Were fermions born under a bad sign?

Michel Ferrero Ecole Polytechnique and Collège de France

Paris, May 7, 2019

Outline

- Why are fermionic quantum systems difficult?
 - Hamiltonian approaches and Hilbert space size explosion
 - Action-based approaches and Monte Carlo methods
- A very quick introduction to Monte Carlo methods
 - How to compute integrals stochastically
 - The origin of the sign problem
- Continuous-time quantum Monte Carlo algorithms
 - The three flavors of algorithms and the fermionic sign problem
 - What have they allowed to do?
- Diagrammatic Monte Carlo algorithms
 - Addressing the infinite lattice directly
 - Applications to the two-dimensional Hubbard model

Strongly-correlated systems: The challenge

sheep

- Strongly-interacting quantum systems:
 - Exciting physics, rich phase diagrams
 - What can we actually solve?

•

•

 Let us take our favorite spherical cow model, the Hubbard model:

$$\mathcal{H} = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- Why is it so hard to solve?
 - No analytical solutions
 - It is a quantum problem
 - It involves many particles

Numerical approaches to strongly-correlated systems

- Can roughly be divided into two categories:
- <u>Bottom to top</u> (often Hamiltonian-based methods)
 - Exact diagonalization, density-matrix renormalization group, tensor networks, ...
 - Exponential size of the Hilbert space: 4^N Quantum entanglement of ground state
 - Approximation by some clever truncation

•

- Top to bottom (often action / path integral-based methods)
 - Continuous-time quantum Monte Carlo, auxiliary-field quantum Monte Carlo, diagrammatic Monte Carlo, ...
 - They are usually based on a stochastic algorithm
 - Suffer from the fermionic sign problem
 - Limited by interaction strength, temperature, system size

Dynamical mean-field theory equations

The critical part of the dynamical mean-field theory equations is to find the solution of an Anderson impurity model

A. Georges et al., RMP (1996)

- Wishlist for the impurity solver:
 - Sensitive to bath structure at all energy scales
 - · Generic Hamiltonians (multiband, clusters, ...)
 - Different temperature regimes
 - Numerically exact

•

•

• Is this really easier than the original problem? Well yes, easier... But still not easy!

Continuous-time quantum Monte Carlo algorithms

The Anderson impurity is still a very difficult problem

- Infinite number of degrees of freedom
- But essentially one dimensional
- Hamiltonian approaches:

•

•

- Finite-temperature is not very easy
- But mainly: does not scale well with increasing number of orbitals

The continuous-time quantum Monte Carlo algorithms

- They have been a bit of a revolution
- They come in three different flavors
- Can address multiorbital strongly-correlated materials or clusters (e.g. DCA)
- They are based on a stochastic Monte Carlo algorithm
- Their limitation is the fermionic sign problem

Outline

- Why are fermionic quantum systems difficult?
 - Hamiltonian approaches and Hilbert space size explosion
 - Action-based approaches and Monte Carlo methods
- A very quick introduction to Monte Carlo methods
 - How to compute integrals stochastically
 - The origin of the sign problem
- Continuous-time quantum Monte Carlo algorithms
 - The three flavors of algorithms and the fermionic sign problem
 - What have they allowed to do?
- Diagrammatic Monte Carlo algorithms
 - Addressing the infinite lattice directly
 - Applications to the two-dimensional Hubbard model

Compute π by throwing stones

- Let us try to compute π by throwing stones •
- N stones uniformly thrown in a 2x2 square •
- We count the fraction that falls inside a radius 1 • circle 11 • • 1

$$\pi \simeq 4 \cdot \frac{\# \text{ inside}}{\# \text{ total}}$$

Let us make this more formal and let us call X_i • the random variable associated to a single throw

$$\langle X_i \rangle = \frac{\pi}{4} \cdot 4 + \frac{4 - \pi}{4} \cdot 0 = \pi \qquad \langle X_i^2 \rangle = 4\pi \qquad \sigma_{X_i} = \sqrt{4\pi} - \langle X_i \rangle = \pi \pm 1.64$$

But if I throw many stones, the error bar decreases •

$$X = \frac{1}{N} \sum_{i=1}^{N} X_i \qquad \langle X \rangle = \pi \qquad \sigma_X = \frac{\sigma_{X_i}}{\sqrt{N}} \propto \frac{1}{\sqrt{N}}$$

$$\sigma_{X_i} = \sqrt{4\pi - \pi^2}$$

Using Monte Carlo to compute integrals

More generally Monte Carlo methods allow to stochastically compute integrals

$$I = \int f(x) \, dx = \int \rho(x) \frac{f(x)}{\rho(x)} \, dx \simeq \frac{1}{N} \sum_{x}^{MC} g(x)$$
$$g(x) = \frac{f(x)}{\rho(x)} \qquad \int \rho(x) \, dx = 1 \qquad \rho(x) > 0$$

- The idea is to generate a Markov chain $\{x_1, x_2, x_3, \ldots\}$ such that the x_i are distributed according to the probability law $\rho(x)$
- In practice this can be achieved in different ways, e.g. using the Metropolis-Hastings algorithm
- Stone example:

•

$$\pi = \int_{\text{square}} \frac{1}{4} g(x) \, dx \qquad g(x) = \frac{f(x)}{\rho(x)} = \begin{cases} 4 & x \in \text{circle} \\ 0 & x \notin \text{circle} \end{cases}$$

• A more general function f(x) ~

- Choosing a good $\rho(x)$ Importance sampling

Metropolis-Hastings (1953)

- The Metropolis-Hastings algorithms allows to sample a chosen distribution $\rho(x)$
- Achieve this through a Markov chain

 $x_1 \to x_2 \to x_3 \to x_4 \to \dots$

- Start from random x_1
- Propose a new y with some chosen probability $P_{x_1,y}$
- Accept or reject this proposal • propose update with probability $x \to y$ initialize $A_{x_1y} = \min\left(1, \frac{\rho(y)P_{y,x_1}}{\rho(x_1)P_{x_1,y}}\right)$ simulation compute $P_{x,y}, P_{y,x}, p(y)$ measures observables $x_2 = \begin{cases} y & \text{if proposal accepted} \\ x_1 & \text{otherwise} \end{cases}$ $A_{x,y} = \min\left[1, \frac{P_{y,x}p(y)}{P_{x,y}p(x)}\right]$ leave configuration Metropolis unchanged $x \to x$ NO Continue with x_3, \ldots • YES update configuration This generates the desired $\rho(x)$ • $x \to y$

Monte Carlo and classical systems

- Monte Carlo methods can be very powerful in classical statistical physics
- Let consider the Ising model $H_{\text{Ising}} = J \sum_{\langle i,j \rangle} \sigma_i \cdot \sigma_j h \sum_i \sigma_i \qquad \sigma_i = \pm 1$
- The average magnetization

•

$$\langle m \rangle = \frac{1}{Z} \sum_{\mathcal{C}} e^{-\beta H_{\text{Ising}}(\mathcal{C})} m(\mathcal{C}) \qquad \qquad \mathcal{C} = \{\sigma_1, \sigma_2, \sigma_3, \ldots\}$$

- The sum over all configurations is exponential! 2^N
- Monte Carlo: This can be written as

$$\langle m \rangle = \frac{\sum_{\mathcal{C}} \rho(\mathcal{C}) m(\mathcal{C})}{\sum_{\mathcal{C}} \rho(\mathcal{C})} \qquad \qquad \rho(\mathcal{C}) = e^{-\beta H_{\text{Ising}}(\mathcal{C})} \\ g(\mathcal{C}) = m(\mathcal{C})$$

There is a very natural choice for $\rho(\mathcal{C})$ which has the nice property $\rho(\mathcal{C}) > 0$

- With quantum systems: no such nice choice for $\rho(C)$
- In particular it is hard to find a positive probability distribution

The sign problem in Monte Carlo methods

- What if the function that we try to integrate is alternating in sign?
- What probability density should we take?
- Let us try $\rho(x) = \gamma |f(x)|$
- Then the function to sample is

$$I \simeq \frac{1}{N} \sum_{x}^{\text{MC}} g(x) \qquad g(x) = \frac{f(x)}{\rho(x)} = \frac{1}{\gamma} \text{sign} f(x)$$

- But g(x) has big oscillations around the result ,
- This leads to a larger variance $\frac{\sigma}{\sqrt{N}}$
- This is known as the sign problem
- Algorithms that simulate fermionic systems generally have a sign problem where
 σ grows exponentially with temperature, system size, etc.

Outline

- Why are fermionic quantum systems difficult?
 - Hamiltonian approaches and Hilbert space size explosion
 - Action-based approaches and Monte Carlo methods
- A very quick introduction to Monte Carlo methods
 - How to compute integrals stochastically
 - The origin of the sign problem
- Continuous-time quantum Monte Carlo algorithms
 - The three flavors of algorithms and the fermionic sign problem
 - What have they allowed to do?
- Diagrammatic Monte Carlo algorithms
 - Addressing the infinite lattice directly
 - Applications to the two-dimensional Hubbard model

Continuous-time quantum Monte Carlo algorithms

They allow to find the solution of an Anderson impurity model

$$Z = \int \mathcal{D}[d^{\dagger}, d] e^{-S} \qquad \langle A \rangle = \frac{1}{Z} \int \mathcal{D}[d^{\dagger}, d] e^{-S} A$$
$$S = -\sum_{\sigma} \int_{0}^{\beta} d\tau d\tau' d^{\dagger}_{\sigma}(\tau) G^{-1}_{0\sigma}(\tau - \tau') d_{\sigma}(\tau')$$
$$+ \int_{0}^{\beta} d\tau U n_{d\uparrow}(\tau) n_{d\downarrow}(\tau) \qquad \beta = 1/T$$

$$G_{0\sigma}^{-1}(i\omega_n) = i\omega_n - \epsilon_0 - \Delta_{\sigma}(i\omega_n)$$

Describes the structure of the bath (self-consistently determined)

They come in three flavors:

•

CT-INT: Interaction expansion

Rubtsov and Lichtenstein, **JETP Lett.** (2004)

- CT-HYB: Hybridization expansion Werner and Millis, PRB (2006)
- CT-AUX: Auxiliary-field formulation Gull et al., EPL (2008)
- All are based on different perturbative expansions of the partition function •
- The terms of the perturbation series are computed stochastically •

Interaction expansion algorithm

• We start from $Z = \int \mathcal{D}[d^{\dagger}, d] e^{-S} \quad \langle A \rangle = \frac{1}{Z} \int \mathcal{D}[d^{\dagger}, d] e^{-S} A$ $S = S_0 + S_U = -\sum_{\sigma} \int_0^\beta d\tau d\tau' d^{\dagger}_{\sigma}(\tau) G_{0\sigma}^{-1}(\tau - \tau') d_{\sigma}(\tau') + \int_0^\beta d\tau U n_{d\uparrow}(\tau) n_{d\downarrow}(\tau)$

The partition function becomes

•

•

Treat this term perturbatively

mainx

$$Z = \int \mathcal{D}[d^{\dagger}, d] e^{-S_0} e^{-S_U} = Z_0 \left\langle T_{\tau} e^{-S_U} \right\rangle_0$$

Writing the Taylor series in the interaction for the exponential

$$Z = Z_0 \sum_{n=0}^{\infty} \frac{(-U)^n}{n!} \int_0^\beta d\tau_1 \dots d\tau_n \langle T_\tau n_{d\uparrow}(\tau_1) \dots n_{d\uparrow}(\tau_n) n_{d\downarrow}(\tau_1) \dots n_{d\downarrow}(\tau_n) \rangle_0$$

$$Z = Z_0 \sum_{n=0}^{\infty} \int_0^\beta d\tau_1 \dots d\tau_n \, \frac{(-U)^n}{n!} \det D(\tau_1, \dots, \tau_n) \qquad \qquad D(\tau_1, \dots, \tau_n)$$
 is an n x n

This is a large sum: Let us try to compute it by Monte Carlo!

Monte Carlo sampling

Monte Carlo sampling of the partition function

•

$$Z = Z_0 \underbrace{\sum_{n=0}^{\infty} \int_0^\beta d\tau_1 \dots d\tau_n}_{\sum_{\mathcal{C}}} \underbrace{\frac{(-U)^n}{n!} \det D(\tau_1, \dots, \tau_n)}_{\omega(\mathcal{C})} = Z_0 \sum_{\mathcal{C}} \omega(\mathcal{C})$$

$$n = 5$$

- •
- •

We could use $\omega(\mathcal{C})$ as a Monte Carlo weight. Warning: it can be negative! So we • must use the absolute value

$$\langle n_{\uparrow} \rangle = \frac{\sum_{\mathcal{C}} \left| \omega(\mathcal{C}) \right| \frac{\det \tilde{D}(\mathcal{C})}{\det D(\mathcal{C})} \cdot \operatorname{sign}(\omega)}{\sum_{\mathcal{C}} \left| \omega(\mathcal{C}) \right| \cdot \operatorname{sign}(\omega)} \simeq \frac{\sum_{\mathcal{C}}^{\mathrm{MC}} \frac{\det \tilde{D}(\mathcal{C})}{\det D(\mathcal{C})} \cdot \operatorname{sign}(\omega)}{\sum_{\mathcal{C}}^{\mathrm{MC}} \operatorname{sign}(\omega)} \longrightarrow \frac{\operatorname{Induces a very}}{\sigma \propto \exp(n)}$$

The variance of $\omega(\mathcal{C})$ leads to an exponential sign problem •

The fermionic sign problem

• What is the typical amplitude of a <u>sampled</u> contribution?

$$Z = Z_0 \sum_{n=0}^{\infty} \int_0^\beta d\tau_1 \dots d\tau_n \underbrace{\frac{(-U)^n}{n!} \det D(\tau_1, \dots, \tau_n)}_{\omega(\mathcal{C})}$$

• The contributions go as $\omega(\mathcal{C}) \sim \frac{(U\beta)^n}{n!}$

•

- Therefore the orders that contribute most are found around $n_{\max} \simeq \beta U$
- The main contributions have alternating signs with a typical variance

$$\sigma \sim \frac{(\beta U)^{\beta U}}{(\beta U)!} \sim \exp(\beta U)$$

This is the exponential fermionic sign problem

The algorithm in practice

- We use a Metropolis-Hastings scheme
- Start from some configuration
- Propose new configurations
 - Add a vertex:

Remove a vertex:

•

Accept or reject the proposed configurations with relevant probability

Is all hope lost?

Extra freedom in the theory:

•

$$\mathcal{H}_{\rm int} = U n_{\uparrow} n_{\downarrow} = U (n_{\uparrow} - \alpha) (n_{\downarrow} - \alpha) + U \alpha (n_{\uparrow} + n_{\downarrow}) + \text{const}$$

- This additional α changes the non-interacting starting point (different chemical potential)
- A clever choice for α can completely suppress the sign problem in the single-orbital Anderson impurity model!
- For multiorbital models there is a sign problem that gets worse and low temperatures or high interaction
- Complexity: $\mathcal{O}(n^3)$
- Average perturbation order $n \sim \beta U$
- Sign problem $\sigma \sim \exp(\beta U)$

Hybridization-expansion algorithm

Very similar in spirit

•

•

$$S = -\sum_{\sigma} \int_0^\beta d\tau d\tau' \, d^{\dagger}_{\sigma}(\tau) G_{0\sigma}^{-1}(\tau - \tau') d_{\sigma}(\tau') + \int_0^\beta d\tau \, U n_{d\uparrow}(\tau) n_{d\downarrow}(\tau)$$

We treat the hybridization to the bath as a perturbation

Writing the Taylor expansion for $e^{-S_{\Delta}}$

$$Z = \int \mathcal{D}[d^{\dagger}, d] e^{-S_{\text{loc}}} \prod_{\sigma} \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(S_{\Delta}^{\sigma} \right)^n \right] = \left\langle \prod_{\sigma} \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(S_{\Delta}^{\sigma} \right)^n \right] \right\rangle_{\text{loc}}$$

$$\left\langle \mathbf{A} \text{ average value to be computed in the isolated impurity} \right\rangle_{\text{loc}}$$

Monte Carlo sampling

Now configuration are given by a set of pairs of times

$$\mathcal{C} = \{n, \tau_i^{\sigma}, \tau_i^{'\sigma}\} \qquad \qquad Z = \sum_{\mathcal{C}} \underbrace{(-1)^n \det \Delta(\mathcal{C}) \cdot \operatorname{Tr} \mathcal{C}}_{\omega(\mathcal{C})}$$

- The contributions to the partition function do not need to be positive
- But: in single-orbital models there is no sign problem
- For multiorbital models there is a sign problem that gets worse at low temperatures
- Complexity: $\mathcal{O}(n^3)$
- Average perturbation order $\,\sim \mathcal{K}$
- For multiorbital systems, the local impurity Hilbert space grows exponentially
- The trace calculation becomes the bottleneck

Summary: continuous-time QMC algorithms

Their development has been very important within DMFT

CT-INT & CT-AUX: series in the interaction

- Many orbitals, weak coupling, high temperatures
- Low temperatures, generic Hamiltonians are difficult
- CT-HYB: series in the hybridization

•

- Generic Hamiltonians, low temperatures
- Bad scaling with number of orbitals
- Many models have been investigated
 - Hubbard model, Holstein-Hubbard, Kondo lattice
 - Extensions of DMFT: DCA, CDMFT, dual-fermions, DΓA
 - Within DFT + DMFT realistic structure calculations _
 - Out-of-equilibrium generalization

Two applications of CT-QMC solvers

•

•

- The approach to the Mott insulator is characterized by successive Mott transition in reciprocal space
- Region close to the antinode get insulating first while regions close to the node remain metallic down to the Mott insulating state

Continuous-time algorithms for the lattice?

- CT-QMC are very efficient for impurity models. Can they be extended to the lattice?
- The hybridization algorithm suffers from exponential increase of local Hilbert space
- The interaction expansion algorithm
 - The perturbation order increases rapidly with the number of sites and the sign problem becomes very severe
 - The reason is that we sample the partition function which is <u>extensive</u>
 - From a diagrammatic point of view:

•

Connected diagrams are

those that contribute to physical intensive quantities Disconnected diagrams bring an extensive contribution

At large orders the contribution from connected diagrams is only a small fraction of the total sum of diagrams. A relatively small error bar on the total sum can be large for the connected diagrams contribution!

Outline

- Why are fermionic quantum systems difficult?
 - Hamiltonian approaches and Hilbert space size explosion
 - Action-based approaches and Monte Carlo methods
- A very quick introduction to Monte Carlo methods
 - How to compute integrals stochastically
 - The origin of the sign problem
- Continuous-time quantum Monte Carlo algorithms
 - The three flavors of algorithms and the fermionic sign problem
 - What have they allowed to do?
- Diagrammatic Monte Carlo algorithms
 - Addressing the infinite lattice directly
 - Applications to the two-dimensional Hubbard model

Diagrammatic Monte Carlo

- We consider a model on an infinite lattice (thermodynamic limit)
- The idea is to write a perturbation series in U for the physical quantity of interest

$$\mathcal{A} = \sum_{n=0}^{\infty} a_n U^n \qquad \bullet \qquad \text{e.g. density, double occupation,} \\ \text{Green function, } \dots$$

• From a diagrammatic point of view, e.g.

$$\mathcal{A} = \ln Z = \bigcirc - \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$$

The two challenges:

•

- 1. Fermionic sign problem \rightarrow difficult to get many coefficients a_n
- 2. Resum the series \rightarrow analytical structure in complex U plane?
- The partition function Z(U) is an entire function in the complex Uplane
- Physical observables $\mathcal{A}(U)$ usually have poles in the complex plane
- Therefore the series for \mathcal{A} generally has a finite convergence radius!

Challenge 1: Compute series coefficents

- No simple formula for the coefficients of physical observables (unlike Z)
- They are best represented diagrammatically (e.g. connected diagrams)
- Original algorithm (DiagMC): stochastically sample all topologies (≈ 6-7 orders)
- Sign problem has two origins:
 - Integration over internal variables
 - Alternating sign between different topologies
- Reduce sign problem: Sum topologies with the same set of internal vertices V
- Huge computational effort: there is a <u>factorial number</u> of diagrams!
- CDet: Can be done in <u>exponential</u> time 3ⁿ using determinants (disconnected diagrams removed recursively)
- Up to \approx 10-12 orders for Hubbard model

```
Rossi, PRL (2016)
Moutenet et al., PRB (2018); Simkovic and Kozik, arXiv (2017)
```


N.V. Prokofiev and B.V. Svistunov, PRL (2007)

Challenge 2: Resummation of the series

- Series convergence controlled by structure in complex plane
- How do we evaluate the series beyond its convergence radius?
- Conformal maps, integral approximants, Padé approximants, …

•

Generate new series with freedom in the starting point of the perturbation theory

$$G_0 = \frac{1}{i\omega_n + \mu - \epsilon_k} \to \tilde{G}_0 = \frac{1}{i\omega_n + \mu - \epsilon_k - \alpha}$$

- A proper choice of α can increase radius and accelerate convergence

Summary: diagrammatic Monte Carlo

- Stochastically sample contributions to intensive physical observable
- Can directly address infinite lattice size
- Exponential complexity with orders $\sim 3^n$
- In practice: 10-12 orders for Hubbard model
- The series generally have finite convergence radius
- Ongoing efforts
 - Generalize to different models, different perturbation series
 - Find better starting points (why not DMFT!)
 - In particular can we generalize the formalism to start from a propagator that would be a well-defined function of U

$$G_0 \rightarrow G_0(U)$$

Application: Half-filled Hubbard model

The half-filled Hubbard model is a good testbed for diagrammatic Monte Carlo, where it is expected to work best

•

Application: Pseudogap physics in Hubbard model

- Investigate doped 2D Hubbard model
- Relevant to cuprate superconductors
- The pseudogap region:
 - Nodal / antinodal differentiation
 - Loss of spectral weight at the antinode
- Open questions:

•

- Mechanism of the pseudogap?
- Role of Mott insulator?
- Ordered phase?
- Good or bad for superconductivity?

$$\mathcal{H} = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Both nearest-neighbor t and next-nearest neighbor $t^\prime = -0.3t$

Complementary numerical approaches

Cluster extensions of DMFT such as the dynamical cluster calculations (DCA)

Diagrammatic Monte Carlo •

•

$$\Sigma[G_0] = \bigcirc + \bigcirc + \cdots$$

- There is a non-trivial regime where both me • agree at a quantitative level
- Confirm there is a pseudogap in Hubbard model •
- An important addition of diagrammatic Monte Carlo • is its infinite momentum resolution
- Allows to address question that are difficult with other approaches •

antinode

W.Wu, MF, A. Georges, E. Kozik, PRB (2017)

Entering the pseudogap region

Converged results for

 $U = 5.6t \quad T = 0.2t \quad \delta = 4\%$

- Top of pseudogap region
- Clear nodal / antinodal differentiation
- Antinode hotter than hotspot ≠ weak-coupling

obtained from diagrammatic Monte Carlo

 $\left(egin{array}{cc} {\sf Note: also recent results at} \ U=7t \quad T=0.2t \quad \delta=5\% \end{array}
ight)$

Origin of the pseudogap: fluctuation diagnostics

O. Gunnarson, T. Schäfer, et al., PRL (2015)

Fluctuation analysis

•

$$\Sigma(K) = \sum_{q} \Sigma_X^q(K) + \frac{Un}{2}$$

- Gives info about nature of scattering
- Spin, charge and pairing representations

• Spin: Fermi surface scattering at node, commensurate at antinode

Pseudogap due to short-range, antiferromagnetic correlations

```
W.Wu, MF, A. Georges,
E. Kozik, PRB (2017)
```


Conclusion ?

Hard luck and trouble is my only friend... If it wasn't for bad luck, I wouldn't have no luck at all...

Conclusion: on a more positive note

- Fermionic problems are very challenging!
- There has nevertheless been great progress in the development of modern numerical algorithms
- Among those Monte Carlo approaches play an important role
- They are always limited by the sign problem but their boundaries are always pushed further
- Within dynamical-mean field theory:
 - Continuous-time algorithms opened new avenues for the method
 - Different models, extensions of DMFT, realistic structure calculations
- Addressing the infinite lattice is possible within diagrammatic Monte Carlo
 - Non-trivial regimes can be addressed (e.g. pseudogap)
 - Many ideas remain to be explored

Acknowledgements

Thank you for your attention!

SIMONS FOUNDATION