Nonequilibrium Physics of Correlated Electron Materials II:

Theory and Computation Concepts and Challenges

A. J. Millis

College de France Sept 29, 2015

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Experiments

Steady-state drive system in high-T phase though physical T low

Transient perturbation =>long-duration change of state

This talk:

- Quench
- Open System: path integral
- Numerics

Department of Physics

Columbia University

``Quench'' (change Hamiltonian)

$t < 0, H = H_0$ $t > 0, H = H_1$

h

Department of Physics Columbia University

``Quench'' (change Hamiltonian)

 $t < 0, H = H_0$ $t > 0, H = H_1$

Example

$$H(h) = -J \sum_{j=1}^{L} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right]$$

h

``Quench'' (change Hamiltonian) $t < 0, H = H_0$ $t > 0, H = H_1$ **Example** $H(h) = -J\sum_{j=1}^{L} \left[\sigma_{j}^{x}\sigma_{j+1}^{x} + h\sigma_{j}^{z}\right]$ j=1**Equilibrium** $\langle \sigma_{\mathbf{x}} angle_{\scriptscriptstyle 1.0}^{\scriptscriptstyle 1.2}$ **Phase Diagram** 0.8 0.6 FM 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 h **Department of Physics Columbia University**

``Quench'' (change Hamiltonian) $t < 0, H = H_0$ $t > 0, H = H_1$ **Example** $H(h) = -J\sum_{j=1}^{L} \left[\sigma_{j}^{x}\sigma_{j+1}^{x} + h\sigma_{j}^{z}\right]$ i = 1Equilibrium $\langle \sigma_{\mathbf{x}} \rangle^{\text{\tiny LL}}$ Phase Diagram **?What happens if** 0.8 suddenly change h? 0.6 FM 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 h **Department of Physics**

Columbia University

Non-thermal initial condition: at t=0⁺ the system is is in a superposition of eigenstates

Department of Physics Columbia University

Non-thermal initial condition: at t=0⁺ the system is is in a superposition of eigenstates

$$|\psi(\mathbf{t})\rangle = \sum_{\mathbf{n}} \mathbf{e}^{-\mathbf{i}\mathbf{E_n}\mathbf{t}} |\mathbf{n}\rangle \left\langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0}^-)\right\rangle$$

Non-thermal initial condition: at t=0⁺ the system is is in a superposition of eigenstates

$$ert \psi(\mathbf{t})
angle = \sum_{\mathbf{n}} \mathbf{e}^{-\mathbf{i}\mathbf{E}_{\mathbf{n}}\mathbf{t}} ert \mathbf{n}
angle \left\langle \mathbf{n} ert \psi(\mathbf{t} = \mathbf{0}^{-})
ight
angle$$

Fon-thermal: $ert \left\langle \mathbf{n} ert \psi(\mathbf{t} = \mathbf{0}^{-})
ight
angle ert^{2}
eq \frac{\mathbf{e}^{-\frac{\mathbf{E}_{\mathbf{n}}}{\mathbf{T}}}}{\mathbf{Z}}$

Department of Physics Columbia University

Non-thermal initial condition: at t=0⁺ the system is is in a superposition of eigenstates

$$\begin{aligned} |\psi(\mathbf{t})\rangle &= \sum_{\mathbf{n}} \mathbf{e}^{-\mathbf{i}\mathbf{E}_{\mathbf{n}}\mathbf{t}} |\mathbf{n}\rangle \left\langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0}^{-})\right\rangle \\ \text{Non-thermal:} \quad \left|\left\langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0}^{-})\right\rangle\right|^{2} \neq \frac{\mathbf{e}^{-\frac{\mathbf{E}_{\mathbf{n}}}{\mathbf{T}}}}{\mathbf{Z}} \\ \text{Mean energy:} \\ \mathbf{\bar{E}} &\equiv \left\langle \mathbf{H}(\mathbf{t}=\mathbf{0}^{+})\right\rangle = \sum_{\mathbf{n}} \mathbf{E}_{\mathbf{n}} \left|\left\langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0}^{-})\right\rangle\right|^{2} \\ \mathbf{\bar{E}} &\equiv \left\langle \mathbf{H}(\mathbf{t}=\mathbf{0}^{+})\right\rangle = \sum_{\mathbf{n}} \mathbf{E}_{\mathbf{n}} \left|\left\langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0}^{-})\right\rangle\right|^{2} \end{aligned}$$

Columbia University

Dynamics: `simply' evolve t=0 state forward in time

$|\psi(\mathbf{t})\rangle = \sum_{\mathbf{n}} e^{-\mathbf{i}\mathbf{E_nt}} |\mathbf{n}\rangle \langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0})\rangle$

Dynamics: `simply' evolve t=0 state forward in time

$$|\psi(\mathbf{t})\rangle = \sum_{\mathbf{n}} \mathbf{e}^{-\mathbf{i}\mathbf{E_n}\mathbf{t}} |\mathbf{n}\rangle \langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0})\rangle$$

question: at long times does the system thermalize in the sense that local observables take the values expected from thermal ensemble corresponding to mean energy

Department of Physics Columbia University

Dynamics: `simply' evolve t=0 state forward in time

$$|\psi(\mathbf{t})\rangle = \sum_{\mathbf{n}} e^{-\mathbf{i}\mathbf{E_n}\mathbf{t}} |\mathbf{n}\rangle \langle \mathbf{n}|\psi(\mathbf{t}=\mathbf{0})\rangle$$

$$\rho(\mathbf{t}) = \sum_{\mathbf{n}\mathbf{m}} \mathbf{e}^{-\mathbf{i}(\mathbf{E_n} - \mathbf{E_m})\mathbf{t}} \left| \mathbf{n} \right\rangle \left\langle \mathbf{m} \right| \left\langle \mathbf{n} \right| \psi(\mathbf{t} = \mathbf{0}) \left\rangle \left\langle \psi(\mathbf{t} = \mathbf{0}) \left| \mathbf{m} \right\rangle \right\rangle$$

$$\rightarrow \rho(\mathbf{t}) = \sum_{\mathbf{n}} |\mathbf{n}\rangle |\psi_{\mathbf{n}}(\mathbf{t} = \mathbf{0})|^{2} \langle \mathbf{n}|$$

Density matrix becomes diagonal

Department of Physics Columbia University

eigenstate thermalization hypothesis

For generic (non-integrable) system, belief is that a typical eigenstate of energy E_n gives same local expectation values as thermal state of same mean energy:

$$\langle \mathbf{n} | \mathcal{O} | \mathbf{n} \rangle = \frac{1}{Z} \sum_{\mathbf{m}} \mathbf{e}^{-\frac{\mathbf{E}_{\mathbf{m}}}{\mathbf{T}}} \langle \mathbf{m} | \mathcal{O} | \mathbf{m} \rangle$$

$$\mathbf{if} \qquad E_n = \frac{1}{Z} \sum_{m} e^{-\frac{E_m}{T}} E_m$$

Fails if system has too many conservation laws.

Department of Physics Columbia University

Thermalization sometimes works: experimental quench a one dimensional charge density wave

Nat Phys v 8 p 325

Thermalization sometimes fails

'Quantum quench" in infinite-d Hubbard model

DMFT study of Hubbard model with instantaneous change of interaction

Long-time state is not thermal one

Lack of equilibration attributed to conservation of `doublons'

 $H(t) = \sum_{ij,\sigma} V_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U(t) \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right)$

Department of Physics Columbia University

Dynamical Mean Field Theory

Figure: G. Cohen after A. Georges

Approximation to electron self energy of real problem from solution of:

- ``impurity problem'': a few sites coupled to non-interacting bath
- self-consistency condition

Department of Physics Columbia University

Nonequilibrium DMFT

Original formulation:

- Schmidt and Monien, arXiv:cond-mat/0202046
- Freericks, Turkowski, and Zlatic, PRL 97, 266408

Nice description of modern understandng

Aoki, Tsuji, Eckstein, Kollar, Oka, Werner, (1310.5329 (RMP 2014)

Department of Physics Columbia University

Computational task: solve impurity model

Impurity model action: local (on impurity) terms plus bath

$$\mathbf{S} = -\mathbf{i} \int_{\mathcal{C}} dt H_{imp}(t) - \mathbf{i} \int_{\mathcal{C}} dt_1 dt_2 \psi^{\dagger}(t_1) \Delta(t_1, t_2) \psi(t_2)$$

 ψ^\dagger creates state on impurity

Δ parametrizes hopping onto and off of bath

Department of Physics Columbia University

Key concept: prethermalization

Very often, system approaches state which is thermal given that some quantity (here, double occupancy) is approximately conserved. Long time scale associated with decay of approximately conserved quantity

Department of Physics Columbia University

Key concept: prethermalization

Very often, system approaches state which is thermal given that some quantity (here, double occupancy) is approximately conserved. Long time scale associated with decay of approximately conserved quantity or with metastability of ordered state

Department of Physics Columbia University

Thermalization can fail (or be very slow) due to metastability of long ranged order

 $U_{init}=4 T_{init}=0.1$ $t_{final}=0.11, 0.12, 0.7$

Werner et al, arXiv:1208.0743

Theory: Werner and Eckstein

Hubbard model coupled to phonons (frequency 1)

Small number (1%) of excited particle-hole pairs

frequency, then no relaxation

arXiv:1207.0402

Copyright A. J. Millis 2015

Department of Physics Columbia University

Theory: Werner and Eckstein

Copyright A. J. Millis 2015

Result: long-lived metallic state. Particle number increases slowly (Auger upscattering) but coherence properties are not time dependent

Department of Physics Columbia University

Experimental result not fully compatible with this picture.

Long-lived metallic state only for sufficiently high degree of excitation

is there a nonequilibrium phase

Department of Physics

Columbia University

Long time behavior

• Partition function <=> path integral

$$\mathbf{Z}^{"} = " \int \mathcal{D} \left\{ \phi \right\} \mathbf{e}^{-\mathbf{S}\left[\left\{ \phi(\tau) \right\} \right]}$$

• path integral dominated by most probably path (saddle point) +gaussian fluctations

SIMONS FOUNDATION Mathematics & Physical Sciences

$$\mathbf{Z} \to \mathbf{e}^{-\mathbf{S}^*} \int \mathcal{D}\psi_{\mathbf{a}} \mathcal{D}\psi_{\mathbf{b}} \dots \ \mathbf{e}^{-\frac{1}{2}\int d\tau_1 d\tau_2 \sum_{\mathbf{a}\mathbf{b}} \psi_{\mathbf{a}}(\tau_1) \chi^{-1}(\tau_1 - \tau_2) \psi_{\mathbf{b}}(\tau_2)}$$

Department of Physics Columbia University

thus

$$\mathbf{S_{gaussian}} = -\frac{1}{2} \int d\tau_1 d\tau_2 \sum_{\mathbf{ab}} \psi_{\mathbf{a}}(\tau_1) \chi^{-1} \left(\tau_1 - \tau_2\right) \psi_{\mathbf{b}}(\tau_2)$$

- Identify fixed point (`phase')
- Identify important fluctuations (quasiparticles)
- quasiparticle propagators <=> linear response susceptibilies

Department of Physics Columbia University

Path Integrals out of Equilibrium (Schwinger, Kamenev)

To describe result of measurement of operator Oat time t in system described by initial density matrix ρ_{init}

Compute:

$$\langle \mathcal{O}(t) \rangle = Tr \left[e^{-iHt} \mathcal{O}e^{iHt} \rho_{init} \right]$$

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Path integral interpretation: coherent states on each contour (Schwinger, Kamenev) time t=0 =>time evolution=> time t $e^{iHt} = \Pi_{i=1...N} \int d\phi_N^+ ... d\phi_1^+ |\phi_N^+ \rangle \langle \phi_N^+ | e^{i\Delta tH} |.\phi_{N-1}^+ \rangle .$ $\times < \phi_{N-1}^+ |e^{i\Delta tH}| \phi_1^+ > < \phi_1^- +$ $e^{-iHt} = \Pi_{i=1...N} \int d\phi_1^- \dots d\phi_N^- |\phi_1^-| > <\phi_1^- |e^{-i\Delta tH}| \dots$ $\times |\phi_{N-1}^-| > < \phi_{N-1}^- |e^{-i\Delta tH} |\phi_N^-| > < \phi_N^-|$

Measure operator time t=0 =>time evolution=> time t $e^{iHt} = \prod_{i=1...N} \int d\phi_N^+ ... d\phi_1^+ |\phi_N^+| > \langle \phi_N^+ | e^{i\Delta tH} |. \phi_{N-1}^+ \rangle .$ $\times < \phi_{N-1}^+ |e^{i\Delta tH}| \phi_1^+ > < \phi_1^- +$ $e^{-iHt} = \prod_{i=1...N} \int d\phi_1^- \dots d\phi_N^- |\phi_1^-| > <\phi_1^- |e^{-i\Delta tH}| \dots$ $\times |\phi_{N-1}^{-}| > < \phi_{N-1}^{-} |e^{-i\Delta tH}|\phi_{N}^{-} > < \phi_{N}^{-}|$

Measure operator time t=0 =>time evolution=> time t $e^{iHt} = \prod_{i=1...N} \int d\phi_N^+ ... d\phi_1^+ |\phi_N^+| > < \phi_N^+ |e^{i\Delta tH}| .\phi_{N-1}^+ > .$ $\times < \phi_{N-1}^+ |e^{i\Delta tH}| \phi_1^+ > < \phi_1^- +$ $e^{-iHt} = \prod_{i=1...N} \int d\phi_1^- \dots d\phi_N^- |\phi_1^-| > <\phi_1^- |e^{-i\Delta tH}| \dots$ $\times |\phi_{N-1}^-| > < \phi_{N-1}^- |e^{-i\Delta tH} |\phi_N^-| > < \phi_N^-|$

$$\langle \mathcal{O}(t) \rangle = Tr \left[e^{-iHt} \mathcal{O} e^{iHt} \rho_{init} \right]$$

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

Department of Physics Columbia University

Measure operator =>time evolution=> time t time t=0 $e^{iHt} = \Pi_{i=1...N} \int d\phi_N^+ ... d\phi_1^+ |\phi_N^+| > \langle \phi_N^+ | e^{i\Delta tH} |.\phi_{N-1}^+ \rangle .$ $\times < \phi_{N-1}^+ |e^{i\Delta tH}| \phi_1^+ > < \phi_1^- +$ $e^{-iHt} = \prod_{i=1...N} \int d\phi_1^- \dots d\phi_N^- |\phi_1^-| > <\phi_1^- |e^{-i\Delta tH}| \dots$ $\times |\phi_{N-1}^-| > < \phi_{N-1}^- |e^{-i\Delta tH} |\phi_N^-| > < \phi_N^-|$

SIMONS FOUNDATION Mathematics & Physical Sciences

Crucial factor

 $<\phi_N^-|\mathcal{O}|\phi_N^+>$

Department of Physics Columbia University

Initial density matrix

Crucial factor $<\phi_1^+|\rho_{init}|\phi_1^->$

SIMONS FOUNDATION

Mathematics & Physical Sciences

Department of Physics Columbia University

Path integral

 ρ_{init} time t=0 =>time evolution=> time t

$$\langle \mathcal{O} \rangle = \int \mathbf{d}\phi_{+} \mathbf{d}\phi_{-} \rho_{\mathbf{init}}(\phi_{+}, \phi_{-}) \int \mathcal{D}\phi_{+}(\mathbf{t}) \mathcal{D}\phi_{-}(\mathbf{t}) \mathbf{W}_{\mathbf{O}}(\{\phi_{+}, \phi_{-}\})$$

(1) Fix start (on + line) and stop (on -) values φ[±]
 (2) Sum over all paths connecting start and stop values.
 Weight paths by action W (dep on operator O)
 (3) Sum over all start and stop values, weighted by ρ_{init}

Department of Physics

Columbia University

Steady State

At long times: system forgets initial condition =>? replace initial density matrix by steady state one

$$\langle \mathcal{O} \rangle = \int \mathbf{d}\phi_{+} \mathbf{d}\phi_{-} \rho_{\mathbf{SS}}(\phi_{+}, \phi_{-}) \int \mathcal{D}\phi_{+}(\mathbf{t}) \mathcal{D}\phi_{-}(\mathbf{t}) \mathbf{W}_{\mathbf{O}}(\{\phi_{+}, \phi_{-}\})$$

Notes:

- steady state density matrix must be determined
- Initial conditions may not be (fully) forgotten

Department of Physics Columbia University

Steady State

At long times: system forgets initial condition =>?

replace initial density matrix by steady state one

$$\langle \mathcal{O} \rangle = \int \mathbf{d}\phi_{+} \mathbf{d}\phi_{-} \rho_{\mathbf{SS}}(\phi_{+}, \phi_{-}) \int \mathcal{D}\phi_{+}(\mathbf{t}) \mathcal{D}\phi_{-}(\mathbf{t}) \mathbf{W}_{\mathbf{O}}(\{\phi_{+}, \phi_{-}\})$$

Steady state density matrix must be determined e.g. as solution of kinetic equation

> SIMONS FOUNDATION Mathematics & Physical Sciences

$$\rho_{\mathbf{SS}} = \mathbf{e}^{\mathbf{iHt}} \rho_{\mathbf{SS}} \mathbf{e}^{-\mathbf{iHt}}$$

Department of Physics Columbia University

Identification of Important Paths

In equilibrium

$$\mathbf{Z} = \mathbf{Tr} \left[\mathbf{e}^{-\frac{\mathbf{H}}{\mathbf{T}}}
ight]$$

Important paths are those that dominate the path integral for the partition function

$$\mathbf{Z}^{"} = " \int \mathcal{D} \left\{ \phi \right\} \mathbf{e}^{-\mathbf{S}\left[\left\{ \phi(\tau) \right\} \right]}$$

Department of Physics Columbia University

Out of equilibrium

If operator O=1 then

$$\langle \mathcal{O}(t) \rangle = Tr\left[e^{-iHt}\mathcal{O}e^{iHt}\rho_{init}\right] = Tr[\rho_{init}] = 1$$

No basis for selecting paths

=>"Important paths" <=> paths making important contribution to specific operator.

Department of Physics

Columbia University

Most important case: steady-state density matrix seek paths that maximize the density matrix

$\rho_{\mathbf{SS}} \to \approx \rho_{\mathbf{SS}}(\phi_+, \phi_-)$

Copyright A. J. Millis 2015

Department of Physics Columbia University

Stationary path approximation

Stationary path configuration must be the same on outbound and inbound time contour (so oscillations cancel) and must extremize the diagonal component of the density matrix

> SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

local polaron

$$H = H_{dot} + H_{lead} + H_{mix}$$
$$H_{lead} = \sum_{k,a=L,R} \varepsilon_k c_{k,a}^{\dagger} c_{k,a}.$$
$$H_{mix} = \sum_{k,a=L,R} V_k^a c_{k,a}^{\dagger} d + H.c.$$
$$H_{dot} = \varepsilon' d^{\dagger} d + \lambda q d^{\dagger} d + \frac{K}{2} q^2 + \frac{1}{2M} p^2$$

SIMONS FOUNDATION Mathematics & Physical Sciences

Phys. Rev. Lett. 94 07640

Department of Physics Columbia University

Density of states in absence of phonons

Department of Physics Columbia University

Energy scales

$$\Gamma^{a} = \pi \sum_{k} |V_{k}^{a}|^{2} \,\delta(\omega - \varepsilon_{k}) \quad 1/(\text{electron escape time})$$

$$\omega_{phonon} = \sqrt{\frac{K}{M}} \quad << \Gamma \quad (\text{adiabatic approx})$$

$$polaron \text{ shift at } \Gamma = \mathbf{0} : \quad \frac{\lambda^{2}}{\mathbf{K}}$$

Polaron shift

Energy of isolated dot

 $\lambda q d^{\dagger} d + \frac{K}{2} q^2$

Implies extremum

 $= \varepsilon \rightarrow \varepsilon - \frac{\lambda^2 \left\langle \mathbf{d}^{\dagger} \mathbf{d} \right\rangle^2}{2\mathbf{K}}$

SIMONS FOUNDATION

Mathematics & Physical Sciences

Department of Physics Columbia University

In equilibrium

SIMONS FOUNDATION

Mathematics & Physical Sciences

Equilibrium: two states for oscillator

SIMONS FOUNDATION Mathematics & Physical Sciences

Can be more or less completely solved

Open system: coupled to leads (reservoirs)

Open system: coupled to leads (reservoirs) steady state exists and is unique

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

Department of Physics Columbia University

Department of Physics

Columbia University

Difference in chemical potential => current across quantum dot

SIMONS FOUNDATION Mathematics & Physical Sciences

Nonequilibrium results

Department of Physics Columbia University

Key point

T_{eff} a complicated function of current and T of leads

As $T_{reservoir} \Rightarrow 0$

$\mathbf{T_{eff}} \sim \mathbf{\Delta} \mu$

Effective temperature of electron system proportional to current; <u>parametrically larger than I²R</u> Effective temperature larger than physical temperature

> SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics

Columbia University

Current-driven quantum criticality nonequilibrium=>temperature without heating relative to reservoir

$${f T_{eff}}\sim\Delta\mu{
m coth}{\Delta\mu\over T}$$

SIMONS

FOUNDAT

Mathematics & Physical Sciences

Department of Physics Columbia University

Effective temperature not equal to physical tempeature

Department of Physics Columbia University

Important question: how well can we solve impurity models out of equilibrium

Department of Physics Columbia University