the EDC dispersion
(lower) at Γ0 = 0.01 eV. The kink is more visible in the EDC
curve. The kink position is determined from (k̂vF )kink =
−∆0/(ν0 − νΦ) and the location of the kink (at Γ0 = 0) is at
E∗

kink = νΦ(k̂vF )kink, so that their ratio directly yields the
parameter νΦ. The parameter ν0 equals the initial slope (near
k̂ vf ∼ 0). From this ∆0 can be inferred as well.

It is also important to note that the ECFL spectral

function Eq. (27) has an unusual correction to the stan-

dard Fermi liquid part, embodied in the caparison func-

tion µ(k,ω). This function is odd in frequency, thus dis-

turbing the particle hole symmetry of the Fermi liquid

part, and it grows in importance as we approach the in-

sulating state since ∆0 → δ∆0 as indicated in Eq. (33).

It is also interesting that the spectral line shape in the

calculation of Anderson and Casey Ref. (40) (AC) as well

as Doniach and Sunjic Ref. (41) (DS) also have such odd

in ω corrections to the Fermi liquid part. In fact the

AC result may be viewed as the vanishing of the scale

∆0 ∝ kBT so that the ground state is non Fermi liq-

uid like. At finite T and ω the AC and DS theories are

parallel with the ECFL line shapes regarding the asym-

metry as remarked in Ref. (8), and we wish to make a

few comments about the experimental tests for such an

asymmetry, going beyond standard measures such as the

skewness factor.

DS41 make the interesting point that the asymmetry

is best isolated by looking at the inverse of the spectral

function in a plot of

1

A(k,ω)
vs (ω − E∗

k)
2, (43)

where E∗
k is the peak location in the EDC. With this plot,

a Fermi liquid yields two coincident straight lines above

and below E∗
k , whereas an asymmetric contribution, as in

Eq. (27) or the DS lineshape41, would split into two dis-

tinct non linear curves, from below and above E∗
k . The

inversion of the spectral function is an interesting device,

since it refocuses attention on the asymmetric parts. For

very similar reasons Ref. (5) (Fig. 1 inset) also advo-

cates plotting the inverse of the spectral function. On

the other hand an untrained examination of the EDC

curves invariably focusses on the close proximity of the

peaks of A(k,ω), these are arguably the least interesting

part of the asymmetry story!

In fact armed with the explicit knowledge of the spec-

tral function of the ECFL theory in Eq. (27), we can aim

to do better in establishing the asymmetry and in de-

termining the various parameters. We first redefine the

frequency by subtracting off the EDC peak value

�ωk = ω − E∗
k , (44)

so that the spectral peak occurs at �ωk = 0. The inverse

spectral function can be computed as a function of �ωk

and reads:

A(k,E∗
k)

A(k,E∗
k + �ωk)

= 1 +
euk

2Γ0
× �ω2

k

Γ0 cosh(uk)− �ωk
,

(45)

where the peak value of the spectral function at �ωk = 0

is :

A(k,E∗
k) =

A0

2
euk . (46)

We next construct the object Q(�ωk) from Eq. (45) by

subtracting unity and cross multiplying:

Q(�ωk) =
�ω2
k

A(k,E∗
k)/A(k,E∗

k + �ωk)− 1
. (47)

This variable is designed to be a �ωk independent constant

in a simple Fermi liquid with a Lorentzian line shape
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2.5. Electronic origin of the low energy kink and further tests of dynamical asymmetry

In this section we summarize the origin of the important low energy kink feature of the dispersion

relation obtained in the ECFL theory. Since a similar feature is seen in the experiments on angle

resolved photoemission studies (ARPES) of various groups [30–32,14], it is worth clarifying the purely

electronic origin of this feature within the ECFL theory. A higher (binding) energy kink is also seen

and is well understood in terms of the behavior of the self energy over a greater range [5,9], and is

not pursued here. Rather we focus on the low energy kink seen around−.05 eV in several compounds

[30–32,14], and finds a natural interpretation within ECFL.

We also present a few experimentally testable features relating to dynamical asymmetry, i.e. the
asymmetric in ω correction to the Fermi liquid theory contained in ECFL, arising from the caparison

function in Eq. (27).

Let us assume that |ω| � Γ0 at low enough frequency relative to T so that we may treat Γ0 as a

constant. We may then bring Eq. (27) to an interesting form studied in Ref. [5] by defining variables

� = ω − νΦ k̂ vf

Γ0

sinh uk = ∆0 + (ν0 − νΦ) k̂ vf

Γ0

, (36)

so that the spectral function reduces to the standard form occurring in the ECFL theory:

A(uk, �) = A0

sinh uk − �

1 + �2
× θ(sinh uk − �) (37)

with A0 = z0
∆0

. This expression is valid for small enough � [5,4], and can be viewed as the (weighted)

sum of the real and imaginary parts of a simple damped oscillator with a scaled susceptibility χ(�) =
1/(� + i). It is interesting to note that the scaled spectral function (37) can be related to the (scaled)

Fano line shape

AFano(qf , �) ∝ (qf + �)2

(1 + �2)
. (38)

This spectrum is often considered with the Fano parameter qf > 0, it is highlighted by a vanishing

at negative energies � = −qf , representing the destructive interference of a scattering amplitude

with a background term arising from a continuum of states. However we can flip the sign of qf and by

choosing qf = −euk , we can relate these through

A(uk, �) ∝
�
AFano(−euk , �) − AFano(−euk , ∞)

�
. (39)

For the purpose of representing ARPES spectral functions, the scaled spectral function (37) gains an

advantage over the Fano line shape (38) by the absence of a background at large |�|. In relating them

via Eq. (39), the background term in the Fano process is killed, while its interference with the peak is

retained.

Unlike the simple Lorentzian obtained at uk → ∞, the energy variable enters the numerator as

well as the denominator in both Eq. (37) and the Fano shape. This feature gives rise to the characteristic

skew to the ECFL spectrum. The spectral function can be maximized with respect to the frequency

at a fixed k̂, yielding the energy distribution curve (EDC) dispersion E∗
k , or with respect to k̂ at a

fixed frequency ω, giving the momentum distribution curve (MDC) dispersion Ek. Let us introduce

the convenient variables

r = ν0

νΦ

, (40)

giving the ratio of the two velocity factors. The ratio r = 0 in the limit of high dimensions [9]. In

the simplified ECFL analysis in [4,14], we find r > 1 due to the suppression of νΦ relative to ν0 by

B.S. Shastry / Annals of Physics 343 (2014) 164–199 175

a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).

Q is a momentum variable
r is the ratio of the two velocities
ν0 and νΦ. 
Recall that Δ0 is important asymmetry scale. 
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).

E and E* are MDC and EDC peak energies found by max A
w.r.t. ω  or k. 

In MDC  a clear maximum is not very robust. EDC more robust

Both spectra are hybrids of massless and massive Dirac spectra,
- asymptotically
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).

Both spectra
have kinks 
at Q=0 i.e.

Hence kink in occupied side provided r>1.

LE Kink arises from role of caparison function.

Kink energy reads off important and emergent asymmetry
energy sale Δ0.

Dependence on n,T and η given explicitly here

7

where vf = (∂kεk)kF is the bare Fermi velocity. The
expansion coefficients above are in principle functions of
the location of �kF on the Fermi surface, and have suit-
able dimensions to ensure that Ψ is dimensionless and Φ
is an energy. The dimensionless velocity renormalization
constants νΦ and νΨ capture the the momentum depen-
dence normal to the Fermi surface, arising from the two
respective self energies. The Greens function near the
Fermi surface can now be written as

G(�k,ω) ∼ z0
α0

�
α0 + cΨ(ω + νΨ k̂ vf ) + iR/γΨ

ω − νΦ k̂ vf + iR/ΩΦ

�
(26)

where z0 = α0/(1+cΦ) is the net quasiparticle renormal-
ization constant. The spectral function can be computed
from A(�k,ω) = − 1

π�m G(�k,ω+i0+) in the ECFL form of
a Fermi liquid function times a caparison function µ(k,ω)
as follows:

A(�k,ω) =
z0
π

Γ0

(ω − νΦ k̂ vf )2 + Γ2
0

× µ(k,ω), (27)

where the (Fermi liquid) width function

Γ0(k̂,ω) = η +
π(ω2 + (πkBT )2)

ΩΦ
, (28)

with an extra phenomenological parameter η required to
describe elastic scattering15 in impure systems. The ca-
parison function is

µ(k̂,ω) = 1− ω

∆0
+

ν0 k̂ vf
∆0

, (29)

where we introduced an important (emergent) low energy
scale combining the other parameters:

∆0 = α0
γΨ

ΩΦ − cΨγΨ
(30)

and the dimensionless momentum dependence coefficient

ν0 = (νΨγΨcΨ + νΦΩΦ)/(ΩΦ − cΨγΨ). (31)

The five final parameters defining the spectral function
Eq. (27) are z0, ν0, νΦ,ΩΦ,∆0. For fitting experimen-
tal data, it may be best to think of them as adjustable
parameters that determine the line shapes, their asym-
metries and also features in the spectral dispersions. In
addition the η parameter is needed to describe impurities
that are not contained in the microscopic theory. In the
early fit15 the total number of free parameters is even
smaller- just two instead of five. The corrections to the
Landau Fermi liquid theory are encapsulated in the ca-
parison factor, which contains a correction term that is
odd in frequency and seems to be ultimately responsible
for the asymmetric appearance of the line shapes8,15.
For reference we note that in the limit of high

dimensions10, the coefficient of the momentum depen-
dent term ν0 vanishes in Eq. (27), while the earlier fits

to experiments in15, it is non zero, and in modified fits16

its magnitude is varied to get a good description of the
constant energy cuts of the data.
It is useful to consider the approach to the Mott in-

sulating limit, where the parameters behave in a spe-
cific fashion to satisfy the expected behavior. We con-
sider the limit of density δ → 0, and a frequency scale
0 ≤ |ω| < ωc ∼ δt, where the above expression Eq. (27)
may be expected to work. For reference, it is use-
ful to note that in this limiting case, the widely used
Gutzwiller-Brinkman-Rice theory2,3 gives the quasipar-
ticle propagator as:

GGBR(�k,ω) ∼
z

ω − z k̂ vf
, (32)

where z vanishes linearly with δ as z = 2δ/(1 + δ).
This leads to a delta function spectral weight AGBR =
z δ(ω−z k̂ vf ). In contrast Eq. (27) provides the spectral
function at non zero T and ω.
As n → 1 we expect Ψ0 → −n/2 in order to reach

the Mott insulating limit continuously. This implies that
α0 ∝ δ in this regime, and this drives the various other
coefficients as well. We summarize the expected behavior
of the above five coefficients

z0 → z0 × δ

∆0 → ∆0 × δ

ΩΦ → ΩΦ × δ

ν0 → ν0 × δ

νΦ → νΦ × δ (33)

by using an overline for denoting a non vanishing limit
of the stated variable10,52. The scaling of the velocity
constants ν is guided by the results in high dimensions,
and ensure that the dispersing quasiparticles have a van-
ishing bandwidth as we approach the insulator- as em-
phasized by Brinkman and Rice3. From this we find that
the ECFL spectral function Eq. (27) satisfies a simple ho-
mogeneity (i.e. scaling) relation valid in the low energy
regime for a scale parameter s:

A(k̂, sω|s T, s δ) = A(k̂,ω|T, δ), (34)

where the dependence on the temperature and hole den-
sity are made explicit. The momentum variable does not
scale with s due to the assumed behavior of the ν’s. The
scaling holds for η = 0, and generalizes to a non zero val-
ues if we scale η → s η. This scaling relation describes a
Fermi liquid including significant corrections to Fermi liq-
uid theory through the caparison function. It rests upon
the specific behavior for the coefficients as the density
varies near the insulating state, unlike other generalized
scaling relations that have been proposed in literature
Ref. (53) for non Fermi liquid states. If set s × δ = δ0
with say δ0 <∼ .5, then the ratio δ0

δ � 1 and we infer

A(k̂,ω|T, δ) ∼ A(k̂,ω
δ0
δ
|T δ0

δ
, δ0), (35)
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where vf = (∂kεk)kF is the bare Fermi velocity. The
expansion coefficients above are in principle functions of
the location of �kF on the Fermi surface, and have suit-
able dimensions to ensure that Ψ is dimensionless and Φ
is an energy. The dimensionless velocity renormalization
constants νΦ and νΨ capture the the momentum depen-
dence normal to the Fermi surface, arising from the two
respective self energies. The Greens function near the
Fermi surface can now be written as

G(�k,ω) ∼ z0
α0

�
α0 + cΨ(ω + νΨ k̂ vf ) + iR/γΨ

ω − νΦ k̂ vf + iR/ΩΦ

�
(26)

where z0 = α0/(1+cΦ) is the net quasiparticle renormal-
ization constant. The spectral function can be computed
from A(�k,ω) = − 1

π�m G(�k,ω+i0+) in the ECFL form of
a Fermi liquid function times a caparison function µ(k,ω)
as follows:

A(�k,ω) =
z0
π

Γ0

(ω − νΦ k̂ vf )2 + Γ2
0

× µ(k,ω), (27)

where the (Fermi liquid) width function

Γ0(k̂,ω) = η +
π(ω2 + (πkBT )2)

ΩΦ
, (28)

with an extra phenomenological parameter η required to
describe elastic scattering15 in impure systems. The ca-
parison function is

µ(k̂,ω) = 1− ω

∆0
+

ν0 k̂ vf
∆0

, (29)

where we introduced an important (emergent) low energy
scale combining the other parameters:

∆0 = α0
γΨ

ΩΦ − cΨγΨ
(30)

and the dimensionless momentum dependence coefficient

ν0 = (νΨγΨcΨ + νΦΩΦ)/(ΩΦ − cΨγΨ). (31)

The five final parameters defining the spectral function
Eq. (27) are z0, ν0, νΦ,ΩΦ,∆0. For fitting experimen-
tal data, it may be best to think of them as adjustable
parameters that determine the line shapes, their asym-
metries and also features in the spectral dispersions. In
addition the η parameter is needed to describe impurities
that are not contained in the microscopic theory. In the
early fit15 the total number of free parameters is even
smaller- just two instead of five. The corrections to the
Landau Fermi liquid theory are encapsulated in the ca-
parison factor, which contains a correction term that is
odd in frequency and seems to be ultimately responsible
for the asymmetric appearance of the line shapes8,15.
For reference we note that in the limit of high

dimensions10, the coefficient of the momentum depen-
dent term ν0 vanishes in Eq. (27), while the earlier fits

to experiments in15, it is non zero, and in modified fits16

its magnitude is varied to get a good description of the
constant energy cuts of the data.

It is useful to consider the approach to the Mott in-
sulating limit, where the parameters behave in a spe-
cific fashion to satisfy the expected behavior. We con-
sider the limit of density δ → 0, and a frequency scale
0 ≤ |ω| < ωc ∼ δt, where the above expression Eq. (27)
may be expected to work. For reference, it is use-
ful to note that in this limiting case, the widely used
Gutzwiller-Brinkman-Rice theory2,3 gives the quasipar-
ticle propagator as:

GGBR(�k,ω) ∼
z

ω − z k̂ vf
, (32)

where z vanishes linearly with δ as z = 2δ/(1 + δ).
This leads to a delta function spectral weight AGBR =
z δ(ω−z k̂ vf ). In contrast Eq. (27) provides the spectral
function at non zero T and ω.
As n → 1 we expect Ψ0 → −n/2 in order to reach

the Mott insulating limit continuously. This implies that
α0 ∝ δ in this regime, and this drives the various other
coefficients as well. We summarize the expected behavior
of the above five coefficients

z0 → z0 × δ

∆0 → ∆0 × δ

ΩΦ → ΩΦ × δ

ν0 → ν0 × δ

νΦ → νΦ × δ (33)

by using an overline for denoting a non vanishing limit
of the stated variable10,52. The scaling of the velocity
constants ν is guided by the results in high dimensions,
and ensure that the dispersing quasiparticles have a van-
ishing bandwidth as we approach the insulator- as em-
phasized by Brinkman and Rice3. From this we find that
the ECFL spectral function Eq. (27) satisfies a simple ho-
mogeneity (i.e. scaling) relation valid in the low energy
regime for a scale parameter s:

A(k̂, sω|s T, s δ) = A(k̂,ω|T, δ), (34)

where the dependence on the temperature and hole den-
sity are made explicit. The momentum variable does not
scale with s due to the assumed behavior of the ν’s. The
scaling holds for η = 0, and generalizes to a non zero val-
ues if we scale η → s η. This scaling relation describes a
Fermi liquid including significant corrections to Fermi liq-
uid theory through the caparison function. It rests upon
the specific behavior for the coefficients as the density
varies near the insulating state, unlike other generalized
scaling relations that have been proposed in literature
Ref. (53) for non Fermi liquid states. If set s × δ = δ0
with say δ0 <∼ .5, then the ratio δ0

δ � 1 and we infer

A(k̂,ω|T, δ) ∼ A(k̂,ω
δ0
δ
|T δ0

δ
, δ0), (35)

Γ0 = η +
π3(kBT )2

ΩΦ
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r − 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.

We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ∆0 + (ν0 − νΦ) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1

2 − r

�
νΦ k̂ vf + ∆0 −

�
r(2 − r) Γ 2

0
+ Q 2

�
, (42)

E∗(k) =
�

ν0 k̂ vf + ∆0 −
�

Γ 2

0
+ Q 2

�
. (43)

Simplifying the notation, both energy dispersions are of the form E ∼ γ Q −
�
Q 2 + M2, i.e. the hybrid

of a massless and amassive Dirac spectrum. As Q varies from−∞ to∞, the energy crosses over from

(γ + 1)Q to (γ − 1)Q , thus exhibiting a knee or a kink near Q ∼ 0, with its sharpness determined by

the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads

to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).
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to a smaller magnitude. Upon turning off the decay rate Γ0, both the EDC and MDC spectra reduce to

the expected spectrum εk = νΦ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).

These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by

the emergent energy scale ∆0, as well as the width Γ0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition

Q = 0 locates the kink momentum as

(k̂ vf )kink = ∆0

νΦ(1 − r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other

case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For

|Q | � Γ0, the two dispersions asymptotically become E∗(k) ∼ (ν0 + (ν0 − νΦ) sign(k̂)) k̂ vf and

E(k) ∼ 1

2−r (νΦ + (ν0 − νΦ) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)

around Q ∼ 0 of magnitude 2(ν0 − νΦ)vF for the EDC and the usually larger
2

2−r (ν0 − νΦ)vF for the

MDC spectrum. The change in slope of the spectrum occurs over a range ∆Q ∝ Γ0, thus becoming

sharper as Γ0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E∗(kkink) = − r
r − 1

∆0 − Γ0. (45)

The MDC spectrum shows a kink for 2 ≥ r ≥ 1 at the same momentum (44), with energy

E(kkink) = − 1

r − 1
∆0 − Γ0

�
r

2 − r
, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.

When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + Γ0

νΦ(r − 1)

�
r(r − 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC

spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,

the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ≤ r ≤ 2, which should be visible

on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of

all the kink parameters, while Γ0, determining the kink width, is given in Eq. (28).

Explicit expressions for
both kink energies.

Theory of extreme correlations using canonical
Fermions and path integrals
B. Sriram Shastry Annals of Physics 343 (2014) 164–199
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A much more sensitive way of showing up this asymmetry is to plot 

X(E) = l/Y(E) (21) 
as a function of (E - E,,,)~. For a Lorentzian this leads to the same straight line above and 
below the peak. For the function (18), X(E) plotted as a function of (E - E,,,)~, with emax 
given by (20), is still remarkably straight for IE 1 2 y, but has very different slopes on each 
side of the peak (figure 2). This plot shows that even for fairly low asymmetry, where the 

4- 

(U) 

3- 

0 I 2 3 0  I 2 3 
Figure 2. Plot of inverse line shape X(E)  (equation (21)) as a function of (E - ~ , , , ) ~ / y ~  : 
(a) GI = 0.07 corresponding to the asymmetry index 1.1 observed for Cu Ka, (Sandstrom 

1957); (b) GI = 0.24, corresponding to asymmetry index 1.6 observed for Fe Ka,. 

line shape still looks very Lorentzian, the inverse plot shows up a very clear difference in 
slope between the low frequency and high frequency sides of the peak. 

5. Observed line shapes of x-ray line spectra 
Detailed line shapes of Ka,,, lines in transition and other metals have been known since 

1935 (Sandstrom 1957). Skewness of the lines similar to that in figure 1, curve B, is observed 
and varies considerably from element to element. The asymmetry index varies fairly 
smoothly across the 3d transition series for the Ka line with a maximum value at Fe 
(Bearden and Shaw 1935, see also Parratt 1936). For Fe the Ka, line has a width at $ height 
of about 5 ev and an asymmetry index of 1.6. If the mechanism described in 5 3 is responsible 
for this asymmetry,? this would correspond to I BL - B K  I N using table 1. This is based 
on the assumption that the line corresponds to a transition in a singly ionized atom. 
Multiple ionization could possibly lead to extra satellite contributions. 

A crucial test of this interpretation is the observation of the line shape of Ka, from 
an insulating iron compound. The change of the x-ray line spectrum on going from metals to 
their oxides was looked for by Sanner (1941). Unfortunately the resolution of his data does 
not appear to allow for a detailed study of the line shape. Sanner reported no detectable 
shift of the Ka, line for Fe to F e 0  (such as would be expected from equation (20)). However, 
a similar observation for Cu -+ CuO was later contradicted by Nordling et al. (1958, 
p. 499) who found a small shift on oxidation, in disagreement with Sanner. Thus, detailed 
measurement of Ka line shapes in metal oxides appears not to have been carried out, and 
this is an experiment which should be done to provide a conclusive test of the mechanism 
of the present paper. 

6. Photoelectron line shapes 
Experimentally, skew line shapes for emitted photoelectrons have been observed by 

Siegbahn and collaborators (Nording et al. 1958>-for very fast photoelectrons (several 
t This was suggested, in a qualitative way, by Parratt (1936). 

9

Eq. (40) the vanishing of Q implies ( k̂ vf )kink = − ∆0
ν0−νΦ

thus locating the kink momentum. It is negative pro-

vided ν0 > νΦ and sets a constraint on the observability

of the kink. As we see in Fig. (1), the kink becomes sharp

when Γ0 decreases. For these parameters, the MDC spec-

trum formula Eq. (39) does not have a kink. In general

the MDC dispersion Eq. (39) is not very robust against

choices of the velocity renormalization parameters. In

many cases there is no solution with real energy, imply-

ing the absence of a sharp peak in this range of variables.

From Eq. (28) we see various parameters that control Γ0,

in case of laser ARPES, it is argued15 that η is small so

we expect to see sharper kinks in this setup. Further, as

T drops below Tc, the d-wave superconductor has gap-

less excitations along the nodal direction < 11 >, and

the quasiparticles seen in this case are sharper. Theo-

retical considerations54 show that the reduction in the

available gapless states leading to the linewidth in the

superconductor indeed give a reduction of Γ0 and hence

to a sharper kink.
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FIG. 1: A kink in the EDC dispersion relation from Eq. (38)
with parameters ∆0 = .025 eV, ν0 = 1., νΦ = 0.7 and three
values of Γ0 = 0., .01, .02 in eV from top to bottom. Inset The
MDC dispersion Eq. (39) (upper) and the EDC dispersion
(lower) at Γ0 = 0.01 eV. The kink is more visible in the EDC
curve. The kink position is determined from (k̂vF )kink =
−∆0/(ν0 − νΦ) and the location of the kink (at Γ0 = 0) is at
E∗

kink = νΦ(k̂vF )kink, so that their ratio directly yields the
parameter νΦ. The parameter ν0 equals the initial slope (near
k̂ vf ∼ 0). From this ∆0 can be inferred as well.

It is also important to note that the ECFL spectral

function Eq. (27) has an unusual correction to the stan-

dard Fermi liquid part, embodied in the caparison func-

tion µ(k,ω). This function is odd in frequency, thus dis-

turbing the particle hole symmetry of the Fermi liquid

part, and it grows in importance as we approach the in-

sulating state since ∆0 → δ∆0 as indicated in Eq. (33).

It is also interesting that the spectral line shape in the

calculation of Anderson and Casey Ref. (40) (AC) as well

as Doniach and Sunjic Ref. (41) (DS) also have such odd

in ω corrections to the Fermi liquid part. In fact the

AC result may be viewed as the vanishing of the scale

∆0 ∝ kBT so that the ground state is non Fermi liq-

uid like. At finite T and ω the AC and DS theories are

parallel with the ECFL line shapes regarding the asym-

metry as remarked in Ref. (8), and we wish to make a

few comments about the experimental tests for such an

asymmetry, going beyond standard measures such as the

skewness factor.

DS41 make the interesting point that the asymmetry

is best isolated by looking at the inverse of the spectral

function in a plot of

1

A(k,ω)
vs (ω − E∗

k)
2, (43)

where E∗
k is the peak location in the EDC. With this plot,

a Fermi liquid yields two coincident straight lines above

and below E∗
k , whereas an asymmetric contribution, as in

Eq. (27) or the DS lineshape41, would split into two dis-

tinct non linear curves, from below and above E∗
k . The

inversion of the spectral function is an interesting device,

since it refocuses attention on the asymmetric parts. For

very similar reasons Ref. (5) (Fig. 1 inset) also advo-

cates plotting the inverse of the spectral function. On

the other hand an untrained examination of the EDC

curves invariably focusses on the close proximity of the

peaks of A(k,ω), these are arguably the least interesting

part of the asymmetry story!

In fact armed with the explicit knowledge of the spec-

tral function of the ECFL theory in Eq. (27), we can aim

to do better in establishing the asymmetry and in de-

termining the various parameters. We first redefine the

frequency by subtracting off the EDC peak value

�ωk = ω − E∗
k , (44)

so that the spectral peak occurs at �ωk = 0. The inverse

spectral function can be computed as a function of �ωk

and reads:

A(k,E∗
k)

A(k,E∗
k + �ωk)

= 1 +
euk

2Γ0
× �ω2

k

Γ0 cosh(uk)− �ωk
,

(45)

where the peak value of the spectral function at �ωk = 0

is :

A(k,E∗
k) =

A0

2
euk . (46)

We next construct the object Q(�ωk) from Eq. (45) by

subtracting unity and cross multiplying:

Q(�ωk) =
�ω2
k

A(k,E∗
k)/A(k,E

∗
k + �ωk)− 1

. (47)

This variable is designed to be a �ωk independent constant

in a simple Fermi liquid with a Lorentzian line shape

Doniach Sunjic 1969!!

the theory in high dimensions that is pursued analytically
next.

Solution in high dimensions.—In sufficiently high di-
mensions, we show next that the dimensionless term !
vanishes identically leading to a great simplification. For
sufficiently high dimensions we can ignore the momentum

dependence of Y in Eq. (19) and assume "!ð ~k; xÞ #
C!#ðxÞ, and " "#ð ~k; xÞ # C##ðxÞ, as functions of fre-
quency only. Here #ðxÞ extends over energy range
!c #Oð2WÞ, and C! has dimensions of inverse energy
and is positive due to " "!. Its Hilbert transform is called

hðxÞ $ P
R
dy #ðyÞ

x%y . We use an analytically tractable Fermi

liquid model [11] with $ ¼ %kBT, where we set

#ðxÞ ¼ fx2 þ $2ge%C!fx2þ$2g=!c : (24)

The peak value of C!#ðxÞ is of Oð1Þ and independent of
C! [12]. The other constant C# is dimensionless and
negative. To complete the model, we note that the real
parts are given in terms of hðxÞ as Re "!ðxþÞ ¼ C!hðxÞ and
Re#ðxþÞ ¼ C#hðxÞ. With this choice the auxiliary
spectral weight !ðk; xÞ vanishes identically in Eq. (23).
With $ðxÞ $ %C!#ðxÞ and &ð'; xÞ $ ½x% '% C!hðxÞ)
we may write "gð'; xÞ ¼ 1

%
$ðxÞ

$2ðxÞþ&2ð';xÞ and Regð'; xÞ ¼
&ð';xÞ

$2ðxÞþ&2ð';xÞ . Denoting hQð'Þi' ¼ R
d'NBð'ÞQð'Þ, where

NBð'Þ is the band density of states per spin, the chemical
potential is fixed using n

2 ¼
R1
%1 dxfðxÞh"gð'; xÞi'.

The energy parameter %ð ~k; xÞ in Eq. (22) is a constant.
We scale out a factor to define

%o ¼
n2

4
%ð ~k; xÞ ¼ %n2

4

C!

C#
: (25)

The physically observable electronic spectral function
reads

"Gð'; xÞ ¼
$ðxÞ
%

ðf1% n
2gþ ðn24 Þf

'%x
%0

gÞþ
$2ðxÞ þ &2ð'; xÞ : (26)

Here, the condition ðfÞþ $ maxð0; fÞ, is inserted in the
ECFL factor to guarantee the positivity of the spectral
function for x * ' [13]. We can determine %0 directly
from the second level sum rule Eq. (16):

%0 ¼
Z 1

%1
dxfðxÞh"gð'; xÞf'% xgi': (27)

Thus ð2=nÞ%0 is the average inelasticity jjð'% xÞjj of the
FL Green’s function over the entire occupied band. It
vanishes if "g were a pure delta function, as in a Fermi
gas, but is non zero in a Fermi liquid. The linear energy
term in Eq. (26) thus fundamentally arises to provide the
extra density to "G, compensating the spectral depletion
due to the first factor 1% n

2 [originating in the non canoni-
cal nature of the projected electrons (paper I)].

In the numerical solution of the model, we can vary the
shapes of the spectra from sharp to broad by controlling the
energy scale %0 via the parameters C! and !0 in the FL
function #ðxÞ. For illustration we neglect the distinction
between the band energy and the renormalized ""k, choose a
flat band density of states per spin "0ð"Þ ¼ 1

2W&ðW2 % "2Þ
hence the band width is 2W. Choose C! ¼ 1 W ¼ 104 K
[14], this gives %0 # 600 K in the cases studied. The
spectral shapes from Eq. (26) have a characteristic left
skew that is visible in Fig. 1, and also in many experimen-
tal spectra in high Tc systems. The marginal Fermi liquid
hypothesis [15] assumes a linear correction to the spectral
function, but is symmetric about the Fermi energy, i.e., of
the form j'% xj instead of the term in Eq. (26).
From Eq. (27) a fascinating duality emerges between the

FL and the ECFL [16]. When the FL is overall sharp such
that %0 is small, the ECFL is significantly broadened. This
happens since in the ECFL factor in Eq. (26), the coeffi-
cient of '% x becomes large and dominates the 1% n

2
contribution. The function %ðkÞ in Eq. (22) could vanish
at points in k space in the full theory (without the assump-
tion of k independence). At those points the ECFL spectra
would lose all coherence by this duality. A loss of coher-
ence would inevitably suggest a (false) pseudogap, if our
current viewpoint were unavailable. The linear term also
leads to a sloping term in the local density of states of the
ECFL that the STM technique would probe, although its
magnitude and sign are less reliably computed—depend-
ing as they do on the high energy scales W and !0. In
conclusion, we have presented essential ideas underlying
the theory of extremely correlated Fermi liquids. We have
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FIG. 1 (color online). The density n ¼ :85 and !0 ¼ 0:25.
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ECFL line shape (and ACDS)  predicts that

9

Eq. (40) the vanishing of Q implies ( k̂ vf )kink = − ∆0
ν0−νΦ

thus locating the kink momentum. It is negative pro-

vided ν0 > νΦ and sets a constraint on the observability

of the kink. As we see in Fig. (1), the kink becomes sharp

when Γ0 decreases. For these parameters, the MDC spec-

trum formula Eq. (39) does not have a kink. In general

the MDC dispersion Eq. (39) is not very robust against

choices of the velocity renormalization parameters. In

many cases there is no solution with real energy, imply-

ing the absence of a sharp peak in this range of variables.

From Eq. (28) we see various parameters that control Γ0,

in case of laser ARPES, it is argued15 that η is small so

we expect to see sharper kinks in this setup. Further, as

T drops below Tc, the d-wave superconductor has gap-

less excitations along the nodal direction < 11 >, and

the quasiparticles seen in this case are sharper. Theo-

retical considerations54 show that the reduction in the

available gapless states leading to the linewidth in the

superconductor indeed give a reduction of Γ0 and hence

to a sharper kink.
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FIG. 1: A kink in the EDC dispersion relation from Eq. (38)
with parameters ∆0 = .025 eV, ν0 = 1., νΦ = 0.7 and three
values of Γ0 = 0., .01, .02 in eV from top to bottom. Inset The
MDC dispersion Eq. (39) (upper) and the EDC dispersion
(lower) at Γ0 = 0.01 eV. The kink is more visible in the EDC
curve. The kink position is determined from (k̂vF )kink =
−∆0/(ν0 − νΦ) and the location of the kink (at Γ0 = 0) is at
E∗

kink = νΦ(k̂vF )kink, so that their ratio directly yields the
parameter νΦ. The parameter ν0 equals the initial slope (near
k̂ vf ∼ 0). From this ∆0 can be inferred as well.

It is also important to note that the ECFL spectral

function Eq. (27) has an unusual correction to the stan-

dard Fermi liquid part, embodied in the caparison func-

tion µ(k,ω). This function is odd in frequency, thus dis-

turbing the particle hole symmetry of the Fermi liquid

part, and it grows in importance as we approach the in-

sulating state since ∆0 → δ∆0 as indicated in Eq. (33).

It is also interesting that the spectral line shape in the

calculation of Anderson and Casey Ref. (40) (AC) as well

as Doniach and Sunjic Ref. (41) (DS) also have such odd

in ω corrections to the Fermi liquid part. In fact the

AC result may be viewed as the vanishing of the scale

∆0 ∝ kBT so that the ground state is non Fermi liq-

uid like. At finite T and ω the AC and DS theories are

parallel with the ECFL line shapes regarding the asym-

metry as remarked in Ref. (8), and we wish to make a

few comments about the experimental tests for such an

asymmetry, going beyond standard measures such as the

skewness factor.

DS41 make the interesting point that the asymmetry

is best isolated by looking at the inverse of the spectral

function in a plot of

1

A(k,ω)
vs (ω − E∗

k)
2, (43)

where E∗
k is the peak location in the EDC. With this plot,

a Fermi liquid yields two coincident straight lines above

and below E∗
k , whereas an asymmetric contribution, as in

Eq. (27) or the DS lineshape41, would split into two dis-

tinct non linear curves, from below and above E∗
k . The

inversion of the spectral function is an interesting device,

since it refocuses attention on the asymmetric parts. For

very similar reasons Ref. (5) (Fig. 1 inset) also advo-

cates plotting the inverse of the spectral function. On

the other hand an untrained examination of the EDC

curves invariably focusses on the close proximity of the

peaks of A(k,ω), these are arguably the least interesting

part of the asymmetry story!

In fact armed with the explicit knowledge of the spec-

tral function of the ECFL theory in Eq. (27), we can aim

to do better in establishing the asymmetry and in de-

termining the various parameters. We first redefine the

frequency by subtracting off the EDC peak value

�ωk = ω − E∗
k , (44)

so that the spectral peak occurs at �ωk = 0. The inverse

spectral function can be computed as a function of �ωk

and reads:

A(k,E∗
k)

A(k,E∗
k + �ωk)

= 1 +
euk

2Γ0
× �ω2

k

Γ0 cosh(uk)− �ωk
,

(45)

where the peak value of the spectral function at �ωk = 0

is :

A(k,E∗
k) =

A0

2
euk . (46)

We next construct the object Q(�ωk) from Eq. (45) by

subtracting unity and cross multiplying:

Q(�ωk) =
�ω2
k

A(k,E∗
k)/A(k,E

∗
k + �ωk)− 1

. (47)

This variable is designed to be a �ωk independent constant

in a simple Fermi liquid with a Lorentzian line shape
Construct object Q from intensity
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the MDC dispersion Eq. (39) is not very robust against

choices of the velocity renormalization parameters. In

many cases there is no solution with real energy, imply-

ing the absence of a sharp peak in this range of variables.
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in case of laser ARPES, it is argued15 that η is small so

we expect to see sharper kinks in this setup. Further, as
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less excitations along the nodal direction < 11 >, and
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with parameters ∆0 = .025 eV, ν0 = 1., νΦ = 0.7 and three
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MDC dispersion Eq. (39) (upper) and the EDC dispersion
(lower) at Γ0 = 0.01 eV. The kink is more visible in the EDC
curve. The kink position is determined from (k̂vF )kink =
−∆0/(ν0 − νΦ) and the location of the kink (at Γ0 = 0) is at
E∗

kink = νΦ(k̂vF )kink, so that their ratio directly yields the
parameter νΦ. The parameter ν0 equals the initial slope (near
k̂ vf ∼ 0). From this ∆0 can be inferred as well.

It is also important to note that the ECFL spectral

function Eq. (27) has an unusual correction to the stan-

dard Fermi liquid part, embodied in the caparison func-

tion µ(k,ω). This function is odd in frequency, thus dis-

turbing the particle hole symmetry of the Fermi liquid

part, and it grows in importance as we approach the in-

sulating state since ∆0 → δ∆0 as indicated in Eq. (33).

It is also interesting that the spectral line shape in the

calculation of Anderson and Casey Ref. (40) (AC) as well

as Doniach and Sunjic Ref. (41) (DS) also have such odd

in ω corrections to the Fermi liquid part. In fact the

AC result may be viewed as the vanishing of the scale

∆0 ∝ kBT so that the ground state is non Fermi liq-

uid like. At finite T and ω the AC and DS theories are

parallel with the ECFL line shapes regarding the asym-

metry as remarked in Ref. (8), and we wish to make a

few comments about the experimental tests for such an

asymmetry, going beyond standard measures such as the

skewness factor.

DS41 make the interesting point that the asymmetry

is best isolated by looking at the inverse of the spectral

function in a plot of

1

A(k,ω)
vs (ω − E∗

k)
2, (43)

where E∗
k is the peak location in the EDC. With this plot,

a Fermi liquid yields two coincident straight lines above

and below E∗
k , whereas an asymmetric contribution, as in

Eq. (27) or the DS lineshape41, would split into two dis-

tinct non linear curves, from below and above E∗
k . The

inversion of the spectral function is an interesting device,

since it refocuses attention on the asymmetric parts. For

very similar reasons Ref. (5) (Fig. 1 inset) also advo-

cates plotting the inverse of the spectral function. On

the other hand an untrained examination of the EDC

curves invariably focusses on the close proximity of the

peaks of A(k,ω), these are arguably the least interesting

part of the asymmetry story!

In fact armed with the explicit knowledge of the spec-

tral function of the ECFL theory in Eq. (27), we can aim

to do better in establishing the asymmetry and in de-

termining the various parameters. We first redefine the

frequency by subtracting off the EDC peak value

�ωk = ω − E∗
k , (44)

so that the spectral peak occurs at �ωk = 0. The inverse

spectral function can be computed as a function of �ωk

and reads:

A(k,E∗
k)

A(k,E∗
k + �ωk)

= 1 +
euk

2Γ0
× �ω2

k

Γ0 cosh(uk)− �ωk
,

(45)

where the peak value of the spectral function at �ωk = 0

is :

A(k,E∗
k) =

A0

2
euk . (46)

We next construct the object Q(�ωk) from Eq. (45) by

subtracting unity and cross multiplying:

Q(�ωk) =
�ω2
k

A(k,E∗
k)/A(k,E∗

k + �ωk)− 1
. (47)

This variable is designed to be a �ωk independent constant

in a simple Fermi liquid with a Lorentzian line shape

energy shifted by peak position

Main message: 

Inverse intensity gives a better
perspective for identifying asymmetry.

Intensity itself focusses attention elsewhere.

Q(�ωk) = A−B �ωk

A sloping Q factor pinpoints and quantifies asymmetry!
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This work proposes a test for dynamical particle hole asymmetry using angle resolved photo

emission. This test is motivated by expressions for the single electron spectral function emerging

from recent theories. These exhibit a non trivial asymmetry ratio R that is unexpected from Fermi

liquid type models. The test requires the decomposition of the spectral weight into even and odd

parts under a dynamical particle hole transformation on (�k,ω). This requires a high precision

determination of the Fermi momentum that seems to be at the edge of what is currently achievable.

Also tunneling experiments in the overdoped cuprates with pronounced quasiparticle peaks are

predicted to show a counter intuitive rising (or flat) region near the chemical potential.

1. Introduction: An experimental test is proposed
to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
��

1− n
2

�
+ ξk−ω

∆(�k,ω)
+ η(�k,ω)

�
.

This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively

1

2

�
SG(�kF + �̂

k,ω)∓ SG(�kF − �̂
k,−ω)

�
.

We will also define the asymmetry ratio:

RG(�kF |�̂k,ω) = Sa−s
G (�kF |�̂k,ω)/Ss

G(�kF |
�̂
k,ω), (4)

where normalization factors cancel out, giving a dimen-
sionless function of order unity that can be compared
across different systems. We will quote RG and Ss

G below
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predicted to show a counter intuitive rising (or flat) region near the chemical potential.
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in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
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within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
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formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
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pears to vindicate the form of the spectral function. The
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it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
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which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
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pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
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1
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Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
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a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
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ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
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pears to vindicate the form of the spectral function. The
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it is over a smaller energy range ∼ 2kBT , probing the
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energy.
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1
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. We then define the transformation:
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Construct symmetric and antisymmetric 
combinations under the above DPH 

transformation
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emission. This test is motivated by expressions for the single electron spectral function emerging

from recent theories. These exhibit a non trivial asymmetry ratio R that is unexpected from Fermi

liquid type models. The test requires the decomposition of the spectral weight into even and odd

parts under a dynamical particle hole transformation on (�k,ω). This requires a high precision

determination of the Fermi momentum that seems to be at the edge of what is currently achievable.

Also tunneling experiments in the overdoped cuprates with pronounced quasiparticle peaks are

predicted to show a counter intuitive rising (or flat) region near the chemical potential.

1. Introduction: An experimental test is proposed
to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
��

1− n
2

�
+ ξk−ω

∆(�k,ω)
+ η(�k,ω)

�
.

This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively

1

2

�
SG(�kF + �̂

k,ω)∓ SG(�kF − �̂
k,−ω)

�
.

We will also define the asymmetry ratio:

RG(�kF |�̂k,ω) = Sa−s
G (�kF |�̂k,ω)/Ss

G(�kF |
�̂
k,ω), (4)

where normalization factors cancel out, giving a dimen-
sionless function of order unity that can be compared
across different systems. We will quote RG and Ss

G below
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From these form the 
 (dimensionless) asymmetry ratio R 

Important ratio
Can experimentally distinguish 

between two classes of theories.

Simplified ECFL 
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FIG. 1: Sa−s
GHD

(k̂,ω) from Eq. (11). versus ξ (top) ω (bottom)
in eV at various ω (top) ξ (bottom). Arrows indicate the
direction of increasing energies. The complementary depen-
dence on ξ and ω of the formula Eq. (11) is evident here. We
used η = .05 eV, ∆0 = .0796 eV here.

Γk = η + πCΦ[(πkBT )2 + (EFL
k )

2
], where η is the elastic

broadening introduced in Ref. (3) (it should be distin-

guished from η(�k,ω) in the exact ECFL formula quoted

above. For the model Eq. (10), we can set Γk → ΓkF
and

thus obtain the leading behavior near the Fermi energy

as

{Ss
GHD

,RGHD
} ∼ [(1− n

2
)Q(

�̂k,ω),
{�̂k.�v�kF

− ω}
ε0

],(11)

where Q(
�̂k,ω) is obtained from Eq. (6) by replacing

m/m∗ → ZF and γk → ΓkZk. We emphasize that

Eq. (11) is valid for the high dimensional model, whereas

Eq. (9) is more generally true within the ECFL approach.

The signature of the ECFL type correlation is clearly seen

in the antisymmetric function Sa−s
(
�̂k,ω). We display

this object in the figures Fig. (1) for a model calculation

based in the high dimensional ECFL model with a flat

density of states Ref. (9) Sec.(IV.F). The values of the

basic parameters in all plots are as follows: T = 180K,

ωc = .25 eV, CΦ = 1(eV)
−1

, n = .85. Notice the distinc-
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FIG. 2: The local density of states from Eq. (10). Three val-
ues of η = .075, .15, .3 with blue, green and red colors and with
∆0 = .089, .116, .253 respectively, demonstrating the range of
possibilities. The remarkable rising piece near zero bias re-
verses the overall trend, its origin within ECFL is explained
in the text.

tive increasing linear behavior with
�̂k and a decreasing

linear one with ω, as in Eq. (9) and Eq. (11).

3. Single particle tunneling into the extremely
correlated state: In the simplest model of tunneling in

the t-J model, the conductance is given in terms of the

local density of states ρ(local)G (ω) [10, 11]. Its convolution
with f(ω) and (1− f(ω)) gives half the occupied

n
2 , and

the unoccupied ( 1 − n) densities, thus providing useful

sum-rules for tunneling[12]. The sum rule leads to the

expectation of asymmetry between adding particles and

holes and thus a downward sloping conductance[13, 14].

More detailed information on the frequency depen-

dence is clearly of experimental interest. We next show

that a rather counter intuitive possibility arises from the

ECFL theory, wherein the conductance increases with
voltage in the proximity of zero bias. Fig. (2) shows an

overall decrease of the local density of states for the high

dimensional ECFL model with energy, so that the inte-

grals over the occupied states (ω ≤ 0) exceed that over

the unoccupied region (ω > 0) by the ratio
n
2 : (1 − n).

However, the central region near the Fermi surface shows

a linear increase. To understand this unusual result,

we consider the expression for the spectral function in

Eq. (10) together with ρ(local)G (ω) =
�
dξ n(ξ)ρG(ξ,ω)

with a band density of states n(ξ). The contribution

of the quasi particle peak region to this integral can be

estimated by replacing the Fermi liquid Lorentzian by

Zk δ(ω−EFL
k ). This is written as δ(�̂k.�v�kF

− m∗

m ω). Note
that in high dimensions we can simplify m/m∗ → ZF .

This immediately gives the quasi particle peak contribu-

tion:

lim
ω≤ε0

ρ(local)G,P (ω) ∼ (const)

�
ε0 + (

m∗

m
− 1)× ω

�
. (12)

Scale of ω is eV.  Enormous asymmetry is 
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This is the Fermi symmetrized spectral function that focuses attention near 
chemical potential. Here I(k,w) is ARPES intensity and M is dipole matrix element
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Motivated by the form of recent theoretical results, a quantitative test for an important dynamical

particle-hole asymmetry of the electron spectral function at low energies and long wavelengths is

proposed. The test requires the decomposition of the angle resolved photo emission intensity, after a

specific Fermi symmetrization, into odd and even parts to obtain its ratio R. A large magnitude R is

implied in recent theoretical fits at optimal doping around the chemical potential, and I propose that this

large asymmetry needs to be checked more directly and thoroughly. This processing requires a slightly

higher precision determination of the Fermi momentum relative to current availability.

DOI: 10.1103/PhysRevLett.109.067004 PACS numbers: 74.72.!h, 74.20.Mn, 74.25.Jb

Introduction.—The search for a microscopic theory of
the normal state of the cuprates is one of the main themes
in condensed matter physics for the last two decades. The
recent suggestions of describing the normal state in terms
of theories with a quantum critical point [1] have also
created wide interest in other branches of physics such as
string theory and quantum gravity [2]. An initial theoretical
objective is the derivation of the normal state low energy

long wavelength single electron spectral function !Gð ~k; !Þ
[or equivalently Að ~k; !Þ], encoding the complete set of
symmetries.

In this Letter, I discuss the behavior of !Gð ~k; !Þ under a
dynamical particle-hole transformation simultaneously in-
verting the wave vector and energy relative to the chemical
potential ! as

ð ~̂k; !Þ ! !ð ~̂k; !Þ; with ~̂k ¼ ~k! ~kF: (1)

Invariance under this transformation has often been in-
voked in analyzing angle resolved photoemission
(ARPES) data [3]. It is an emergent symmetry of the
Fermi-liquid in the sense of Ref. [4], arising when correc-
tion terms of Oð!="FÞ3 are neglected [5]. Fermi-liquids
without disorder at intermediate coupling are invariant [6]
under Eq. (1), as are most other contemporary theories of
cuprates that I am aware of.

On the other hand two recent theories, the extremely
correlated Fermi-liquid theory (ECFL) proposed by the
author in Ref. [7], and the hidden Fermi-liquid theory
proposed by Casey and Anderson (CA) in Ref. [8], yield
a spectral function that lacks invariance under Eq. (1). In
Ref. [9], a comparison between the ECFL spectral function
and a large set of data at optimal doping shows excellent
agreement and provides a useful parametrization of the
data. To quantify the asymmetry: for optimally doped
cuprates, in an energy range of %25 meV around !, the
theories and the fits of Ref. [9] (extrapolated to lower !)
yield an asymmetry ratio R [defined below Eq. (3)] be-
tween&7% and 10%. Because a large asymmetry makes a

decisive ruling on the allowed theories, we propose the
direct experimental measurement of this effect and indicate
a procedure for the same.
I first discuss a Fermi symmetrization procedure quite

distinct from the symmetrization in Refs. [3,10]. I con-

struct an object SGð ~k; !Þ [Eq. (2)] from the observed
ARPES intensity and find expressions for this in the
Fermi-liquid and the ECFL model. I further show how
the momentum dependence of the dipole transition proba-
bility and the Fermi-liquid parameter Zk can be absorbed
into the constants.

The SGð ~k; !Þ function is detailed for a simplified ver-
sion of ECFL (SECFL), providing an idealized picture of
the predicted asymmetry effect in cuprates. I further dis-
cuss a related asymmetry of the tunneling conductance in
the normal state, and also the expected angle integrated
spectrum. Within the SECFL model, where the quasipar-
ticle peaks are sharp over a large fraction of the zone, these
exhibit unusual and possibly measurable features.
Fermi symmetrization.—Our first goal is to formulate a

procedure for isolating terms in the spectral function near
the Fermi energy that are linear in wave vector and fre-

quency &"k !! (with "k ¼ ~̂k ' ~v ~kF
) found in the recent

work [7]. The ARPES intensity is given in terms of the
spectral function within the sudden approximation by the

expression Ið ~k; !Þ ¼ Mð ~kÞf!!Gð ~k; !Þ, where Mð ~kÞ is
the dipole transition probability which is expected to be

a smooth function of ~k and independent of !. It
also contains the Fermi function for occupied states f! ¼
f1þ expð#!Þg!1, a nonsymmetric function of !.
Therefore, we first formulate a Fermi symmetrized object:

S Gð ~k; !Þ ) f! !f!!Gð ~k; !Þ ¼ 1

Mð ~kÞ
!f!Ið ~k; !Þ; (2)

where !f! ¼ 1! f! ¼ f!!. We may now decompose

SGð ~k; !Þ under Eq. (1) into its antisymmetric

Sa-s
G ð ~kFj ~̂k; !Þ and symmetric Ss

Gð ~kFj
~̂k; !Þ combinations
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FIG. 3: Density plots for the high dimensional ECFL model in Eq. (10) with energies in eV. Density plots of (A) the spec-
tral function ρG(ξ,ω), (B) the “ideal” experimental intensity ρG(ξ,ω)f(ω), (C) the Fermi symmetrized object SGHD

(ξ,ω) =

ρG(ξ,ω)f(ω)f(−ω), (D) the fully symmetrized object Ss
GHD

(k̂,ω) with a peak exactly at the origin, (E) the antisymmetrized

object Sa−s
GHD

(k̂,ω) showing a peak and a trough, and (F) the ratio RGHD
(ξ,ω) of the anti symmetric to symmetric parts of S

as a contour plot. Here η = .05 and ∆0 = .0796.
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Ssymmetric(k,ω) Santi−symm(k,ω) R(k,ω)

= (ξk − ω)/A

Requires momentum resolution Δk = .001 Angstrom (perhaps just beyond current reach.)
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 Experimentally feasible if momentum resolution is attained (not too far from current resolution-). 

ECFL and Anderson Casey have similar features.  A-C line shapes share the feature of  non trivial 

asymmetry of O(1) on fairly small energy scale (~25 meV). If Δ0 → (k T) then ECFL ~ CADS!

Fermi liquids do not have such large asymmetries on a similarly small energy scale. 

 Marginal Fermi Liquids and  Almost AFM Fermi liquids  are all particle hole symmetric. 

This can be used to discriminate between classes of  theories.

Asymmetry related comments:

Superconductivity due to exchange J - this is very natural -  (MS in preparation) 

Nature of Mott insulating state?

Underdoped phase?

Other broken symmetries (AFM- Quantum liquids..)?

Prospects and Open issues
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