Quantum critical Planckian metal and SYK physics with spin 1/2 fermions

Olivier Parcollet

Center for Computational Quantum Physics Flatiron Institute, Simons Foundation, New York & IPhT, Saclay

June 3rd 2022

NSTITUTE

Center for Computational Quantum Physics

Collaborators & references

Philipp Dumitrescu

Nils Wentzell

Ph. Dumitrescu, N. Wentzell, A. Georges, **OP**, Phys. Rev. B 105, L180404 (2022)

D. Chowdhury, A. Georges, OP, S. Sachdev arxiv:2109.05037, To appear in Rev. Mod. Phys.

Antoine Georges

- Incoherent transport in metal close to a quantum spin glass instability
- Disordered SU(2) t-U-J model. No large-M limit.

Ph. Dumitrescu, N. Wentzell, A. Georges, **OP** Phys. Rev. B 105, L180404 (2022)

Overview

- SYK spin dynamics
- Linear resistivity at the quantum critical point

$$\rho \sim T$$

Lifetime close to the Planckian limit

$$\frac{1}{\tau^*} \simeq c \frac{k_B T}{\hbar}$$

High temperature superconductors

• T- linear resistivity in the strange metal

Table 1 | Slope of *T*-linear resistivity versus Planckian limit in seven materials

Material	Doping ^a	<i>n</i> (10 ²⁷ m ⁻³)	m* (m _o)	A ₁/ <i>d</i> (Ω K ^{−1})	h/(2e ² T
Bi2212	p=0.23	6.8	8.4±1.6	8.0 ± 0.9	7.4 <u>+</u> 1.4
Bi2201	<i>p</i> ~ 0.4	3.5	7 ± 1.5	8±2	8±2
LSCO	p = 0.26	7.8	9.8 <u>+</u> 1.7	8.2 <u>±</u> 1.0	8.9 <u>+</u> 1.8
Nd-LSCO	p = 0.24	7.9	12 ± 4	7.4 <u>+</u> 0.8	10.6 <u>+</u> 3.
РССО	x = 0.17	8.8	2.4 ± 0.1	1.7 ± 0.3	2.1 <u>+</u> 0.1
LCCO	x = 0.15	9.0	3.0 ± 0.3	3.0 ± 0.45	2.6±0.3
TMTSF	P = 11 kbar	1.4	1.15 ± 0.2	2.8 ± 0.3	2.8±0.4

LETTERS https://doi.org/10.1038/s41567-018-0334-2

Universal *T*-linear resistivity and Planckian dissipation in overdoped cuprates

A. Legros^{1,2}, S. Benhabib³, W. Tabis^{3,4}, F. Laliberté¹, M. Dion¹, M. Lizaire¹, B. Vignolle³, D. Vignolles¹, H. Raffy⁵, Z. Z. Li⁵, P. Auban-Senzier⁵, N. Doiron-Leyraud¹, P. Fournier^{1,6}, D. Colson², L. Taillefer^{1,6}* and C. Proust^{1,6*}

High temperature superconductors

ARTICLES ttps://doi.org/10.1038/s41567-020-0950-5

(■) Check for update

Hidden magnetism at the pseudogap critical point of a cuprate superconductor

Mehdi Frachet^{1,9}, Igor Vinograd^{1,9}, Rui Zhou^{1,2}, Siham Benhabib¹, Shangfei Wu¹, Hadrien Mayaffre¹, Steffen Krämer¹, Sanath K. Ramakrishna³, Arneil P. Reyes³, Jérôme Debray⁴, Tohru Kurosawa⁵, Naoki Momono⁶, Migaku Oda⁵, Seiki Komiya⁷, Shimpei Ono⁷, Masafumi Horio¹⁰⁸, Johan Chang¹⁰⁸, Cyril Proust¹, David LeBoeuf¹ and Marc-Henri Julien¹

Frachet et al. Nature Physics 16, 1064 (2020)

LSCO. NMR, ultrasound

Glassy order up to the boundary of the pseudo gap p^*

• Fermi surface reconstruction close to p* (sudden change of number of carriers).

• Relation to strange metal ? T linear resistivity ?

Spin 1/2 electrons, on a lattice with local Coulomb repulsion U and disordered J & t

$$\begin{split} H &= -\sum_{ij,\sigma} (t_{ij} + \mu \delta_{ij}) c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i < j} J_{ij} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + U \sum_i n_{i\uparrow} n_{i\downarrow}, \\ \text{ectronic spin. Same degrees of freedom} \qquad \boldsymbol{S}_i = c_{i\alpha}^{\dagger} \frac{\boldsymbol{\sigma}_{\alpha\beta}}{2} c_{i\beta} \end{split}$$

- NB : S is ele
- Fully connected model (or hopping on a lattice and use DMFT ...)
- J and t with gaussian distribution

$$\overline{t_{ij}} = \overline{J_{ij}} = 0$$

t-U-J model

$$\overline{|t_{ij}|^2} = t^2 / \mathcal{N}$$
 ----- Number of sites
 $\overline{|J_{ij}|^2} = J^2 / \mathcal{N}$

$$t = 0, \quad U = \infty$$
 $\sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$

- Large M with SU(M) spin instead of SU(2), with fermionic representation
- Gapless spin liquid at T=0. No spin glass ordering at $M = \infty$
- "Marginal Fermi liquid" spin dynamics

$$\chi(t) = \langle \overrightarrow{S}(t) \cdot \overrightarrow{S}(0) \rangle \sim 1/t$$

Sachdev-Ye model

Phys. Rev. Lett. 70, 3339 (1993)

 $J\chi''(\omega, T = 0) \propto \operatorname{sign}(\omega)$

7

Doping the SY model : t-J model, large M <u>O.P.</u> & A.Georges Phys. Rev. B 59, 5341 (1999)

$$P + \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \,.$$

SYK/ marginal Fermi liquid spin physics in the quantum critical regime

$$\chi_{\rm loc}''(\omega,T) = \frac{\sqrt{\pi}}{2J} \tanh \frac{\omega}{2T}.$$

See also, doped SYK version, same large M equations

> XY Song, CM Jian, and L. Balents Phys. Rev. Lett. 119, 216601 (2017)

Doping the SY model : t-J model, large M <u>O.P.</u> & A.Georges Phys. Rev. B 59, 5341 (1999)

• Not a Planckian metal. QCP at $\delta = 0$ is an insulator !

The SU(2) model has richer physics

$$H = -\sum_{ij,\sigma} (t_{ij} + \mu \delta_{ij}) c_{i\sigma}^{\dagger} c$$

- QCP is now at finite doping.

 $C_{j\sigma} + \sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + U \sum_i n_{i\uparrow} n_{i\downarrow},$

At low T, zero doping : spin glass, not a spin liquid Grempel Rozenberg (1998), Arrachea-Rozenberg (2002)

Fermi liquid Doping p

How to solve the SU(2) case ?

- Thermodynamic limit, disordered averaged.
- Exact diagonalization on finite systems, H. Shackleton, A. Wietek, A. Georges, S. Sachdev Phys. Rev. Lett. 126, 136602 (2021)
- Analytical insights (RG, ...) A. Sengupta PRB (2000), Joshi et al PRX 10, 021033 (2020). D. Chowdhury, A. Georges, OP, S. Sachdev arxiv:2109.05037, To appear in Rev. Mod. Phys.

Ph. Dumitrescu, N. Wentzell, A. Georges, OP Phys. Rev. B 105, L180404 (2022). (See also Otzuki, Vollhardt (2013))

Thermodynamics limit, with replica trick (replica diagonal solution). Exact action. Paramagnetic phase.

$$S_{\text{eff}} = \int d\tau \left[\sum_{\sigma} c_{\tau,\sigma}^{\dagger} \left[\partial_{\tau} - \mu \right] c_{\tau,\sigma} + U n_{\uparrow}(\tau) n_{\downarrow}(\tau) \right] + \int d\tau d\tau' \left[\Delta(\tau - \tau') c_{\tau,\sigma}^{\dagger} c_{\tau',\sigma} - \frac{J^2}{2} Q(\tau - \tau') S(\tau) \cdot S(\tau') \right]$$

$$G(\tau) = -\langle T_{\tau} c(\tau) c^{\dagger}(0) \rangle \qquad \Delta$$

Electronic Green function

$$c^{\dagger} \sim f^{\dagger}b \qquad \qquad G_f(i\omega_n)^{-1} = i\omega_n + \tilde{\mu} - (t\delta)^2 G_f(i\omega_n) - \Sigma(i\omega_n)$$
$$\Sigma_f(\tau) = J^2 G_f(\tau) G_f(\beta - \tau)$$

In the SU(2) case, we want an exact solution of the action

Disordered averaged action

 $A(\tau) = t^2 G(\tau)$ $Q(\tau - \tau') = \frac{1}{3} \langle \boldsymbol{S}(\tau) \cdot \boldsymbol{S}(\tau') \rangle$

Electronic bath

Retarded spin spin

For SU(M), $M \to \infty$: "slave" boson + saddle point method gives a nonlinear equation for G

Digression : Parsimonious representation of $G(\tau)$

arXiv:2107.13094 [pdf, other] math.NA cond-mat.str-el Discrete Lehmann representation of imaginary time Green's functions Authors: Jason Kaye, Kun Chen, Olivier Parcollet

 $G(\tau)$ can be expressed, at precision ε , as a finite sum of N universal exponentials ...

$$G(\tau) \approx \sum_{i=1}^{N} g_i e^{-\omega_i \tau}$$

- SYK large-M or similar (e.g. NCA) equations = non-linear equation for g_i
- Similar orthogonal basis (IR) H. Shinaoka (2016)
- Advantages over usual (e.g. Matsubara, orthogonal polynomials) representation: maximally compact, adjustable a priori with ε , no truncation needed.

Jason Kaye

Kun Chen

 $N \sim O(\log(\beta \omega_{max}) \log(1/\epsilon))$ High energy cutoff

Solve quantum impurity models

$$S_{\text{eff}} = \int d\tau \left[\sum_{\sigma} c_{\tau,\sigma}^{\dagger} \left[\partial_{\tau} - \mu \right] c_{\tau,\sigma} + U n_{\uparrow}(\tau) n_{\downarrow}(\tau) \right] + \int d\tau d\tau' \left[\Delta(\tau - \tau') c_{\tau,\sigma}^{\dagger} c_{\tau',\sigma} - \frac{J^2}{2} Q(\tau - \tau') S(\tau) \cdot S(\tau') \right]$$

- The central building block of **quantum embeddings** methods, e.g.
 - Dynamical Mean Field Theory and extensions A.Georges Rev. Mod. Phys. 68, 13 (1996), G. Kotliar, Rev. Mod. Phys. 78, 865 (2006)
 - Vertex based methods (Trilex, Quadrilex, DGA)
 - Quantum chemistry, SEET, ...

- A large toolbox of algorithms:

• Continuous Time QMC, diagrammatic QMC, DMRG, Tensor networks, METTS, NRG

14

One "Continuous Time" Quantum Monte Carlo

$$S_{\text{eff}} = \int d\tau \left[\sum_{\sigma} c_{\tau,\sigma}^{\dagger} \left[\partial_{\tau} - \mu \right] c_{\tau,\sigma} + U n_{\uparrow}(\tau) n_{\downarrow}(\tau) \right] + \int d\tau d\tau' \left[\Delta(\tau - \tau') c_{\tau,\sigma}^{\dagger} c_{\tau',\sigma} - \frac{J^2}{2} Q(\tau - \tau') S(\tau) \cdot S(\tau') \right]$$

Principle (CT-INT): expand the partition function in interactions U and Q

$$Z = \sum_{n \ge 0} \sum_{p \ge 0} \frac{(-U)^n J^{2p}}{n! \, p!} \int_0^\beta \prod_{i=1}^n d\tau_i \prod_{j=1}^p d\tau'_j d\tau''_j \sum_{a_j = x, y, z} \left\langle \mathcal{T}_\tau \prod_{i=1}^n n_\uparrow(\tau_i) n_\downarrow(\tau_i) \prod_{j=1}^p S^{a_j}(\tau'_j) S^{a_j}(\tau''_j) \right\rangle_0$$

- Imaginary time. Samples all integrals with a Monte Carlo. Compute $G(\tau)$ and $(\tau)^{(0)}$ Typical $n \sim \beta U$

 $n_{\uparrow}n_{\downarrow} \rightarrow (n_{\uparrow} - \alpha_{\uparrow})(n_{\downarrow} - \alpha_{\downarrow})$

Main limitations : very low temperatures/energy scales, close to QCP.

(Rubtsov 2004)

Q induces a sign problem, but strongly reduced by optimizing the quadratic starting point

Sketch of the phase diagram

Planckian metal

Ph. Dumitrescu, N. Wentzell, A. Georges, OP Phys. Rev. B 105, L180404 (2022)

Fermi Liquid

Doping (δ or p)

Metal-metal transition

 $H = -\sum_{ij,\sigma} (t_{ij} + \mu \delta_{ij}) c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i < j} J_{ij} S_i \cdot S_j + U \sum_i n_{i\uparrow} n_{i\downarrow},$

Phase diagram (doping driven QCP)

• J = 0.5t, U = 4t

Fermi liquid collapse

- Characteristic energy scale E_{FL} vanishes at the QCP.
- Low T, low frequency Fermi liquid expansion

$$Im\Sigma(i\omega_n) = \left(1 - \frac{1}{Z}\right)$$

Metallic spin glass

- Here, we solve only in the paramagnetic phase.
- For $p < p_c$, emerging local moment $m \dots$
 - Characterized by a plateau at large imaginary time Grempel & Rozenberg (98)

Metallic spin glass

-1.5

-1.0

- For $p < p_c$, emerging local moment $m \dots$
- ... which orders into a quantum spin glass

Spin glass susceptibility

Direct solution in the metallic spin glass phase with Parisi replica symmetry breaking ansatz?

H. Shackleton, et al. PRL 126, 136602 (2021)

Fermi surface reconstruction at the QCP

- Luttinger theorem : volume of Fermi surface independent of interaction

See also Otzuki, Vollhardt (2013)

Critical scaling : spin dynamics

$$Q(\tau - \tau') = \frac{1}{3} \langle \mathbf{S}(\tau) \cdot \mathbf{S}(\tau') \rangle$$

$$Q(\tau) \sim \frac{1}{\left[\sin(\pi \tau/\beta)\right]^{\theta}}$$

 $\theta = 2$ (Fermi liquid), $\theta = I(QCP)$

See also, Joshi et al PRX 10,021033 (2020)

Phase diagram color map : θ

Planckian behavior Linear resistivity

Quasiparticle lifetime in the Fermi liquid

Single particle lifetime

Transport. Resistivity

Transport time T_{tr}

$$1/\tau_{transport} = -2ImZ$$

- T*

Fermi liquid

Conformal form fit for the self-energy

 τ/β

- **Open questions :**
 - Does the asymmetry α stay finite at T = 0 at the QCP ?
- Relationship between α and the entropy at T=0 (like in the large-M models)?

At QCP $\nu \approx 0.6 - 0.8$

Single particle lifetime : T-dependency

 ω/T scaling in real frequencies

$$\mathrm{Im}\Sigma(\omega) = -T^{\nu}\sigma(\omega/2)$$

Compute the real part the self energy, Z, for v < I

$$1 - \frac{1}{Z(T,\omega)} \equiv \frac{1}{\omega} \left[\text{Re}\Sigma(\omega,T) - \text{Re}\Sigma(0,T) \right]$$

T linearity of single particle lifetime is independent of v

$$\frac{1}{\tau^*} = -ZI$$

$Z(T,\omega=0) \sim T^{1-\nu}$

 $Im\Sigma(\omega=0)\sim T$

- The mechanism for T linearity is quite different from a bad/hot metal
- Einstein relation

Generically at very high T (e.g. cold atoms)

$$D \sim \text{const}, \quad \chi_e(T) \sim 1$$

Here, χ_e has little dependence on T-at the QCP.

 $\chi_e(T) \sim \text{const},$

Conclusion

- SU(2) model has a richer physics than the simple large M limit.
- Modern algorithms are essential to solve SU(2) models.

- Open questions :
 - Solution in the spin glass phase. Real time, aging, spin glass dynamics ?
 - Residual entropy at the QCP at T = 0. Relation with the spectral asymmetry ?
 - Precise scaling Σ(ω) at low ω
 A challenge for a new generation of high precision algorithms, very low T, in real time (e.g. real time Quantum Quasi Monte Carlo).
 - SU(2) exact solution for models beyond SYK.

e simple large M limit. SU(2) models.

Thank you for your attention!

