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Experiments

Steady-state drive 
system in high-T phase 
though physical T low

Transient perturbation 
=>long-duration change of state

Ca2RuO4

VO2
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This talk:

• Quench 
• Open System: path integral 
• Numerics
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``Quench’’ (change Hamiltonian)

t<0, H=H0        t>0,  H=H1

h
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``Quench’’ (change Hamiltonian)

t<0, H=H0        t>0,  H=H1

Example

h
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``Quench’’ (change Hamiltonian)

t<0, H=H0        t>0,  H=H1
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How to think about a quench
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How to think about a quench

Non-thermal initial condition: at t=0+ the system is 
is in a superposition of eigenstates
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How to think about a quench

Non-thermal initial condition: at t=0+ the system is 
is in a superposition of eigenstates

| (t)i =
X

n

e�iEnt |ni
⌦
n| (t = 0�)

↵
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Non-thermal initial condition: at t=0+ the system is 
is in a superposition of eigenstates

| (t)i =
X
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Non-thermal:
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How to think about a quench

Non-thermal initial condition: at t=0+ the system is 
is in a superposition of eigenstates

| (t)i =
X

n

e�iEnt |ni
⌦
n| (t = 0�)

↵

Non-thermal:
��⌦n| (t = 0�)

↵��2 6= e�
En
T

Z
Mean energy:

Ē ⌘
⌦
H(t = 0+)

↵
=

X

n

En

��⌦n| (t = 0�)
↵��2
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Dynamics: `simply’ evolve t=0 state 
forward in time

| (t)i =
X

n

e�iEnt |ni hn| (t = 0)i
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Dynamics: `simply’ evolve t=0 state 
forward in time

| (t)i =
X

n

e�iEnt |ni hn| (t = 0)i

question: at long times does the system thermalize 
in the sense that local observables take the values 
expected from thermal ensemble corresponding to 
mean energy
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Dynamics: `simply’ evolve t=0 state 
forward in time

| (t)i =
X

n

e�iEnt |ni hn| (t = 0)i

⇢(t) =
X

nm

e�i(En�Em)t |ni hm| hn| (t = 0) ih (t = 0) |mi

! ⇢(t) =
X

n

|ni | n(t = 0)|2 hn|

Density matrix becomes diagonal
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eigenstate thermalization hypothesis

For generic (non-integrable) system,  belief is that a 
typical eigenstate of energy En gives same local 
expectation values as thermal state of same mean energy:

hn| O |ni = 1

Z

X

m

e�
Em
T hm| O |mi

if En =
1

Z

X

m

e�
Em
T Em

Fails if system has too many conservation laws.
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Thermalization sometimes works: 
experimental quench a one dimensional 

charge density wave

Nat Phys v 8 p 325 
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Thermalization sometimes fails
``Quantum quench’’ in infinite-d Hubbard model

Eckstein et al 
arXiv:1208:0743

DMFT study of  
Hubbard model with 
instantaneous change 
of interaction

Long-time state is not 
thermal one 
!
Lack of equilibration 
attributed to 
conservation of  
`doublons’
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Dynamical Mean Field Theory

Approximation to electron 
self energy of real problem 
from solution of: 
•  ``impurity problem’’: a 

few sites coupled to non-
interacting bath 

• self-consistency condition
Figure: G. Cohen after A. Georges
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Nonequilibrium DMFT

• Schmidt and Monien, arXiv:cond-mat/0202046	


• Freericks, Turkowski, and Zlatic, PRL 97, 266408

Original formulation:

Nice description of modern understandng

Aoki, Tsuji, Eckstein, Kollar, Oka, Werner, 
(1310.5329 (RMP  2014)
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Computational task: 
solve impurity model

S = �i

Z

C
dtHimp(t)�i

Z

C
dt1dt2 

†(t1)�(t1, t2) (t2)

Impurity model action: local (on 
impurity) terms plus bath

 †
creates state on impurity

� parametrizes hopping

onto and o↵ of bath
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Key concept: prethermalization

Very often, system 
approaches state which is 
thermal given that some 
quantity (here, double 
occupancy) is approximately 
conserved. Long time scale 
associated with decay of 
approximately conserved 
quantity
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Key concept: prethermalization
Very often, system 
approaches state which is 
thermal given that some 
quantity (here, double 
occupancy) is approximately 
conserved. Long time scale 
associated with decay of 
approximately conserved 
quantity or with 
metastability of ordered 
state
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Thermalization can fail (or be very slow) 
due to metastability of long ranged order

Uinit=4 Tinit=0.1 
tfinal=0.11, 0.12, 0.7

Werner et al, arXiv:1208.0743
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Theory: Werner and Eckstein

arXiv:1207.0402

Hubbard model coupled to phonons (frequency 1)

Small number (1%) of excited particle-hole pairs

If gap large relative to phonon 
frequency, then no relaxation
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Theory: Werner and Eckstein

Result: long-lived metallic 
state. Particle number 
increases slowly (Auger up-
scattering) but coherence 
properties are not time 
dependent

arXiv:1207.0402
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Experimental result not fully compatible 
with this picture.

Long-lived metallic 
state only for 
sufficiently high 
degree of excitation 
!
is there a 
nonequilibrium 
phase
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Long time behavior

• Partition function <=> path integral

Z“ = ”

Z
D {�} e�S[{�(⌧)}]

• path integral dominated by  most probably 
path (saddle point) +gaussian fluctations

Z ! e�S⇤
Z

D aD b... e
� 1

2

R
d⌧1d⌧2

P
ab  a(⌧1)�

�1(⌧1�⌧2) b(⌧2)
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thus

• Identify fixed point (`phase’) 
• Identify important fluctuations  (quasiparticles) 
• quasiparticle propagators <=> linear response 

susceptibilies

Sgaussian = �1

2

Z
d⌧1d⌧2

X

ab

 a(⌧1)�
�1 (⌧1 � ⌧2) b(⌧2)
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Path Integrals out of Equilibrium 
(Schwinger, Kamenev)
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Two time evolution operators 
 implies two contours 
(Schwinger, Keldysh)
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O
Measure operator
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O
Measure operator
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O
Measure operator

Crucial factor
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Initial density matrix

Crucial factor

⇢init



Department of Physics 
Columbia UniversityCopyright A. J. Millis 2015 

Path integral

⇢init O
hOi =

Z
d�+d��⇢init(�+,��)

Z
D�+(t)D��(t)WO({�+,��})
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Steady State

Notes:  
• steady state density matrix must be determined 
• Initial conditions may not be (fully) forgotten

hOi =
Z

d�+d��⇢SS(�+,��)

Z
D�+(t)D��(t)WO({�+,��})

At long times: system forgets initial condition  
=>? 

replace initial density matrix by steady state one
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Steady State

hOi =
Z

d�+d��⇢SS(�+,��)

Z
D�+(t)D��(t)WO({�+,��})

At long times: system forgets initial condition  
=>? 

replace initial density matrix by steady state one

Steady state density matrix must be 
determined e.g. as solution of kinetic equation

⇢SS = eiHt⇢SSe
�iHt
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Identification of Important Paths

In equilibrium

Z“ = ”

Z
D {�} e�S[{�(⌧)}]

Important paths are those that dominate the  
path integral for the partition function

Z = Tr
h
e�

H
T

i
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Out of equilibrium
If operator O=1 then
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Most important case: steady-state density matrix 
seek paths that maximize the density matrix

⇢SS !⇡ ⇢SS(�+,��)
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O
Stationary path approximation

Stationary path configuration must be the same on 
outbound and inbound time contour (so oscillations 
cancel) and must extremize the diagonal component 
of the density matrix

⇢SS
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local polaron

Phys. Rev. Lett. 94 07640
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Density of states in absence of phonons
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Energy scales

polaron shift at � = 0 :
�2

K
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Polaron shift

Energy of isolated dot

�
⌦
d†d

↵

K
= q?Implies extremum

=> " ! "�
�2

⌦
d†d

↵2

2K
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In equilibrium

If
�2

K
& � Then 2 extrema

" > µ :
⌦
d†d

↵
⇡ 0; q? ⇡ 0

" < µ :
⌦
d†d

↵
⇡ 1; q? ⇡ �

K
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Equilibrium: two states for oscillator
E

ne
rg

y

P2 ⇠ e�
E2�E1

T

P(q� q1) ⇠ e
� K(q�q

1

)2

!
0

coth

!
0

2T
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Nonequilibrium local polaron

Can be more or less completely solved



Department of Physics 
Columbia UniversityCopyright A. J. Millis 2015 

Nonequilibrium local polaron

Open system: coupled to leads (reservoirs)
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Nonequilibrium local polaron

Open system: coupled to leads (reservoirs) 
steady state exists and is unique
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Nonequilibrium local polaron

Difference in chemical potential 
=> current across quantum dot
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Nonequilibrium results

P(q� q1) ⇠ e
� K(q�q

1

)2

!
0

coth

!
0

2T

e↵

P2 ⇠ e
�E2�E1

T0
e↵

T0
e↵ ⇡ Te↵ ln

E2 �E1

Te↵
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Key point

Teff a complicated function of current and T of leads

Te↵ ⇠ �µ

As Treservoir => 0

Effective temperature of electron system proportional 
to current; parametrically larger than I2R 
Effective temperature larger than physical 
temperature
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Current-driven quantum criticality 
nonequilibrium=>temperature without 

heating relative to reservoir

Te↵ ⇠ �µcoth
�µ

T
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Effective temperature 
not equal to physical tempeature
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Important question: 
how well can we solve impurity models 

out of equilibrium


