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Strongly-correlated systems: The challenge
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Strongly-interacting quantum systems:
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Exciting physics, rich phase diagrams
What can we actually solve?

Let us take our favorite spherical c
the Hubbard model:
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Why is it so hard to solve?
No analytical solutions
It is a quantum problem

It involves many particles
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Numerical approaches to strongly-correlated systems

Can roughly be divided into two categories:

Bottom to top (often Hamiltonian-based methods)

Exact diagonalization, density-matrix
renormalization group, tensor networks, ...

Exponential size of the Hilbert space: 4%
Quantum entanglement of ground state

Approximation by some clever truncation

Top to bottom (often action / path integral-based methods)
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Continuous-time quantum Monte Carlo, auxiliary-field quantum Monte Carlo,

diagrammatic Monte Carlo, ...
They are usually based on a stochastic algorithm

Suffer from the fermionic sign problem

Limited by interaction strength, temperature, system size




Dynamical mean-tield theory equations

The critical part of the dynamical mean-field theory equations is to find the solution
of an Anderson impurity model
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Wishlist for the impurity solver: A. Georges et al., RMP (1996)

Sensitive to bath structure at all energy scales
Generic Hamiltonians (multiband, clusters, ...)
Different temperature regimes

Numerically exact

Is this really easier than the original problem? Well yes, easier... But still not easy!



Continuous-time quantum Monte Carlo algorithms

The Anderson impurity is still a very difficult problem

Infinite number of degrees of freedom 150

-+ Weak Coupling Algorithm

But essentially one dimensional | A aaHybridization Expansion
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Hamiltonian approaches:

Matrix Size

Finite-temperature is not very easy

But mainly: does not scale well with increasing
number of orbitals oL —

The continuous-time quantum Monte Carlo algorithms
They have been a bit of a revolution
They come in three different flavors
Can address multiorbital strongly-correlated materials or clusters (e.g. DCA)
They are based on a stochastic Monte Carlo algorithm

Their limitation is the fermionic sign problem
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A very quick introduction to Monte Carlo methods
How to compute integrals stochastically

The origin of the sign problem



Compute 1 by throwing

Let us try to compute 7 by throwing stones
N stones uniformly thrown in a 2x2 square

We count the fraction that falls inside a radius 1

circle L
# inside
~ 4.
# total

Let us make this more formal and let us call X,
the random variable associated to a single throw

(X7) = 4

But if | throw many stones, the error bar decreases
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Using Monte Carlo to compute integrals

More generally Monte Carlo methods allow to stochastically compute integrals

f—/f /(f dr ~ — Zg

p(x

g(z) = 12 /()dx—l o) > 0

The idea is to generate a Markov chain {z1, =2, 23, ...}
such that the x; are distributed according to the probability law p(z)

- In practice this can be achieved in different ways, e.g. using the Metropolis-Hastings
algorithm

1 x 4 x € circle
- Stone example: T = / —g(z) dx g(z) = M = { :
square 0 x ¢ circle

- A more general

function f(x) \ .

- Choosing a good p()
Importance sampling




- Continue with z3, ...

Metropolis-Hastings (1953)

The Metropolis-Hastings algorithms allows to sample a chosen distribution p(x)

Achieve this through a Markov chain
T1 — L9 —> T3 —> Ly — ...
Start from random x;
Propose a new y with some chosen probability £, ,

- Accept or reject this proposal

propose update

with probability z—y <
l initialize
. oy P ’ | initializ
A:my — 111N (17 ( ) Py - compute simulation
,0(5131) T1,Y R an(o) I measures
observables
. I
y  if proposal accepted 1. Pyap(y)
To = Azy = min [1. I : ( )}
. . n.r
x1 otherwise =t
_ leave configuration
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£ > T
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- This generates the desired p(z) g

unchanged

update configuration




Monte Carlo and classical systems

Monte Carlo methods can be very powerful in classical statistical physics
Let consider the Ising model  Higy, = J Z 00 — hz o o= +1

The average magnetization ) Z

1
(m) = 7 ZQ_BHIS“%(C) m(C) C ={o1, 02, 03, ...}
C

The sum over all configurations is exponential! 2"
Monte Carlo: This can be written as

- D e pC)m(C) p(C) = o~ BHising (C)
Xl g(C) = m(C)

(m)

There is a very natural choice for p(C) which has the nice property p(C) >0
With quantum systems: no such nice choice for p(C)

In particular it is hard to find a positive probability distribution



The sign problem in Monte Carlo methods

What if the function that we try to integrate is alternating in sign?

What probability density should we take?

Letustry p(z) =~|f(x)

Then the function to sample is oes |
MC 000 4

L fl@) 1.
I ~ — €T g T) — — — —Slgnf €T 08 4
N;g( ) (@) = = F9ef (@) )

But ¢g(z) has big oscillations around the result \

. i O
This leads to a larger variance —=

VN

This is known as the sign problem

Algorithms that simulate fermionic systems
generally have a sign problem where

o grows exponentially with temperature,
system size, etc.
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Continuous-time quantum Monte Carlo algorithms
The three flavors of algorithms and the fermionic sign problem

What have they allowed to do?



Continuous-time quantum Monte Carlo algorithms

They allow to find the solution of an Anderson impurity model

B=1/T

\ Describes the structure of
the bath (self-consistently

determined)

They come in three flavors:

Rubtsov and Lichtenstein,

CT-INT: Interaction expansion JETP Lett. (2004)

CT-HYB: Hybridization expansion Werner and Millis, PRB (2006)
CT-AUX: Auxiliary-field formulation Gull et al., EPL (2008)
All are based on different perturbative expansions of the partition function

The terms of the perturbation series are computed stochastically



Interaction expansion algorithm
We start from 7 = /D[d*,d] e ® /D [dT,d]e > A

S = Sy+Sy = — Z/ drdr’ df (1)Go, (- )da(T’)Jr/O dr Ungy(7)nay(7)

/

Treat this term
perturbatively

The partition function becomes

= /D[dT,d] e 0OV = 7, <TTe_SU>O

Writing the Taylor series in the interaction for the exponential

> n B
2=20 Y S5 [ dn . dn( T () na()nan)  na(m)g

Z=127y% dTl...dTn( ) det D(74, ..., ) D(ri,..0 )
| .
—~JO n. ISan N xn
matrix

This is a large sum: Let us try to compute it by Monte Carlo!



Monte Carlo sampling

Monte Carlo sampling of the partition function

o0 B o n
Z:ZOZ/ dTl...dTn ( U) detD(Tl,...,Tn)ZZQZw(C)
n=0"0 N ~ C

n!
g w(C
2.c © n=>5
Monte Carlo configurations: C = {n,m,..., 7} — — |
7 T2 T3 T4 T5 3
: det D(C 0
Some observable: S w(C) et Dgcg

) = >_cw(C)

We could use w(C) as a Monte Carlo weight. Warning: it can be negative! So we
must use the absolute value

det D(C) . MC det D(C) _.
> e |lw(C) deEDgcg - sign(w) 2 deEDEcg - sign(w)

(ny) = : — MC .
2.c ‘W(C)| -sign(w) 2.c  sign(w) +—___ Induces a very
large variance
o x exp(n)

The variance of w(C) leads to an exponential sign problem



The fermionic sign problem

What is the typical amplitude of a sampled contribution?

n!

7 =17 i Bd ar, U
= 7y T1...d1, et D(11,...,7n)
n=0 0 .

J/

w(C)
ug)"
n!

Therefore the orders that contribute most are
found around nmax >~ BU

The contributions go as w(C) ~

The main contributions have alternating signs
with a typical variance

BU
o~ (fﬁUJ)' ~ exp(BU)

This is the exponential fermionic sign problem
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The algorithm in practice

interaction vertices

We use a Metropolis-Hastings scheme A

Start from some configuration ‘—0—0—0 &9 | n=>
T To T3 T4 T5

Propose new configurations 0 b

Add a vertex:

76
n:5‘—o—o—‘ ch—>n:6‘—0—0—0000|
T T2 T3 T4 Tp | T T2 T3 T4 Ths

0 5 0 5

Remove a vertex:

n—=—5 r&—ee S > n=4 ‘—0—0—0 S )(—{
T To T3 T4 Ts 7 T2 T3 T4
0 B

Accept or reject the proposed configurations with relevant probability



ls all hope lost”?

Extra freedom in the theory:

Hing = Unang = U(nr — a)(ny — a) + Ua(ny + ny) + const

This additional « changes the non-interacting starting point (different chemical
potential)

A clever choice for « can completely suppress the sign problem in the single-orbital
Anderson impurity model!

For multiorbital models there is a sign problem
that gets worse and low temperatures or
high interaction

Complexity: O(n?)

£ hits

Average perturbation order n ~ gU

Sign problem o ~ exp(SU)




Hybridization-expansion algorithm
Very similar in spirit

B
Z/ drdr’ dT (T — 7d, (") —I—/O drT Ungs(T)nqy ()

We treat the hybridization to the bath as a perturbation

SZSlOC+ZSZ

8
_ / ar [ db (1) (=0 + €0)do (1) + Unay (T)nay(r)] - < atomic limit
+ Z /B drd+" dl (T)AJ (7. _ 7_/)61(7 (T/) <+«——— perturbation

Writing the Taylor expansion for e~ °2

/p dt, dle— S [i (—nl!)” } :< [Z

n=0

(58)"])..

o)
\ average value to be computed
in the isolated impurity



Monte Carlo sampling

Now configuration are given by a set of pairs of times

C:{n,Ti",TiI"} 7 = Z "det A(C) - TrC

n insertions of hybridization lines W(C)

The contributions to the partition function do not need to be positive
But: in single-orbital models there is no sign problem

For multiorbital models there is a sign problem
that gets worse at low temperatures 0.1

0.09
Complexity: O(n?) 0.08 |
0.07 ¢
0.06
0.05
: - : _ 0.04 +
For multiorbital systems, the local impurity 0.03 |

Hilbert space grows exponentially o |

Average perturbation order ~ IC

plk)

0

The trace calculation becomes the bottleneck 0O 10 20 30 40 50 60

order k



Summary: continuous-time QMC algorithms

Their development has been very important within DMFT

150 v . v . v ., ........

CT-INT & CT-AUX: series in the interaction

- = Weak Coupling Algorithm
a4 Hybridization Expansion

Many orbitals, weak coupling, high temperatures . oo Hirsch Fye

Z

Matrix Si

Low temperatures, generic Hamiltonians
are difficult

CT-HYB: series in the hybridization

Generic Hamiltonians, low temperatures

Bad scaling with number of orbitals

Many models have been investigated =™

1.00 et

Hubbard model, Holstein-Hubbard, Kondo lattice 0

-1.00 -

Extensions of DMFT: DCA, CDMFT, dual-fermions, DTA  ° ™"

30008
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Within DFT + DMFT realistic structure calculations ——
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Out-of-equilibrium generalization )
M. Aichhorn et al., PRB (2009)



Two applications of CT-QMC solvers

5

CT-QMC (with Padé) and numerical
renormalization group comparison 3

Bethe lattice DMFT

H
OI.G 0.8
W

Dynamical cluster extension of DMFT

4\
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T
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NN

p=200 [  P=400

Anderson impurity

SN
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NRG: Rok Zitko
CTQMC: Jernej Mravlje

° E. Gull et al., PRB (2010)

The approach to the Mott insulator is characterized by successive Mott transition

In reciprocal space

Region close to the antinode get insulating first while regions close to the node
remain metallic down to the Mott insulating state



Continuous-time algorithms for the lattice”

CT-QMC are very efficient for impurity models. Can they be extended to the lattice?

The hybridization algorithm suffers from exponential increase of local Hilbert space

The interaction expansion algorithm

The perturbation order increases rapidly with the number of sites and the sign
problem becomes very severe

The reason is that we sample the partition function which is extensive

From a diagrammatic point of view:

OO0 00 &
CMD@CZD D+t TOTO

Connected diagrams are \ Disconnected diagrams bring

those that contribute to an extensive contribution
physical intensive quantities

At large orders the contribution from connected diagrams is only a small fraction

of the total sum of diagrams. A relatively small error bar on the total sum can be
large for the connected diagrams contribution!
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Diagrammatic Monte Carlo algorithms
Addressing the infinite lattice directly

Applications to the two-dimensional Hubbard model



Diagrammatic Monte Carlo

We consider a model on an infinite lattice (thermodynamic limit)

The idea is to write a perturbation series in U for the physical quantity of interest

oo
A = Z a, U" <+«———— €.g. density, double occupation,
0 Green function, ...

From a diagrammatic point of view, e.g.

Only connected diagrams
B . «— contribute to physical
A=InZ = M + @ + m t intensive quantities

The two challenges:

1. Fermionic sign problem — difficult to get many coefficients a,,
2. Resum the series — analytical structure in complex U plane?
- The partition function Z(U) is an entire function in the complex Uplane

- Physical observables A(U) usually have poles in the complex plane

- Therefore the series for A generally has a finite convergence radius!



Challenge 1: Compute series coefficents

No simple formula for the coefficients of physical observables (unlike 7 )
They are best represented diagrammatically (e.g. connected diagrams)

Original algorithm (DiagMC): stochastically

sample all topologies (= 6-7 orders) (22, T2)
. . (1’1,7’1) (1’2,7’2) +
Sign problem has two origins: »( o Cp (21, 71)
Integration over internal variables N.V. Prokofiev and B.V.
Svistunov, PRL (2007)

Alternating sign between different topologies
Reduce sign problem: Sum topologies with the same set of internal vertices V

Huge computational effort: there is a factorial number of diagrams!

. . . Lin Lin Lin
CDet: Can be done in exponential time 3" . ; .
using determinants (disconnected diagrams i All vert. in V $f wAlven nVAS
- pu— . . _— . 1' d. .
removed recursively) v (mcl.* dise) 2o (incl. disc.)
Up to = 10-12 orders for Hubbard model Lout Tout Tout

Rossi, PRL (2016)
Moutenet et al., PRB (2018); Simkovic and Kozik, arXiv (2017)



Challenge 2: Resummation of the series

Series convergence controlled by structure n(U) in the Hubbard atom
In complex plane How to

_ _ ‘ evaluate the
How do we evaluate the series beyond its ImU series here?

convergence radius?

Conformal maps, integral approximants,
Padé approximants, ...

A

Convergence
— . » ) radius

ReU

Generate new series with freedom in the starting point of the perturbation theory

1 ~ 1
GQZ, >G0:,
Wy + 1 — € Wy + 1 — € —

A proper choice of « can increase radius and accelerate convergence



Summary: diagrammatic Monte Carlo

Stochastically sample contributions to intensive physical observable

Can directly address infinite lattice size Tin Tin Tin
_ _ _ o C . C A
Exponential complexity with orders ~ 3 SR S RS MR A
%4 * T oscv || s N
In practice: 10-12 orders for Hubbard model Tou Tou Tou

The series generally have finite convergence radius

Ongoing efforts

Generalize to different models, different perturbation series

Find better starting points CDet RDet
(why not DMFT!) I modified
analytical result M propagator

In particular can we generalize 7
the formalism to start from a 2
propagator that would be a <
well-defined function of U/

Go(U)

1.0

f

only o shift — >
GO%GO(U) '0'1'2'31125'6'7at0m|CI|m|t:345678910

N (order) N (order)

n (density)

0.9+




Application: Half-filled Hubbard model

The half-filled Hubbard model is a good testbed for diagrammatic Monte Carlo,
where it is expected to work best

H = —t Z C,:-ra(ija + Uan;Tn,u 05 . r . : . r . :
(i,j)o 0 .
. Tan
Exact solutions in the weak- to 0.4 o

iIntermediate-coupling regime

y -
Jliu\e
L LN

Antinode Node
(7,0) (E Z)
97 9 F. Simkovic et al., arXiv (2018)

T. Schéfer et al. (in preparation)



Application: Pseudogap physics in Hubbard model

Investigate doped 2D Hubbard model

300 ! I ' I
hole doping

Relevant to cuprate superconductors

The pseudogap region: Tw

Ak ((,u — ()) /-o strange metal

200
Nodal / antinodal o
differentiation antinode / 5
H =3
. ot spot 100f &
Loss of spectral weight node 3

at the antinode 8 !
/ o superconductor
) | s | M .
0 0.1 0.2 0.3
_ doping
Role of Mott insulator?

Ordered phase? H =D tijclcjo +U D ninyy

1j0 )

8
/]
5
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S
i~

Open questions:

Mechanism of the pseudogap?

Good or bad for superconductivity?

Both nearest-neighbor ¢
and next-nearest neighbor t' = —0.3t



Complementary numerical approaches

Cluster extensions of DMFT such as the dynamical cluster calculations (DCA)

U:5.6tI T=O.2tI 0 = 4%

16 m32 m 52
m 64 m OO node

|

— diagMC, 6" [

Diagrammatic Monte Carlo

Im*(k, iw)

o= Q.- Q- 2

= = DCA 8x8
LR |
There is a non-trivial regime where both me (0,0) (0, *\ (m,7) (0,0)
agree at a quantitative level
antinode
Confirm there is a pseudogap in Hubbard model
An important addition of diagrammatic Monte Carlo W.Wu, MF, A. Georges, E.

is its infinite momentum resolution Kozik, PRB (2017)

Allows to address question that are difficult with other approaches



Converged results for

Entering the pseudogap region

U=56t T=02t 6=4%

Top of pseudogap region

Clear nodal / antinodal differentiation

antinode

hot spot
node

Antinode hotter than hotspot # weak-coupling

—0.5

Im>*(k, iw,)

1
Anti-node
Hot spot

Node

0

e+ DCA n=0
e-+ DCA,n=1 k=(m0) B
SR DCA,n:Z
ey
- =
&- -
. DiagMC resummed | —
AL ||_lj‘L-, 0 '..“
1/N¢
1 L Ne ‘
‘ - - '
4 S 12 16
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-3 =2 -1 0
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300 T d T
hole doping
, T*
Tn |
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%
S'Z R c Il
~ |l & 3
‘ o -~
100 % © & -
2 T Qé
Q
: !
o superconductor
" | L 1
0 0.1 0.2 0.3
doping

obtained from diagrammatic Monte Carlo
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Note: also recent results at

=7t 1T'=0.2¢
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Origin of the pseudogap: fluctuation diagnostics
O. Gunnarson, T. Schéafer, et al., PRL (2015)

Fluctuation analysis e
YWK) = qu K Un ii F
( )—zq: X ( )+7 : N K
N AR, =
Gives info about nature of scattering AVAVAVAVAY
: AK

Spin, charge and pairing representations

Spin: Fermi surface scattering at node, commensurate at antinode

From spin susceptibility

‘g:w‘

node

Pseudogap due to
short-range,
antiferromagnetic
correlations

o
anti-

node

W.Wu, MF, A. Georges, — — — — pairing — 0 = 4%
E. Kozik, PRB (2017) U=5.6t.T = 0.2t
= 5.6t,T = 0.




Conclusion ?
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Hard luck and trouble is my only friend...
If it wasn't for bad luck, | wouldn't have no luck at all...
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Conclusion: on a more positive note <

Fermionic problems are very challenging!

There has nevertheless been great progress in the development of modern
numerical algorithms

Among those Monte Carlo approaches play an important role

They are always limited by the sign problem but their boundaries are always
pushed further

Within dynamical-mean field theory:
Continuous-time algorithms opened new avenues for the method
Different models, extensions of DMFT, realistic structure calculations
Addressing the infinite lattice is possible within diagrammatic Monte Carlo
Non-trivial regimes can be addressed (e.g. pseudogap)

Many ideas remain to be explored



Acknowledgements

Thank you for your attention!

SIMONS FOUNDATION



