#### Hubbard and Hund from First Principles:



#### Dynamical Screening Effects in Iron Pnictide Compounds

Silke Biermann Centre de Physique Théorique Ecole Polytechnique, Palaiseau, France

## The iron age of superconductivity ...



Published on Web 02/23/2008

#### Iron-Based Layered Superconductor La[ $O_{1-x}F_x$ ]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,\*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Discovery of the copper-based superconductor  $La_{2-x}Ba_xCuO_4^1$ with a high transition temperature ( $T_c$ ) triggered extensive research with the intention of developing new transition-metal-based superconductors.<sup>2,3</sup> Currently, high  $T_c$  superconductors are limited to layered perovskites that contain CuO<sub>2</sub> structural units as the conduction layers. However, the  $T_c$  of the non-Cu-based superconductors in this category has remained low, although spin triplet superconductivity has been found in UPt<sub>3</sub> ( $T_c \sim 0.54$  K)<sup>4</sup> and Sr<sub>2</sub>-RuO<sub>4</sub> ( $T_c \sim 1.4$  K).<sup>5,6</sup> Here, we report a layered iron-based compound, LaOFeAs, which undergoes superconducting transition under doping with F<sup>-</sup> ions at the O<sup>2-</sup> site. Its  $T_c$  exhibits a



### The "1111" family: LaFeAsO





#### The "122" family: BaFe2As2



#### The "122" family: BaFe2As2



#### A zoo of compounds ...



+ "245"

#### Features

- critical temperatures for superconductivity (under hole/electron-doping, pressure, substitutions ...) up to  $\sim 55~{\rm K}$
- near magnetic phases



- Fe forms a square lattice
- tetrahedral coordination
- near divalent Fe ( $d^6$  configuration)



#### Is LaFeAsO<sub>1-x</sub> $F_x$ an Electron-Phonon Superconductor?

L. Boeri,<sup>1</sup> O. V. Dolgov,<sup>1</sup> and A. A. Golubov<sup>2</sup>



FIG. 1 (color online). Crystal structure of LaFeAsO.

- Calculated  $T_C$  for phonon-mediated superconductivity: 0.8 K
- Experimental: 26 K
- Phonons cannot not account for superconductivity in this compound

#### **Electronic structure**



determined by Fe-As-plane: Fe 3d and As 4p states

#### LaFeAsO and LaFePO



Fe-d states (red), hybridising with As-p and O-p bands (green)

# **Correlations in pnictides ?**

#### The example of LaFePO:

#### Electronic correlations in the iron pnictides

M. M. Qazilbash,<sup>1,\*</sup>, J. J. Hamlin,<sup>1</sup> R. E. Baumbach,<sup>1</sup> Lijun Zhang,<sup>2</sup> D. J. Singh,<sup>2</sup> M. B. Maple,<sup>1</sup> and D. N. Basov<sup>1</sup> <sup>1</sup> Physics Department, University of California-San Diego, La Jolla, California 92093, USA.

<sup>2</sup> Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. (Dated: September 2, 2009)



## **Correlations in pnictides ?**



LaFePO: photoemission versus band structure (Lu et al., 2008)

# **Correlations in pnictides ?**



LaFePO: photoemission versus band structure "after shifting the calculated bands up by 0.11 eV and then renormalizing by a factor 2.2" ...

# **Correlations in LaFeAsO?**

Experimental (ARPES, XAS, optics ...) indications of moderate correlations Mass enhancement from ARPES  $\sim 2$ Optics (Boris et al.):



#### **Dynamical Mean Field Calculations ...**

PRL 100, 226402 (2008)

#### PHYSICAL REVIEW LETTERS

# S Correlated Electronic Structure of LaO<sub>1-x</sub>F<sub>x</sub>FeAs

K. Haule, J. H. Shim, and G. Kotliar Department of Physics, Rutgers University, Piscataway, New Jersey 08854, USA (Received 9 March 2008; published 2 June 2008)





#### **Dynamical Mean Field Calculations ...**

Coulomb Parameter U and Correlation Strength in LaFeAsO

V. I. Anisimov,<sup>1</sup> Dm. M. Korotin,<sup>1</sup> S. V. Streltsov,<sup>1</sup> A. V. Kozhevnikov,<sup>1,2</sup> J. Kuneš,<sup>3</sup> A. O. Shorikov,<sup>1</sup> and M. A. Korotin<sup>1</sup>

<sup>1</sup>Institute of Metal Physics, Russian Academy of Sciences, 620041 Yekaterinburg GSP-170, Russia

<sup>2</sup> Joint Institute for Computational Sciences, Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6173, USA

<sup>3</sup>Theoretical Physics III, Center for Electronic Correlations and Magnetism,

Institute of Physics, University of Augsburg, Augsburg 86135, Germany



FIG. 3: Partial densities of states for different Fe-3d orbitals obtained within the DFT (filled areas) and LDA+DMFT or-

"LDAlike"

#### **Multi-orbital Hamiltonian**

$$H = \sum_{\{im\sigma\}} (H_{im,i'm'}^{LDA} - H_{im,i'm'}^{double \ counting}) a_{im\sigma}^{+} a_{i'm'\sigma}$$
  
+  $\frac{1}{2} \sum_{imm'\sigma \ (correl. \ orb.)} U_{mm'}^{i} n_{im\sigma} n_{im'-\sigma}$   
+  $\frac{1}{2} \sum_{im\neq m'\sigma \ (correl. \ orb.)} (U_{mm'}^{i} - J_{mm'}^{i}) n_{im\sigma} n_{im'\sigma}$ 

- $H_{im,i'm'}^{LDA}$  calculated from density functional theory within the local density approximation (LDA)
- solved within dynamical mean field theory (DMFT)
   → combined "LDA+DMFT" scheme
- Anisimov et al., 1997, Lichtenstein et al., 1998

#### Parameters ...

Shim et al:

Hubbard U (=  $F_0$ ) = 4 eV Hund's J = 0.7 eV

Anisimov et al:

Hubbard U (=  $F_0$ ) = 0.8 eV Hund's J = 0.5 eV

## Sensitivity with respect to Hund's J



Haule et al., NJP 2009

# **Dynamical mean field calculations ...**

... on iron pnictide compounds (1111, 122, 111, 11, ... (not exhaustive!)):

Haule et al. PRL 2008, New J. of Phys. (2009) Craco et al., PRB 2008 Aichhorn et al., PRB 2009 Sangiovanni et al., PRL 2009 Han et al., PRL 2009 Anisimov et al. PRL 2009, Skornyakov et al. PRB 2009, PRL 2011 Laad et al., PRB 2009 Yee et al., PRB 2010 Ishida et al., PRB 2010, Liebsch PRB 2011 Yin et al. Nat. Mat. (2011)

#### **Need for determination of ...**



... Hubbard interaction U and Hund's coupling J from **first principles** 

#### **Bare interactions?**

$$V_{m_1m_2m_3m_4} \equiv \langle \phi_{m_1}\phi_{m_2} | \frac{1}{|r-r'|} | \phi_{m_3}\phi_{m_4} \rangle$$
  
=  $\iint d\mathbf{r} d\mathbf{r}' \phi_{m_1}^*(\mathbf{r}) \phi_{m_3}(\mathbf{r}) \frac{1}{|r-r'|} | \phi_{m_2}^*(\mathbf{r}') \phi_{m_4}(\mathbf{r}').$ 

... calculate using Fe-3d Wannier functions

#### **Bare interactions**

LaFeAsO:  $\sim 20 \text{ eV}$ 

| $v_{mm'}^{\sigma\bar{\sigma}} _{cRPA} =$ | 20.54 | 18.98 | 18.23 | 18.66 | 18.66 |
|------------------------------------------|-------|-------|-------|-------|-------|
|                                          | 18.98 | 20.89 | 19.25 | 18.66 | 18.66 |
|                                          | 18.23 | 19.25 | 19.22 | 17.93 | 17.93 |
|                                          | 18.93 | 18.66 | 17.93 | 19.36 | 17.96 |
|                                          | 18.93 | 18.66 | 17.93 | 17.96 | 19.36 |

|                                    | ( 0   | 18.11 | 17.41 | 18.43 | 18.43 | ١ |
|------------------------------------|-------|-------|-------|-------|-------|---|
| $v_{mm'}^{\sigma\sigma} _{cRPA} =$ | 18.11 | 0     | 18.86 | 17.93 | 17.93 |   |
|                                    | 17.41 | 18.86 | 0     | 17.23 | 17.23 |   |
|                                    | 18.43 | 17.93 | 17.23 | 0     | 17.28 |   |
|                                    | 18.43 | 17.93 | 17.23 | 17.28 | 0     |   |

(L. Vaugier et al., unpublished)

#### **Parametrisation**

$$V_{m_1m_2m_1m_2} = \langle \phi_{m_1}\phi_{m_2} | \frac{1}{|r-r'|} | \phi_{m_1}\phi_{m_2} \rangle = \sum_k a_k F^{(k)}$$

with the Slater integrals  $V \equiv F^{(k)}$ . For 3d-electrons:

$$U = F^{(0)}$$
  

$$J = \frac{1}{14} \left( F^{(2)} + F^{(4)} \right)$$
  

$$\frac{F^{(4)}}{F^{(2)}} \sim 0.625$$
(1)

#### **Screened interactions?**

$$W_{m_1 m_2 m_3 m_4}(\omega) \equiv \langle \phi_{m_1} \phi_{m_2} | \epsilon^{-1}(\omega) \frac{1}{|r - r'|} | \phi_{m_3} \phi_{m_4} \rangle$$

#### **Partially Screened interactions?**

$$U_{m_1 m_2 m_3 m_4}(\omega) \equiv \langle \phi_{m_1} \phi_{m_2} | \epsilon_r^{-1}(\omega) \frac{1}{|r - r'|} | \phi_{m_3} \phi_{m_4} \rangle$$

with a "partial dielectric function"  $\epsilon_r^{-1}(\omega)$  that includes screening processes not included in the low-energy Hamiltonian

## What's U in a solid?

... an answer from RPA:

Divide  $P = P_d + P_r$  where  $P_d$  = polarization of the correlated orbitals (e.g. 3d orbitals) Then:

$$W = [1 - vP]^{-1}v = [1 - W_rP_d]^{-1}W_r$$

where  $W_r$  that does not include 3d-3d screening:

$$W_r(\omega) = [1 - vP_r(\omega)]^{-1}v$$

Identify  $U = \langle |W_r(\omega = 0)| \rangle$  !

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.B., A. I. Lichtenstein PRB 70 195104 (2004)
L. Vaugier, PhD thesis (2011) & L. Vaugier, H. Jiang, SB, to be published

#### Remarks

$$W_r(\omega) = [1 - vP_r(\omega)]^{-1}v$$
$$U = \langle \phi \phi | W_r(0) | \phi \phi \rangle$$

- More generally:  $U = U(\omega)$
- U depends on model (non-interacting Hamiltonian and choice of correlated orbitals)
- $\rightarrow$  choice of

(i) screening processes to be cut out from  $P_d$ (ii) orbitals for matrix elements

# Hund's coupling

#### Matrix form

$$J_{m_1m_2} \equiv \langle \phi_{m_1} \phi_{m_2} | \epsilon_r^{-1}(\omega) \frac{1}{|r-r'|} | \phi_{m_2} \phi_{m_1} \rangle$$

Slater parametrisation:

$$J = \frac{1}{14} \left( F^{(2)} + F^{(4)} \right)$$

# Hubbard and Hund in pnictides

- Screening of  $U \rightarrow$  one order of magnitude
- J weakly screened
- Variations between different compounds

(L. Vaugier, H. Jiang, SB, to be published)

## LaFeAsO in DMFT



Aichhorn, Pourovskii, Vildosola, Ferrero, Parcollet, Miyake, Georges, SB, PRB 2009

#### LaFeAsO in DMFT



# Well-defined quasi-particles close to $E_F$ , damping effects beyond ~ 0.5 eV.

Aichhorn, Pourovskii, Vildosola, Ferrero, Parcollet, Miyake, Georges, SB, PRB 2009

#### FeSe Using to U=4.06 $\rightarrow Strophysics$

Using this same (CRPA-) procedure for FeSe yields: U=4.06 eV, J=0.91 eV  $\rightarrow$  Stronger correlations?

Cf ARPES for Te-doped FeSe claims to see effective mass enhancements up to 23 ! (Tamai et al, arXiv 12/2009)

#### **FeSe**



Hubbard band? Aichhorn, SB, Miyake, Georges, Imada, PRB 2010.



– p. 35

. . . . .

PHYSICAL REVIEW B 82, 184511 (2010)

#### Electron correlation in the FeSe superconductor studied by bulk-sensitive photoemission spectroscopy

A. Yamasaki,<sup>1</sup> Y. Matsui,<sup>1</sup> S. Imada,<sup>2</sup> K. Takase,<sup>3</sup> H. Azuma,<sup>3</sup> T. Muro,<sup>4</sup> Y. Kato,<sup>4,\*</sup> A. Higashiya,<sup>5,†</sup> A. Sekiyama,<sup>6</sup> S. Suga,<sup>6</sup> M. Yabashi,<sup>4</sup> K. Tamasaku,<sup>5</sup> T. Ishikawa,<sup>5</sup> K. Terashima,<sup>2</sup> H. Kobori,<sup>1</sup> A. Sugimura,<sup>1</sup> N. Umeyama,<sup>7,8</sup> H. Sato,<sup>9</sup> Y. Hara,<sup>10</sup> N. Miyagawa,<sup>7</sup> and S. I. Ikeda<sup>8</sup>

FeSe. The self-energy correction provides the larger mass enhancement value  $(Z^{-1} = 3.6)$  than in Fe-As superconductors and enables us to separate an incoherent part from the spectrum. These features are quite consistent with the results of recent dynamical mean-field calculations, in which the incoherent part is attributed to the lower Hubbard band.

#### Hubbard band!
### **FeSe**



effective masses: ~ 2 for  $x^2 - y^2$ , ~ 5 for xyBut: large quasi-particle (?) damping  $(-\text{Im}\Sigma(i0^+)_{xy} \simeq 0.2 \text{ eV})$ very bad metal !

### **FeSe:** bands & spectral function



effective masses: ~ 2 for  $x^2 - y^2$ , ~ 5 for xy

### **FeSe: spectral function**



crystal field shifts make direct extraction of mass enhancements from PES difficult !

### What's U in a solid?

... an answer from RPA:

Divide  $P = P_d + P_r$  where  $P_d$  = polarization of the correlated orbitals (e.g. 3d orbitals) Then:

$$W = [1 - vP]^{-1}v = [1 - W_rP_d]^{-1}W_r$$

where  $W_r$  that does not include 3d-3d screening:

$$W_r(\omega) = [1 - vP_r(\omega)]^{-1}v$$

Identify  $U = \langle |W_r(\omega = 0)| \rangle$  !

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.B., A. I. Lichtenstein PRB 70 195104 (2004)

L. Vaugier, PhD thesis (2011) & L. Vaugier, H. Jiang, SB, to be published

### What's U in a solid?

... an answer from RPA:

Divide  $P = P_d + P_r$  where  $P_d$  = polarization of the correlated orbitals (e.g. 3d orbitals) Then:

$$W = [1 - vP]^{-1}v = [1 - W_rP_d]^{-1}W_r$$

where  $W_r$  that does not include 3d-3d screening:

$$W_r(\omega) = [1 - vP_r(\omega)]^{-1}v$$

Identify  $U(\omega) = \langle |W_r(\omega)| \rangle$  !

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. B., A.I. Lichtenstein, PRB 2004

L. Vaugier, H. Jiang, SB, in preparation

### BaFe2As2



### **BaFe2As2: dynamical interaction**



Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

### **K-doped BaFe2As2: spectral function**



Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

### **Hamiltonian formulation**

$$\begin{aligned} H &= \sum_{\{im\sigma\}} (H_{im,i'm'}^{\text{LDA}} - H_{im,i'm'}^{\text{double counting}}) a_{im\sigma}^{\dagger} a_{i'm'\sigma} \\ &+ \frac{1}{2} \sum_{\substack{im\sigma \\ (correl. orb.)}} V_{mm'}^{i} n_{im\sigma} n_{im'-\sigma} \\ &+ \frac{1}{2} \sum_{\substack{im\neq m'\sigma \\ (correl. orb.)}} (V_{mm'}^{i} - J_{mm'}^{i}) n_{im\sigma} n_{im'\sigma} \\ &+ \sum_{i} \int d\omega \Big[ \lambda_{i\omega} (b_{i\omega}^{\dagger} + b_{i\omega}) \sum_{m\sigma} n_{im\sigma} + \omega b_{i\omega}^{\dagger} b_{i\omega} \Big] \end{aligned}$$

with  $-\text{Im}U_{\text{retarded}}(\omega) = \pi \lambda_{\omega}^2$ , and  $U_0 = V - 2 \int d\omega \frac{\lambda_{\omega}^2}{\omega}$ .

### **Effects of dynamic U?**

Hubbard-Holstein model in the "screening" (antiadiabatic) regime (large plasma frequency)



plasmon satellites at multiples of plasma frequency (M. Casula, A. Rubtsov, SB, PRB 2012)

### **K-doped BaFe2As2: spectral function**



Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

### K-doped BaFe2As2: self-energies



# Optimally doped $Ba_{1-x}K_xFe2As2$ : at the onset of square-root self-energy behavior!

Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

## "Spin-freezing scenario"

seen in 3-band model (Werner and Millis, 2008): non-Fermi liquid phase with local moments



(cf cours)

### **BaFe2As2: doping and T-dependence**



Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

### K-doped BaFe2As2: k-resolved spectra



Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Phys. 2012

### K-doped BaFe2As2: k-resolved spectra



Werner, Casula, Miyake,

Aryasetiawan, Millis, SB, Nature Phys. 2012

### **Resistivities?**



A. Olariu, F. Rullier-Albenque, D. Colson, A. Forget, PRB 2011

### **Resistivities?**

PHYSICAL REVIEW B 84, 184512 (2011)

#### Transport properties and asymmetric scattering in Ba1-xKxFe2As2 singl

Bing Shen,<sup>1</sup> Huan Yang,<sup>2</sup> Zhao-Sheng Wang,<sup>1</sup> Fei Han,<sup>1</sup> Bin Zeng,<sup>1</sup> Lei Shan,<sup>1</sup> Cong Ren,<sup>1</sup> and <sup>1</sup>Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academ P.O. Box 603, Beijing 100190, China

<sup>2</sup>National Laboratory for Solid State Microstructures, Department of Physics, Nanjing University, 210093



### **Resistivities?**

PHYSICAL REVIEW B 84, 184512 (2011)

#### Transport properties and asymmetric scattering in Ba1-xKxFe2As2 singl

Bing Shen,<sup>1</sup> Huan Yang,<sup>2</sup> Zhao-Sheng Wang,<sup>1</sup> Fei Han,<sup>1</sup> Bin Zeng,<sup>1</sup> Lei Shan,<sup>1</sup> Cong Ren,<sup>1</sup> and <sup>1</sup>Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academ P.O. Box 603, Beijing 100190, China

<sup>2</sup>National Laboratory for Solid State Microstructures, Department of Physics, Nanjing University, 210093



### **Optics?**





H. Ding's group



### H. Ding's group



H. Ding's group



de Jong et al., PRB 2009

## **Effective Hamiltonian ?**

### Question:

Can we obtain the low-energy physics from an effective model with *static* U ?

- Which U?
- Which one-particle Hamiltonian ?

M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, A. Millis, SB, arXiv 2012.

$$H = -\sum_{ij\sigma} t_{ij} d_{i\sigma}^{\dagger} d_{j\sigma} + V \sum_{i} d_{i\uparrow}^{\dagger} d_{i\uparrow} d_{i\downarrow}^{\dagger} d_{i\downarrow} + \mu \sum_{i\sigma} d_{i\sigma}^{\dagger} d_{i\sigma}$$
$$+ \omega_0 \sum_{i} b_i^{\dagger} b_i + \lambda \sum_{i\sigma} d_{i\sigma}^{\dagger} d_{i\sigma} (b_i + b_i^{\dagger}). \tag{2}$$

Lang-Firsov transformation:  $H \rightarrow H_{LF} = e^{S} H e^{-S}$  with  $S = -\frac{\lambda}{\omega_0} \sum_{i\sigma} n_{i\sigma} (b_i + b_i^{\dagger})$ 

$$H_{\rm LF} = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U_0 \sum_i c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow} + \omega_0 \sum_i b_i^{\dagger} b_i,$$
(3)
with screened interaction  $U_0 = V - \frac{2\lambda^2}{\omega_0}$ .
and polaron operators
$$c_{i\sigma}^{\dagger} = \exp(\frac{\lambda}{\omega_0} (b_i^{\dagger} - b_i)) d_{i\sigma}^{\dagger}$$

$$c_{i\sigma} = \exp(\frac{\lambda}{\omega_0} (b_i - b_i^{\dagger})) d_{i\sigma}.$$

### Low-energy sector:

$$H_{\text{eff}} = \langle 0|H|0\rangle \qquad (4)$$
$$= -\sum_{ij\sigma} Z_B t_{ij} d_{i\sigma}^{\dagger} d_{j\sigma} + U_0 \sum_i d_{i\uparrow}^{\dagger} d_{i\uparrow} d_{i\downarrow}^{\dagger} d_{i\downarrow} (5)$$

where 
$$Z_B = \exp(-\lambda^2/\omega_0^2)$$
.

$$G_{ij}^{\text{low-energy}}(\tau) = -Z_B \langle T d_i(\tau) d_j^{\dagger}(0) \rangle_{H_{\text{eff}}}, = Z_B G_{ij}^{\text{eff}}(\tau)$$
(6)

### Spectral function:

$$A^{\text{low-energy}}(\omega) = -\frac{1}{\pi} \text{Im}G^{\text{low-energy}} = -\frac{Z_B}{\pi} \text{Im}G^{\text{eff}} \quad (7)$$

## **Spectral functions**



for various  $\omega_0$ ,  $U_0 = 2$ ,  $Z_B$  as indicated.

### **Realistic Hamiltonian?**

 $\begin{pmatrix} p^{\dagger}d^{\dagger} \end{pmatrix} \left( egin{array}{cc} \mathcal{T}_{pp} & \mathcal{T}_{pd} \ \mathcal{T}_{pd}^{\dagger} & \mathcal{T}_{dd} \end{pmatrix} \left( egin{array}{cc} p \ d \end{pmatrix} 
ight),$ 

(8)

### **Rescale**!

 $\begin{pmatrix} p^{\dagger}d^{\dagger} \end{pmatrix} \begin{pmatrix} \mathcal{T}_{pp} & \sqrt{Z_B}\mathcal{T}_{pd} \\ \sqrt{Z_B}\mathcal{T}_{pd}^{\dagger} & Z_B\mathcal{T}_{dd} \end{pmatrix} \begin{pmatrix} p \\ d \end{pmatrix},$ (9)

$$U_0 = V + 2/\pi \int_0^\infty d\nu \operatorname{Im} U_{\text{ret}}(\nu)/\nu, = U(\omega = 0)$$
  
$$Z_B = \exp\left(1/\pi \int_0^\infty d\nu \operatorname{Im} U_{\text{ret}}(\nu)/\nu^2\right).$$

### Materials??

|                                   | $Z_B$ | $\omega_0$ | $V = U(\infty)$ | $U_0 = U(0)$ | Uliterature |
|-----------------------------------|-------|------------|-----------------|--------------|-------------|
| SrVO <sub>3</sub>                 | 0.70  | 18.0       | 16.5            | 3.3          | 4 - 5       |
| $Sr_2VO_4$                        | 0.70  | 18.1       | 15.7            | 3.1          | 4.2         |
| LaVO <sub>3</sub>                 | 0.57  | 10.3       | 13.3            | 1.9          | 5           |
| $VO_2$                            | 0.67  | 15.6       | 15.2            | 2.7          | 4           |
| $TaS_2$                           | 0.79  | 14.7       | 8.4             | 1.5          |             |
| SrMnO <sub>3</sub>                | 0.50  | 13.3       | 21.6            | 3.1          | 2.7         |
| BaFe <sub>2</sub> As <sub>2</sub> | 0.59  | 15.7       | 19.7            | 2.8          | 5           |
| LaOFeAs                           | 0.61  | 16.5       | 19.1            | 2.7          | 3.5 - 5     |
| FeSe                              | 0.63  | 17.4       | 20.7            | 4.2          | 4 - 5       |
| CuO                               | 0.63  | 21.1       | 26.1            | 6.8          | 7.5         |

### BaFe2As2



### spectral function for $K_{0.4}Ba_{0.6}Fe_2As_2$ : static U standard DMFT calculation, DMFT calculation with dynamic $U(\omega)$ , and effective low-energy model.

M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, A. Millis, SB, arXiv 2012.

### Some previous calculations ...

... compensated for missing bandwidth renormalisation effect by choosing an artificially enhanced U

## **Dynamical** U

- shifts spectral weight to higher energies
- explicit extended DMFT calculations possible
- effective static model: U<sub>stat</sub> = U(0), one-particle part renormalized by
   Z<sub>B</sub> = exp (1/π ∫<sub>0</sub><sup>∞</sup>dν ImU<sub>ret</sub>(ν)/ν<sup>2</sup>)
   (single-mode case: Z<sub>B</sub> = exp(-λ<sup>2</sup>/ω<sub>0</sub><sup>2</sup>))
- solves puzzle about "too small" cRPA U-values!

M. Casula, A. Rubtsov, SB., PRB 2012.

P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. Millis, SB, Nature Physics 2012.

M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, A. Millis, SB, arXiv 2012.
## Conclusions

Towards a quantitative description of correlated materials from first principles:

- LaFeAsO: moderately correlated metal
- FeSe: Hubbard band!
- BaFe2As2: dynamical screening effects, doping-dependent (in)coherence

Methodology:

- From LDA+DMFT to LDA+ $\mathcal{U}(\omega)$ +DMFT
- Hubbard  $\mathcal{U}(\omega)$  from constrained RPA

## • LaFeAsO vs. LaFePO: trends and models in LDA

- Vildosola, Pourovskii, Arita, Biermann, Georges, PRB 2008
- LaFeAsO: assessing correlations in LDA+DMFT Aichhorn, Pourovskii, Vildosola, Ferrero, Parcollet, Georges, Miyake, SB, PRB 2009
- FeSe strongly correlated?

Aichhorn, SB, Miyake, Georges, Imada, PRB 2010.

- d- and f-electron correlations in REFeAsO
  Pourovskii, Vildosola, SB, Georges, EPL 2009. Miyake, Pourovskii, Vildosola, SB,
  Georges, JPSJ 2009.
- Ru-doping in BaFe<sub>2</sub>As<sub>2</sub>: reduction of correlations
  V. Brouet, F. Rullier-Albenque, M. Marsi, B. Mansart, M. Aichhorn, SB., J. Faure, L.
  Perfetti, A. Taleb-Ibrahimi, P. Le Fevre, A. Forget, D. Colson, PRL 2010

## References

- Dynamical screening in correlated materials: M. Casula, A. Rubtsov, SB, PRB 2012.
- BaFe<sub>2</sub>As<sub>2</sub>
  P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. Millis, SB, Nat. Phys. 2012.
- Constrained random phase approximation ...:
  F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. B., A.I. Lichtenstein, PRB 2004
- ... and its implementation into Wien2k:
  L. Vaugier, H. Jiang, SB, to be published
- Effective model:

M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, A. Millis, SB, arXiv 2012.