

Recent insights on the normal state of Sr₂RuO₄

High-resolution photoemission and Hall coefficient

MANUEL ZINGL Workshop – Collège de France - 11.06.2019

Acknowledgments – Experiment / Theory collaboration

Felix Baumberger

Anna Tamai

University of Geneva

Antoine Georges CCQ Collège de France

Minjae Kim Collège de France → Rutgers University

High-resolution photoemission on Sr₂RuO₄ reveals correlation-enhanced
effective spin-orbit coupling and dominantly local self-energies
A. Tamai, MZ, E. Rozbicki, E. Cappelli, S. Ricco, A. de la Torre, S. McKeown Walker,
F. Y. Bruno, P.D.C. King, W. Meevasana, M. Shi, M. Radovic, N.C. Plumb, A.S. Gibbs,
A.P. Mackenzie, C. Berthod, H. Strand, M. Kim, A. Georges, F. Baumberger
PRX 9, 021048 (2019)

Sr_2RuO_4 – one of the best studied TMO

- huge high-quality crystals
- investigated with many experimental techniques

Rich physics:

- Hund's physics, spin-orbit coupling
- van-Hove singularity close to E_{E}
- Fermi liquid (T_{FI} ~ 25 K)
- superconductor ($T_c \sim 1.5$ K)

"Looks" simple:

Resistivity (m Ω cm)

1.2

1.0

0.8

0.6

0.4

high-T

'bad'-metal

Sr

 $k_{_{\rm F}}\ell = 1$

 $\ell = a$

Fermi surface basics

- 4 electrons in Ru-t_{2g} shell
- d_{xy} yield a quasi 2D γ -sheet
- $d_{xz/yz}$ have directional hopping along x/y yielding the α/β sheets

ΟN

A. Damascelli, PRL 85, 5194 (2000)

High-resolution laser-ARPES Fermi surface

Fermi surface reveals enhancement of spin-orbit coupling (SOC)

Cannot be explained by tuning crystal-field splitting

Enhanced-SOC theoretically predicted Liu et al. PRL 101, 026408 (2008), Zhang et al. PRL 116, 106402 (2016), Kim et al. PRL 120, 126401 (2018)

Extract SOC from Fermi surface splitting:

$$\begin{split} \Delta k &= \lambda^{\rm eff} / v \\ \lambda^{\rm eff} &= \lambda_{\rm DFT} \Delta k^{\rm QP} / \Delta k^{\rm DFT + \lambda_{\rm DFT}} = 205(20) \ {\rm meV} \\ \lambda_{\rm DFT} &= 100 \ {\rm meV} \end{split}$$

Using energy splitting at F: C. N. Veenstra, et al., PRL 112, 127002 (2014)

Non-interacting reference Hamiltonian

- 1) DFT without SOC (Wien2k, GGA-PBE)
- 2) Construct Hamiltonian $\hat{H}^{\rm DFT}$ from maximally-localized Wannier functions for the three-orbital t_{2g} subspace

3) Add static SOC:

$$\hat{H}_{\lambda}^{\text{SOC}} = \begin{pmatrix} \varepsilon_{xy} & 0 & 0 & 0 & \frac{\lambda_{xy}}{2} & \frac{i\lambda_{xy}}{2} \\ 0 & \varepsilon_{yz} & -\frac{i\lambda_z}{2} & -\frac{\lambda_{xy}}{2} & 0 & 0 \\ 0 & \frac{i\lambda_z}{2} & \varepsilon_{xz} & -\frac{i\lambda_{xy}}{2} & 0 & 0 \\ 0 & -\frac{\lambda_{xy}}{2} & \frac{i\lambda_{xy}}{2} & \varepsilon_{xy} & 0 & 0 \\ \frac{\lambda_{xy}}{2} & 0 & 0 & 0 & \varepsilon_{yz} & \frac{i\lambda_z}{2} \\ -\frac{i\lambda_{xy}}{2} & 0 & 0 & 0 & -\frac{i\lambda_z}{2} & \varepsilon_{xz} \end{pmatrix}$$

4) Use λ_{DFT} = 100 meV and λ_{DFT} + $\Delta\lambda$ = 200 meV

Software packages:

Quasiparticle dispersion along several angular cuts

Self-energy in band basis ($v = \{\alpha, \beta, \gamma\}$)

$$G_{\nu\nu'}^{-1}(\omega, \boldsymbol{k}) = \left[\omega + \mu - \varepsilon_{\nu}\left(\boldsymbol{k}\right)\right] \delta_{\nu\nu'} - \Sigma_{\nu\nu'}(\omega, \boldsymbol{k})$$

Quasiparticle dispersion:

$$\det\left[\left(\omega-\varepsilon_{\nu}\left(\boldsymbol{k}\right)\right)\,\delta_{\nu\nu'}-\Sigma_{\nu\nu'}'(\omega,\boldsymbol{k})\right]\,=\,0$$

Assume diagonal self-energy: $\omega - \varepsilon_{\nu} \left(\boldsymbol{k}_{\max}^{\nu}(\omega) \right) = \Sigma_{\nu}'(\omega, \theta) \qquad \boldsymbol{k}_{\max}^{\nu}(\omega) \dots$ maximum of dispersion

Self-energy in orbital basis (m = {xy, xz, yz})

Work in orbital basis $|\chi_{m}\left(m{k}
ight)
angle$ (i.e. Wannier functions)

Extract self-energy with: $\det \left[(\omega - \Sigma'_m(\omega, \theta_k)) \delta_{mm'} - \hat{H}^0_{mm'}(k) \right] = 0$

Collapse of self-energies

Direct experimental justification of "locality ansatz" à la DMFT

Angular dependence of orbital content of quasiparticles

Orbital-content of quasiparticle states is strongly angular dependent (SOC)

Comparison to DMFT

Other successes of DMFT for Sr₂RuO₄

Overview

- High-resolution laser-ARPES reveals quasiparticle physics of Sr₂RuO₄ with unprecedented accuracy
- Enhancement (by factor of ~ 2) of spin-orbit coupling by electronic correlations confirmed
- Momentum independent ansatz (DMFT) for self-energy of each orbital works well
- Angular dependence of quasiparticle properties largely explained by angular dependence of orbital content (controlled by spin-orbit)

Hall coefficient signals orbital differentiation in the Hund's metal Sr₂RuO₄ MZ, J. Mravlje, M. Aichhorn, O. Parcollet, A. Georges

arXiv:1902.05503

Hall coefficient R_H

1st sign-change

 \rightarrow signature of multi band/orbital nature

- \rightarrow interplay of electron and hole-like Fermi surface sheets
- \rightarrow scattering rates strongly T and Fermi surface sheet dependent

<u>Experiments:</u> N. Shirakawa et al., JPSJ 64, 1072-1075 (1995),
 A. P. Mackenzie et al., PRB 54, 7425, (1996), L. M. Galvin et al., PRB 63, 161102 (2001)
 <u>Earlier theoretical works:</u> C. Noce, et al. PRB 59, 2659 (1999),
 I. Mazin, et al., PRB 61, 5223 (2000), C. Noce, et al. PRB 62, 9884 (2000)

Scattering rate ratios

Boltzmann transport theory:

• constant isotropic scattering time approx. $\sigma_{xx} = \sigma_{vv} \sim \tau = 1/\eta$ and $\sigma_{xv} \sim \tau^2$

$$ightarrow R_{H} = rac{\sigma_{xy}}{\sigma_{xx}\sigma_{yy}} \;\; {
m does \; not \; depend \; on \; \eta}$$

- orbital-dependent scattering rates η_{xy} and $\eta_{xz} = \eta_{yz}$ $\rightarrow R_H$ depends on ratio $\xi = \eta_{xy} / \eta_{xz/yz}$
- R_H monotonically increases ratios
- SOC essential for R_H > 0
- T-dependence of scattering rate ratios to explain the experiments?

$$\eta_{\nu}(\mathbf{k}) = \sum_{m} |\langle \chi_{m}(\mathbf{k}) | \psi_{\nu}(\mathbf{k}) \rangle|^{2} \eta_{m}$$

G. K. Madsen et al., CPC 175, 67 (2006) G. K. Madsen et al., CPC 231, 140 (2018)

Inelastic electron-electron scattering

DFT+DMFT:

- $\eta_{xy} > \eta_{xz/yz}$
- orbital-differentiated coherence-incoherence crossover
- ξ strongly T-dependent

Crossover from incoherent electrons to coherent Fermi liquid

J. Mravlje, et al., PRL 106, 096401 (2011), X. Deng, et al., PRL, 116, 256401 (2016)

 \rightarrow turns R_{H} positive with zero crossing at 120 K

In FL ratio ξ is independent of T: Why does R_H turn negative again at low T?

Sign-changes are signature of 2 cross-overs:

- coherent-to-incoherent regime
- inelastic-to-elastic scattering

Well separated temperature scales in clean samples.

Experiment: L.M. Galvin et al., PRB 63, 161102 (2001)

Ingredients for T-dependence of R_H

- Fermi surface sheets of different or mixed orbital character
- T and orbital dependent scattering rates
- Balanced electron/hole contributions \rightarrow sign-changes can emerge

R. Perry, et al., Phys. B 284, 1469 (2000); J. P. Sun, et al., PRL 118, 147004 (2017); O. Heyer, et al., PRB 84, 064512 (2011)

