Theory of Extremely Correlated Fermions (I-II)

Collège de France March 26, 2014

Sriram Shastry University of California

Santa Cruz, CA

Work supported by DOE, BES DE-FG02-06ER46319

Acknowledgements

Collaborators/ Inspirers

Edward Perepelitsky,
Daniel Hansen,
Ehsan Khatami
(UCSC),
Antoine Georges,
Rok Zitko,
Jernej Mravlje
(Paris/Slovenia)
Alex Hewson
(London)
Marcos Rigol
(U Penn)

Discussions/ Inspirers

OPhil Anderson
Tom Banks
QGabi Kotliar

Brainwashed by Feynman.
 \& Tyranny of Feynman diagrams

Physics Today
2000. (PWAnderson) in describing the state of many body physics

Brainwashed by Schwinger.
\& Tyranny of Schwingers equations

Early versions of ECFL may be appear to be dominated by Schwinger "sourcery"

Middle way possible Dyson (Maleev) type theory \& Inconvenience of non Hermitean QFT

We need
a middle way to
enhance clairity
Our presentation here follows this middle way

t-J model \& the Hubbard model

Checks of ECFL: (2013)
(III)

Low energy long wavelength expansion of the two self energies. (2013)
Motivated by DMFT comparison

(V)

QHigh D- DMFT Comparison
QAnderson Impurity Model Comparison
QHigh T expansion Comparison

Experimental tests of ECFL:
(2011-14)
ARPES line shapes
Casey Anderson
Q A
Asymmetry
QARPES Kinks-
QHigh energy kinks
QLow energy kinks (2014)
QAIS/STM predictions

Dyson-Maleev type
Non Hermitean representation Path integral representation
λ-Fermions as a new option (2014)

OOPEN ISSUES-In progress
Olnsulating phase
QSuperconducting phase
QMagnetic phases

Formalism papers

9. ' Extremely Correlated Fermi Liquids ", B. S. Shastry, arXiv:1102.2858 (2011),Phys. Rev. Letts. 107, 056403 (2011); 108, 029702 (2012).
© `Anatomy of the Self Energy", B. S. Shastry, arXiv:1104.2633; Phys. Rev. B 84, 165112 (2011); Phys. Rev. B 86, 079911(E) (2012).

Q "extremely Correlated Fermi Liquids: Self consistent solution of the second order theory", D. Hansen and B. S. Shastry, arXiv:1211.0594, (2012), Phys. Rev. B 87, 245101 (2013).

Q `'Extremely Correlated Fermi Liquids: The Formalism", B. S. Shastry, arXiv:1207.6826 (2012); Phys. Rev. B 87, 125124 (2013).

Q `"ECFL in the limit of infinite dimensions", E. Perepelitsky and B. S. Shastry, arXiv:1309.5373 (2013), Anns. Phys. 338, 283-301 (2013).

Q Theory of extreme correlations using canonical Fermions and path integrals", B. S. Shastry, arXiv:1312.1892 (2013), Ann. Phys. 343, 164-199 (2014).

Benchmarking papers

DMFT and AIM related papers

Q "Extremely correlated Fermi liquid theory meets Dynamical mean-field theory: Analytical insights into the doping-driven Mott transition", R. Zitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges and B. S. Shastry, arXiv:1309.5284 (2013), Phys. Rev. B 88, 235132 (2013).
9. "Extremely Correlated Fermi Liquid study of the $\$ \mathrm{U}=$ linfty $\$$ Anderson Impurity Model", B. S. Shastry, E. Perepelitsky and A. C. Hewson, arXiv:1307.3492 [cond-mat.str-el], Phys. Rev. B 88, 205108 (2013).

High T Expansion comparison papers

Q - Linked-Cluster Expansion for the Green's function of the Infinite-U Hubbard Model", E. Khatami, E. Perepelitsky, M. Rigol and B. S. Shastry, arXiv: 1310.8029 (2013).

Q "Electronic spectral properties of the two-dimensional infinite-U Hubbard model", E. Khatami, D. Hansen, E. Perepelitsky, M. Rigol, B. S. Shastry, arXiv:1303.2657 [cond-mat.str-el] (2013), Phys. Rev. B 87, 161120 (R) (2013).

Experimentally relevant papers

Q `` Dynamical Particle Hole Asymmetry in Cuprate Superconductors", B. S. Shastry, arXiv:1110.1032 (2011), Phys. Rev. Letts. 109, 067004 (2012).
9. "Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates", G.-H. Gweon, B. S. Shastry and G. D. Gu, arXiv:1104.2631 (2011), Phys. Rev. Letts. 107, 056404 (2011).

Q Phenomenological Model for the Normal-State Angle-Resolved Photoemission Spectroscopy Line Shapes of HighTemperature Superconductors Kazue Matsuyama and G.-H. Gweon Phys. Rev. Lett. 111, 246401 (2013).

Q Low energy Kinks and ECFL (Shastry 2014 Annals of Physics)

Q Line Shapes: P.A. Casey, P. W. Anderson, Phys. Rev. Letts. 106, 097002, (2011), Nature Physics, 4, 210 (2008) \{ Hidden Fermi Liquid Theory\}

Q S Doniach and M Sunjic (1970), P. Noizeres and C. De Dominicis (1969) X-ray edge singularity.

The Setting

QT $=0$: $\mathrm{Q}=0=\omega$ (Relatively Simpler problem than the excitations problem)
Q Ground states: Superconductivity from "repulsive" interactions
Q t model, Hubbard model, 3 band model,..
Q RVB of PW Anderson \& friends (Plain Vanilla is almost ideal),
Gossamer SC of R B Laughlin,..
Competing phases near half filling- CDW's,AFM, Spin Glass,.. RBL recent

OT> 0 , Finite Q, ω (Remaining agenda)
ONeed to understand transport, ARPES, NMR,..
Q Hubbard U may be "finite", but U/Z large near half filling where $\mathrm{Z} \sim(1-n)$

Q Theoretical setting of the ECFL methodology for systematically studying the $\mathbf{t} \mathbf{J}$ model.

$$
\begin{aligned}
& \mid a>a=\uparrow, a=\downarrow, a=0 \\
& a \neq \uparrow \downarrow \\
& X_{i}^{a b}=|a><b| \\
& \text { X's are Fermions with built in projection ops. } \\
& \text { The hatted Fermions are equivalent to } X \text { 's } \\
& \begin{array}{l}
\hat{C}_{\sigma}^{\dagger}=\left(1-n_{-\sigma}\right) C_{\sigma}^{\dagger} \\
\hat{C}_{\sigma}=\left(1-n_{-\sigma}\right) C_{\sigma}
\end{array} \quad\left\{C_{a}, C_{b}^{\dagger}\right\}=\delta_{a b}
\end{aligned}
$$

$$
\begin{aligned}
H & =-\sum_{i, j, \sigma} t_{i j} X_{i}^{\sigma 0} X_{j}^{0 \sigma}-\mu \sum_{i, \sigma} X_{i}^{\sigma \sigma}+\frac{1}{2} \sum_{i, j} J_{i j}\left\{\vec{S}_{i} \cdot \vec{S}_{j}-\frac{1}{4} n_{i} n_{j}\right\}, \\
& =-\sum_{i, j, \sigma} t_{i j} X_{i}^{\sigma 0} X_{j}^{0 \sigma}-\mu \sum_{i, \sigma} X_{i}^{\sigma \sigma}+\frac{1}{4} \sum_{i j, \sigma} J_{i j}\left(X_{i}^{\sigma \bar{\sigma}} X_{j}^{\bar{\sigma} \sigma}-X_{i}^{\sigma \sigma} X_{j}^{\bar{\sigma} \bar{\sigma}}\right)
\end{aligned}
$$

X's satisfy a Lie algebra (with anticommuting objects i.e. grading) as opposed to simple canonical Fermi operators.

$$
\begin{aligned}
\left\{X_{i}^{0 \sigma}, X_{j}^{\sigma^{\prime} 0}\right\} & =\delta_{i j}\left(\delta_{\sigma \sigma^{\prime}}-\sigma \sigma^{\prime} X_{i}^{\bar{\sigma}^{\prime} \bar{\sigma}}\right) \\
\bar{\sigma} & =-\sigma
\end{aligned}
$$

What does extreme correlations mean?

$$
H=-\sum_{i, j} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

(I) Weak Correlations $U \ll t$

Hubbard model (t, U)

Semiconductors

(2) Intermediate Correlations $U \leq t$

DFT (Band theory), Wide band free electron like metals
(3) Strong Correlations $U \geq t$

Transition metal magnetism, Dense Kondo Heavy Fermi systems, Iron arsenide superconductors etc
(4) Extreme Correlations $U \gg t$

High Tc systems, cobaltates, Anderson Impurity Model,
some Heavy Fermi systems.
t J model

$$
H=P_{d=0}\left(-\sum t_{i j} c_{i}^{\dagger} c_{j}\right) P_{d=0}+\frac{1}{2} \sum J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Useful to summarize one important Idea in ECFL:
Non Dysonian representation of Greens functions are Natural and Fundamental

Weak Coupling theories	Strong Coupling theories $\Sigma^{\prime}(\omega, \vec{k}) \sim \omega$, for $0 \ll \omega \ll U$	
$G(k)=\frac{1}{i \omega-\varepsilon_{k}-\Sigma(k)}$	$\mathcal{G}(k)=\frac{1-\frac{n}{2}}{i \omega-c \varepsilon_{k}-\Sigma_{D M}(k)} \mathcal{G}(k)=\frac{\left(1-\frac{n}{2}+\Psi(k)\right)}{i \omega-c \varepsilon_{k}-\Phi(k)}=\mathbf{g}(k) \times \mu(k)$	
Standard Dyson representation	Dyson-Mori representation	ECFL representation twin self energies

Reconstruction of $\Sigma_{\text {DM }}$ possible but Physics better captured by ECFL pair.

$$
\{\Phi, \Psi\} \rightarrow \Sigma_{D M}
$$

$\{\Phi, \Psi\} \quad$ are BOTH generically ideal Fermi liquid like, but not so with $\quad \Sigma_{D M}$

Why is the extreme correlation problem (t J model) so difficult?

- Non canonical field theory- Cannot consult existing text books!

Q Absence of Wicks theorem and Feynman series
Q Absence of any obvious small parameter.
Q Gutzwiller projection is a "singular perturbation", hence a major stumbling block for the dynamics.

Q ECFL approach uses an adaptation of Schwinger's method.
Q Bypass Wicks theorem.
Q Uses extra time dependent potentials and magnetic fields to generate exact equations of motion (EOM).

Q Freedom intrinsic to the Schwinger Dyson method + shift identities+ insights from spectral sum rules helps us to make progress.

Q Connects with with Dyson Maleev approach invented for the spin problem

- ECFL describes a new framework for calculation with twin self energies and vertices.

Q Obtain analytical results that are useful-novel and have experimental consequences. Also helpful in building bridges with DMFT and other approaches

A quick overview of

 "why things are so".
Work in the liquid state (no broken symmetry)

$$
\mathcal{G}_{\sigma \sigma^{\prime}}\left(i \tau_{i}, f \tau_{f}\right)=-\frac{\left\langle T_{\tau} e^{-\hat{\mathcal{A}}_{S}}\left(X_{i}^{0 \sigma}\left(\tau_{i}\right) X_{f}^{\sigma^{\prime} 0}\left(\tau_{f}\right)\right)\right\rangle}{\left\langle T_{\tau} e^{-\hat{\mathcal{A}}_{S}}\right\rangle}
$$

Double Hat Theorem: (I963)

$$
\begin{aligned}
& X_{i}^{\sigma 0}=\tilde{C}_{\sigma}^{\dagger}=\left(1-n_{-\sigma}\right) C_{\sigma}^{\dagger} \\
& X_{i}^{0 \sigma}=\tilde{C}_{\sigma}=\left(1-n_{-\sigma}\right) C_{\sigma} \\
& X_{i}^{\sigma \sigma^{\prime}}=C_{i \sigma}^{\dagger} C_{i \sigma^{\prime}}
\end{aligned}
$$

Added time dependent potentials, finally set to

$$
A=\sum_{i} \int_{\tau^{\prime}} \mathcal{V}_{i}^{\text {zero. }}{ }^{\sigma \sigma^{\prime}}\left(\tau^{\prime}\right) \hat{C}_{i \sigma}^{\dagger}\left(\tau^{\prime}\right) \hat{C}_{i \sigma^{\prime}}\left(\tau^{\prime}\right)
$$

Hat Removal Theorem: (20|3)
Provided Gutzwiller projector supplied

$$
X_{i}^{0 \sigma} \rightarrow C_{i \sigma}, X_{i}^{\sigma 0} \rightarrow \widetilde{C}_{i \sigma}^{\dagger}=C_{i \sigma}^{\dagger}\left(1-N_{i \bar{\sigma}}\right), X_{i}^{\sigma \sigma^{\prime}} \rightarrow C_{i \sigma}^{\dagger} C_{i \sigma^{\prime}}
$$

$$
\mathcal{G}_{\sigma_{i} \sigma_{f}}\left(i \tau_{i}, f \tau_{f}\right)=-\left\langle\left\langle C_{i \sigma_{i}}\left(\tau_{i}\right) \widetilde{C}_{f \sigma_{f}}^{\dagger}\left(\tau_{f}\right)\right\rangle\right\rangle
$$

$$
\begin{array}{r}
\left\langle\left\langle A\left(\tau_{1}\right) B\left(\tau_{2}\right) \ldots\right\rangle\right\rangle= \\
\frac{1}{Z} \operatorname{Tr} e^{-\beta \hat{H}_{e f f} T_{\tau}\left(e^{-\hat{\mathcal{A}}_{S}} A\left(\tau_{1}\right) B\left(\tau_{2}\right) \ldots \hat{P}_{G}\left(0^{-}\right)\right)}=
\end{array}
$$

Leads to straightforward path integral rep, with Gutzwiller projector ONLY at initial time.

$$
\begin{aligned}
& \hat{\mathcal{A}}_{S}=T_{e f f}+J S . S+A \\
& \hat{T}_{e f f}=-\sum_{i j \sigma} t_{i j} \widetilde{C}_{i \sigma}^{\dagger} C_{j \sigma}
\end{aligned}
$$

Proof of Theorem:
 Upper Triangular Representation

$$
[\psi]_{\text {final }}^{\prime}=Q_{M}^{\prime} \ldots Q_{2}^{\prime} \cdot Q_{1}^{\prime} \cdot[\psi]_{\text {initial }}^{\prime} \quad Q_{j}^{\prime} \sim e^{-i t_{j} H_{t J}}
$$

Next we study the Canonical basis of states

$$
[\psi]=\left[\begin{array}{l}
\psi^{p h} \\
\psi^{u n}
\end{array}\right] ; \quad \hat{P}_{G}=\left[\begin{array}{ll}
\mathbb{1}^{p h} & 0 \\
0 & 0
\end{array}\right]
$$

In the canonical basis, we can express the operators of interest, and end up with block structure-

$$
Q_{j}=\left[\begin{array}{ll}
Q_{j}^{p p} & Q_{j}^{p u} \\
Q_{j}^{u p} & Q_{j}^{u u}
\end{array}\right]
$$

Problem:
How to retain time evolution in the physical space

$$
[\psi]_{\text {final }}=Q_{M} \ldots Q_{2} \cdot Q_{1} \cdot \hat{P}_{G} \cdot[\psi]_{\text {initial }}
$$

Requiring that the final state remains in the physical subspace. This has two classes of sufficient conditions:
(A) First sufficiency condition (-e.g. slave Bosons) too restrictive

$$
\left[Q_{j}, \hat{P}_{G}\right]=0 \quad \text { Requiring: two vanishings } \quad Q_{j}^{p u}=0, Q_{j}^{u p}=0
$$

(B) Much better sufficiency condition (least constrainted!)

$$
\left[Q_{j}, \hat{P}_{G}\right] \cdot \hat{P}_{G}=0 ; \quad \text { Requiring: only one vanishing } \quad Q_{j}^{u p}=0
$$

Thus upper triangular representation of Q

$$
Q_{j}=\left[\begin{array}{cc}
Q_{j}^{p p} & Q_{j}^{p u} \\
0 & Q_{j}^{u u}
\end{array}\right] \quad \begin{aligned}
& \text { Theorem: Product of upper triangular } \\
& \text { matrices remains upper triangular. QED }
\end{aligned} \quad[\psi]_{\text {final }}=\left[\begin{array}{c}
Q_{M}^{p p} \ldots Q_{2}^{p p} \cdot Q_{1}^{p p} \cdot \psi_{\text {initial }}^{p h} \\
0
\end{array}\right]
$$

$$
\mathcal{G}_{\sigma_{i} \sigma_{f}}\left(i \tau_{i}, f \tau_{f}\right)=-\left\langle\left\langle C_{i \sigma_{i}}\left(\tau_{i}\right) \widetilde{C}_{f \sigma_{f}}^{\dagger}\left(\tau_{f}\right)\right\rangle\right\rangle
$$

$$
\tilde{C}_{\sigma}^{\dagger}=C_{\sigma}^{\dagger}\left(1-N_{\bar{\sigma}}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{\sigma_{i} \sigma_{f}}\left(i \tau_{i}, f \tau_{f}\right)=-\left\langle\left\langle C_{i \sigma_{i}}\left(\tau_{i}\right) C_{f \sigma_{f}}^{\dagger}\left(\tau_{f}\right)\right\rangle\right\rangle+ \\
& \left\langle\left\langle C_{i \sigma_{i}}\left(\tau_{i}\right) C_{f \sigma_{f}}^{\dagger}\left(\tau_{f}\right) N_{f \bar{\sigma}_{f}}\left(\tau_{f}\right)\right\rangle\right\rangle
\end{aligned}
$$

Thus the G splits into two parts, the second term is from the definition of the creation operators with a hat

$$
\mathbf{g}_{\sigma_{i} \sigma_{j}}\left(i \tau_{i}, j \tau_{j}\right)=-\left\langle\left\langle C_{i \sigma_{i}}\left(\tau_{i}\right) C_{j \sigma}^{\dagger}\left(\tau_{j}\right)\right\rangle\right\rangle
$$

Firstly the auxiliary Greens defined. Notice the <<>> are still non trivial

$$
\begin{gathered}
\text { Next set } \quad<C C^{\dagger} N>=<C C^{\dagger}><N>+g \times \Psi \\
\Psi_{\sigma_{i} \sigma_{f}}\left(i \tau_{i}, f \tau_{f}\right)=\mathbf{g}_{\sigma_{i} \sigma_{\mathbf{k}}}^{-1}\left(i \tau_{i}, \mathbf{k} \tau_{\mathbf{k}}\right) \times \\
\left\langle\left\langle C_{\mathbf{k} \sigma_{\mathbf{k}}}\left(\tau_{\mathbf{k}}\right) C_{f \sigma_{f}}^{\dagger}\left(\tau_{f}\right) N_{f \bar{\sigma}_{f}}\left(\tau_{f}\right)\right\rangle\right\rangle_{c},
\end{gathered}
$$

"The Notorious" Caparison function

$$
\mu=(1-\langle N\rangle+\Psi
$$

This "explains" how the Product form arises

Idea is that the auxiliary " $g(k, \omega)$ " is already dressed by Fermi liquid renormalization, G requires a second layer of decoration!!

$$
\begin{array}{ll}
S_{i}^{+}=(2 s) b_{i}^{\dagger}\left(1-\frac{n_{i}}{2 s}\right) \\
S_{i}^{-}=b_{i} \\
S_{i}^{z}+s=n_{i}
\end{array} \quad n_{i}=b_{i}^{\dagger} b_{i}
$$

Dyson Maleev

Harris, Kumar, Halperin and Hohenberg

	Spins: The Dyson-Maleev mapping		Fermions: The non-Hermitian mapping	
Destruction operator	$\overline{S_{i}^{-}}$	b_{i}	$\chi_{i}^{0 \sigma}$	$C_{i \sigma}$
Creation operator	S_{i}^{+}	(2s) $b_{i}^{\dagger}\left(1-\frac{n_{i}}{2 s}\right)$	$X_{i}^{\sigma 0}$	$C_{i \sigma}^{\dagger}\left(1-\lambda N_{i \bar{\sigma}}\right)$
Density operator(s)	$S_{i}^{z}+s$	$n_{i}=b_{i}^{\dagger} b_{i}$	$X_{i}^{\sigma \sigma^{\prime}}$	$C_{i \sigma}^{\dagger} C_{i \sigma^{\prime}}$
Projection operator	\hat{P}_{D}	$\prod_{i}\left\{\sum_{m=0}^{2 s} \delta_{n_{i}, m}\right\}$	\hat{P}_{G}	$\prod_{i}\left(1-N_{i \uparrow} N_{i \downarrow}\right)$, for $\lambda=1$
Vacuum	$\|\downarrow \downarrow \ldots \downarrow\rangle$	$\|00 \ldots 0\rangle$	\|Vac>	$\|00 \ldots 0\rangle$
Small parameter \& its range	$\frac{1}{2 s}$	$\frac{1}{2 s} \in[0,1]$	λ	$\lambda \in[0,1]$
Auxiliary Green's function		$\mathbf{g}(i, j)=-\left\langle\left\langle b_{i} b_{j}^{\dagger}\right\rangle\right\rangle$		$\mathbf{g}(i, j)=-\left\langle\left\langle C_{i \sigma} C_{j \sigma}^{\dagger}\right\rangle\right\rangle$
Caparison function		$\mu(i, j)=\delta_{i j}\left(1-\frac{1}{2 s}\left\langle n_{j}\right\rangle\right)+\frac{1}{2 s} \Psi(i, j)$		$\mu(i, j)=\delta_{i j}(1-\lambda \gamma)+\lambda \Psi(i, j)$
Second Self energy Ψ		$\Psi(i, j)=\mathbf{g}^{-1}(i, \mathbf{a})\left\langle\left\langle b_{\mathbf{a}} b_{j}^{\dagger} n_{j}\right\rangle\right\rangle_{c}$		$\begin{aligned} & \Psi(i, j)= \\ & \mathbf{g}^{-1}(i, \mathbf{a})\left\langle\left\langle C_{\mathbf{a} \sigma} C_{j \sigma}^{\dagger} N_{j \sigma}\right\rangle\right\rangle \end{aligned}$

This table summarizes the parallel between spins and extreme Fermions.
We have anticipated the parameter λ in analogy to the semiclassical parameter I/(2S) in D-M

Summary: With Fourier transforms, and
with auxuliary " g " having its own self energy, and expand the caparison function μ

$$
\begin{aligned}
g^{-1}(k, \omega) & =g_{0}^{-1}(k, \omega)-\Phi(k, \omega) \\
\mu(k, \omega) & =1-\frac{n}{2} \Psi(k, \omega)
\end{aligned}
$$

$$
\mathcal{G}(\vec{k}, i \omega)=\frac{1-\frac{n}{2}+\Psi(\vec{k}, i \omega)}{\mathrm{g}_{0}^{(-1)}(\vec{k}, i \omega)-\Phi(\vec{k}, i \omega)}
$$

Novel non-Dysonian

The two self energies can be pursued in different waysExpansion in the λ parameter $(\lambda \varepsilon[0, I])$
Low k, ω expansion
In high dimensions we can show that these are further related through

$$
\begin{aligned}
\Psi(k) & =\Psi\left(i \omega_{k}\right) \\
\Phi(k) & =\chi\left(i \omega_{k}\right)+\epsilon_{k} \Psi\left(i \omega_{k}\right) .
\end{aligned}
$$

I.This relation implies that the Dyson (or Dyson Mori) self energy is momentum independent.
2. Proof is independent of Wicks theorem and is consistent with the momentum independence in the Hubbard model foundational to DMFT.
3. Thus the two limits of infinite U and infinite D mutually commute.

$G(k)=\frac{1}{i \omega-\varepsilon_{k}-\Sigma(k)}$	$\mathcal{G}(k)=\frac{1-\frac{n}{2}}{i \omega-c \varepsilon_{k}-\Sigma_{D M}(k)}$	$\mathcal{G}(k)=\frac{\left(1-\frac{n}{2}+\Psi(k)\right)}{i \omega-c \varepsilon_{k}-\Phi(k)}=\mathbf{g}(k) \times \mu(k)$

A little algebra gives

 the explicit relation$$
\Sigma_{D M}(k)=\Sigma_{D M}\left(i \omega_{k}\right)=\frac{\left(i \omega_{k}+\boldsymbol{\mu}\right) \Psi\left(i \omega_{k}\right)+\left(1-\frac{n}{2}\right) \chi\left(i \omega_{k}\right)}{1-\frac{n}{2}+\Psi\left(i \omega_{k}\right)},
$$

We also obtain a mapping, simliar in spirit to that of Georges- Kotliar, where the t model in infinite dimensions is identical to the AIM with self consistently chosen band structure of the conductions electrons.

tJ --> AIM map

$$
\begin{aligned}
& H_{t J}^{D=\infty}=-\sum_{i j} t_{i j} \hat{C}_{i \sigma}^{\dagger} \hat{C}_{\sigma}-\mu \sum_{i} N_{i \sigma} \\
& t_{i j} \sim \frac{1}{\sqrt{D}}
\end{aligned} \quad H=\sum_{\sigma} \epsilon_{d} X^{\sigma \sigma}+\sum_{k \sigma} \widetilde{\epsilon}_{k} n_{k \sigma}+\sum_{k \sigma}\left(V_{k} X^{\sigma 0} c_{k \sigma}+V_{k}^{*} c_{k \sigma}^{\dagger} X^{0 \sigma}\right),
$$

$$
\begin{aligned}
& \mathbf{g}_{i, i}\left(i \omega_{n}\right) \rightarrow \mathbf{g}\left(i \omega_{n}\right) \\
& \mu_{i, i}\left(i \omega_{n}\right) \rightarrow \mu\left(i \omega_{n}\right) \\
& \mu \rightarrow \epsilon_{d} \\
& \sum_{\vec{k}} \epsilon_{\vec{k}} \mathbf{g}(k)=\sum_{\breve{k}} \frac{\left|V_{\vec{k}}\right|^{2}}{i \omega_{n}-\widetilde{\epsilon}_{\mathfrak{k}}} \mathbf{g}\left(i \omega_{k}\right),
\end{aligned}
$$

We also obtain an independent solution of the $t \mathrm{t}$ as well as the AIM model as an expansion in λ. Here λ is related to the density of particles or the filling of the d-level in the AIM. Will discuss the explicit solution to $2 n$ d order later.

Simplest approach is to expand both the self energies

 at small (k, ω) assuming a Fermi liquid structure.(DMFT-ECFL comparison paper generalized for k dependence. The FL nature is justified by the λ - expansion of these objects- explained later.)

$$
\begin{aligned}
& \quad \text { Long wavelength expansion } \\
& 1-\frac{n}{2}+\Psi(\vec{k}, \omega)=\alpha_{0}+c_{\Psi}\left(\omega+v_{\Psi} \hat{k} v_{f}\right)+i \mathcal{R} / \gamma_{\Psi}+O\left(\omega^{3}\right) \\
& \omega+\mu-\left(1-\frac{n}{2}\right) \varepsilon_{k}-\Phi(k, \omega)=\left(1+c_{\Phi}\right)\left(\omega-v_{\Phi} \hat{k} v_{f}+i \mathcal{R} / \Omega_{\Phi}+O\left(\omega^{3}\right)\right)
\end{aligned}
$$

$$
\alpha_{0}=1-\frac{n}{2}+\Psi_{0} \rightarrow(1-n)
$$

$$
\begin{aligned}
\mathcal{R} & =\pi\left\{\omega^{2}+\left(\pi k_{B} T\right)^{2}\right\} \\
\hat{k} & =\left(\vec{k}-\vec{k}_{F}\right) \cdot \vec{k}_{F} /\left|\vec{k}_{F}\right| \\
v_{f} & =\left(\partial_{k} \varepsilon_{k}\right)_{k_{F}} \text { is the bare Fermi velocity }
\end{aligned}
$$

Spectral function with 5 parameters

$$
\begin{aligned}
& A(\vec{k}, \omega)=\frac{z_{0}}{\pi} \frac{\Gamma_{0}}{\left(\omega-v_{\Phi} \hat{k} v_{f}\right)^{2}+\Gamma_{0}^{2}} \times \mu(k, \omega) \\
& \Gamma_{0}(\hat{k}, \omega)=\eta+\frac{\pi\left(\omega^{2}+\left(\pi k_{B} T\right)^{2}\right)}{\Omega_{\Phi}} \\
& \mu(\hat{k}, \omega)=1-\frac{\omega}{\Delta_{0}}+\frac{v_{0} \hat{k} v_{f}}{\Delta_{0}}
\end{aligned}
$$

Scaling property near half filling

$$
\begin{aligned}
& z_{0} \rightarrow \bar{z}_{0} \times \delta ; \Delta_{0} \rightarrow \bar{\Delta}_{0} \times \delta ; \quad \Omega_{\Phi} \rightarrow \bar{\Omega}_{\Phi} \times \delta \\
& \nu_{0} \rightarrow \bar{\nu}_{0} \times \delta ; \nu_{\Phi} \rightarrow \bar{\nu}_{\Phi} \times \delta ; \\
& A(\hat{k}, \omega \mid T, \delta) \sim A\left(\hat{k}, \left.\omega \frac{\delta_{0}}{\delta} \right\rvert\, T \frac{\delta_{0}}{\delta}, \delta_{0}\right)
\end{aligned}
$$

QNext we review the exact EOM for the G's obtained using Schwinger's method of functional derivatives and functional integration.
Qlt is pretty rough going, if you see it for the first time
QHowever!!

I recently discovered* an alternate universe, with other meanings of functional integration!
*Singapore (NTU October 2013)

The Schwinger method Calculation in brief: liquid state (sans broken symmetry)

$$
\begin{aligned}
& X_{i}^{\sigma 0}=\tilde{C}_{\sigma}^{\dagger}=\left(1-n_{-\sigma}\right) C_{\sigma}^{\dagger} \\
& X_{i}^{0 \sigma}=\tilde{C}_{\sigma}=\left(1-n_{-\sigma}\right) C_{\sigma}
\end{aligned}
$$

Added time dependent (Bosonic) potentials and spin densities.These are finally set to zero.

$$
\left\langle\left\langle Q\left(\tau_{1}, \tau_{2}, \ldots\right)\right\rangle\right\rangle=\frac{\operatorname{Tr}\left[e^{-\beta H} T_{\tau} e^{-\mathcal{A}} Q\left(\tau_{1}, \tau_{2}, . .\right)\right]}{\operatorname{Tr}\left[e^{-\beta H} T_{\tau}\left(e^{-\mathcal{A}}\right)\right]},
$$

$$
\begin{aligned}
& \frac{\delta}{\delta \mathcal{V}_{j}^{\sigma_{1} \sigma_{2}}\left(\tau_{1}\right)}\left\langle\left\langle Q\left(\tau_{2}\right)\right\rangle\right\rangle \\
& \quad=\left\langle\left\langle Q\left(\tau_{2}\right)\right\rangle\right\rangle\left\langle\left\langle X_{j}^{\sigma_{1} \sigma_{2}}\left(\tau_{1}\right)\right\rangle\right\rangle-\left\langle\left\langle X_{j}^{\sigma_{1} \sigma_{2}}\left(\tau_{1}\right) Q\left(\tau_{2}\right)\right\rangle\right\rangle
\end{aligned}
$$

$$
\mathcal{G}_{\sigma_{i} \sigma_{f}}[i, f]=-\left\langle\left\langle X_{i}^{0 \sigma_{i}} X_{f}^{\sigma_{f} 0}\right\rangle\right\rangle . \quad i \equiv\left(R_{i}, \tau_{i}\right)
$$

$$
\begin{aligned}
\left(\partial_{\tau_{i}}-\boldsymbol{\mu}\right) G(i, f)= & -\delta(i, f)\{1-\gamma(i)\}-\mathcal{V}_{i} \cdot \mathcal{G}(i, f) \\
& -X(i, \overline{\mathbf{j}}) \cdot G(\overline{\mathbf{j}}, f)-Y(i, \overline{\mathbf{j}}) \cdot G(\overline{\mathbf{j}}, f),
\end{aligned}
$$

$$
\begin{aligned}
& X[i, j]=-t[i, j]\left(D\left[i^{+}\right]+D\left[j^{+}\right]\right)+\frac{1}{2} J[i, k]\left(D\left[i^{+}\right]+D\left[k^{+}\right]\right) \delta[i, j] \\
& Y[i, j]=-t[i, j](\mathbb{1}-\gamma[i]-\gamma[j])+\frac{1}{2} J[i, k](\mathbb{1}-\gamma[i]-\gamma[k]) \delta[i, j] .
\end{aligned}
$$

Bold indices are summed over
Local Greens function and ${ }^{(k)}$ stands for time reversal

$$
\gamma(i)=\mathcal{G}^{(k)}\left[i^{-}, i\right], \quad \mathcal{G}_{\sigma_{1} \sigma_{2}}^{(k)}=\sigma_{1} \sigma_{2} \mathcal{G}_{\bar{\sigma}_{2} \bar{\sigma}_{1}}
$$

$$
D=\xi^{*} \frac{\delta}{\delta \mathcal{V}^{*}}(* \text { represents spin indices })
$$

$$
G(a, b)=\mathbf{g}(a, \overline{\mathbf{b}}) \cdot \mu(\overline{\mathbf{b}}, b)
$$

The caparison function appears here.
Motivation is to get rid of a crucial non canonical term $\gamma(\mathrm{i})$.

Next we use the chain rule for functional derivatives

Using chain rule for functional derivatives get exact equation

$$
\left[\mathbf{g}_{0}^{-1}(i, \mathbf{j})-\mu \delta_{i \mathbf{j}}-t_{i \mathbf{j}}-\Phi(i, \mathbf{j})\right] \cdot \mathbf{g}(\mathbf{j}, \mathbf{k}) \cdot \mu(\mathbf{k}, \mathbf{f})=\delta(\mathbf{i}, \mathbf{f})(\mathbf{1}-\gamma(\mathbf{i}))+\mathbf{\Psi}(\mathbf{i}, \mathbf{f})
$$

Falls apart into two a pair of coupled exact equations with a canonical greens function if we write

$$
\begin{aligned}
& \mu(i, f)=\delta(i, f)(1-\gamma(i))+\Psi(i, f) \\
& {\left[\mathbf{g}_{0}^{-1}(i, \mathbf{j})-\mu \delta_{i \mathbf{j}}-t_{i \mathbf{j}}-\Phi(i, \mathbf{j})\right] \cdot \mathbf{g}(\mathbf{j}, f)=\delta(i, f)}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(i, m)=\mathbf{L}(i, \overline{\mathbf{i}}) \cdot \mathbf{g}^{-1}(\overline{\mathbf{i}}, m) \\
& \Psi(i, m)=-\mathbf{L}(i, \overline{\mathbf{i}}) \cdot \mu(\overline{\mathbf{i}}, m)
\end{aligned}
$$

$$
\mathbf{L}(i, f)=\left(t(i, \overline{\mathbf{j}}) \xi^{*} \cdot \mathbf{g}(\overline{\mathbf{j}}, f)-\frac{1}{2} J(i, \overline{\mathbf{j}}) \xi^{*} \cdot \mathbf{g}(i, f)\right)
$$

$$
\times\left(\frac{\delta}{\delta \mathcal{V}_{i}^{*}}+\frac{\delta}{\delta \mathcal{V}_{\stackrel{\mathbf{j}}{*}}^{*}}\right)
$$

Turning off the sources, we restore translation invariance and can take Ft's. Number sum rules are obvious- both G and g satisfy the same number sum rule.

$$
\begin{aligned}
& k \equiv\left(i \omega_{n}, \vec{k}\right) \\
& \mathbf{g}^{-1}(k)=i \omega_{n}+\mu-\frac{n}{2} \varepsilon_{k}-\Phi(k) \\
& \mu(k)=1-\frac{n}{2}+\Psi(k)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k} \mu(k) \mathbf{g}(k)=\frac{n}{2} \\
& \sum_{k} \mathbf{g}(k)=\frac{n}{2}
\end{aligned}
$$

Exact so far.

It is a formal solution and how do we make sense of it?
Can we devise an approximate solution, valid in some limit?

QDevise a small parameter λ between 0,1 related to particle density and also to double occupancy.

QAt $\lambda=0$, get the Fermi gas, and at $\lambda=1$ get the full t model.
QWe will require a good understanding of the shift invariance of the t model, this important invariance leads to a second chemical potential in the problem.

We could take the game one step
further and do a Perturbation theory in
small (fake) parameter $\lambda \quad \lambda \in[0,1]$

$$
\begin{aligned}
& X_{i}^{\sigma 0}(\lambda) \rightarrow C_{i \sigma}^{\dagger}\left(1-\lambda C_{i \bar{\sigma}}^{\dagger} C_{i \bar{\sigma}}\right) \\
& X_{i}^{0 \sigma}(\lambda) \rightarrow C_{i \sigma} \\
& X_{i}^{\sigma \sigma^{\prime}}(\lambda) \rightarrow C_{i \sigma}^{\dagger} C_{i \sigma^{\prime}} .
\end{aligned}
$$

Theory of λ Fermions Lot of promise- but in infancy. Hence will not purse in these lectures

Introducing $\boldsymbol{\lambda}$ expansion

Symbolic notation makes things simpler

Y represents the hopping matrix element broken into a static and dynamic parts.

$$
Y \rightarrow\left(-t+\frac{J}{2}\right)+Y_{1}
$$

$$
\begin{aligned}
& X=\left[-t+\frac{1}{2} J\right] D \\
& Y_{1}=-\left[-t+\frac{1}{2} J\right] \gamma \\
& \hat{G}_{0}^{-1}(\boldsymbol{\mu}) \equiv\left(\boldsymbol{\mu}-\partial_{\tau}-\mathcal{V}\right) \mathbb{1}-\left[-t+\frac{1}{2} J\right]
\end{aligned}
$$

Fermi gas (non interacting) Greens function

Symbolic EOM for $t \mathrm{I}$ model

$$
\mathcal{G}=\left(\hat{G}_{0}^{-1}(\boldsymbol{\mu})-\lambda Y_{1}-\lambda X\right)^{-1} \cdot(\mathbb{1}-\lambda \gamma) .
$$

Parameter $\boldsymbol{\lambda}$ introduced here
Set $\lambda=1$ at the end.
At $\lambda=0$ it reduces a Fermi gas and provides continuity between Fermi gas and t model. It plays the role of double occupancy- see this explicitly in atomic limit.

$$
G=\left(\hat{G}_{0}^{-1}-U G-U \frac{\partial}{\delta v}\right)^{-1} \cdot \mathbf{1}
$$

Inspiration comes from the symbolic EOM for Hubbard model (Canonical theory.
Notice how the Hubbard U enters this eqn.

Start from exact EOM

$\mathcal{G}=\left(\hat{G}_{0}^{-1}(\boldsymbol{\mu})-\lambda Y_{1}-\lambda X\right)^{-1} .(\mathbb{1}-\lambda \gamma)$

EOM continues to bifurcate exactly defining the auxiliary FL etc at a given λ. At $\lambda=0$ Fermi gas, while at $\lambda=I$ the exact t eqns.

$$
\begin{array}{cll}
\left(\hat{G}_{0}^{-1}-\lambda Y_{1}-\lambda \Phi\right) \cdot \mathbf{g}=\mathbf{1} & & \text { Auxiliary Fermi liquid } \\
\mu=(\mathbf{1}-\lambda \gamma)+\lambda \Psi & & \text { Caparison factor }
\end{array}
$$

9 We can set up Schwinger Dyson equations by taking successive functional derivatives.
Q Generates the analog of the skeleton graph expansion in powers of λ.

- We will take terms up to $O\left(\lambda^{2}\right)$ and study this
"second order theory".

Comment: With some caveats, it might be useful to think of a mapping

$$
\lambda \sim \frac{U}{U+z|t|}
$$

Hence low order theory in λ is expected to be a VERY GOOD start.
(since unlike U, the range of λ is $[0, I]$.)

QSince t is both the propagator and interaction term, we need a watchdog theorem to make sense.

OShifting the center of gravity of the band should not change the physics.
QExact Shift identities Simple but powerful. Analogs of pure Gauge transformations.

- Shift identities help us formulate a rigorous theory to each order in λ.

$$
\begin{aligned}
H & =-\sum_{i, j, \sigma} t_{i j} X_{i}^{\sigma 0} X_{j}^{0 \sigma}-\mu \sum_{i, \sigma} X_{i}^{\sigma \sigma}+\frac{1}{2} \sum_{i, j} J_{i j}\left\{\vec{S}_{i} \cdot \vec{S}_{j}-\frac{1}{4} n_{i} n_{j}\right\}, \\
& =-\sum_{i, j, \sigma} t_{i j} X_{i}^{\sigma 0} X_{j}^{0 \sigma}-\boldsymbol{\mu} \sum_{i, \sigma} X_{i}^{\sigma \sigma}+\frac{1}{4} \sum_{i j, \sigma} J_{i j}\left(X_{i}^{\sigma \bar{\sigma}} X_{j}^{\bar{\sigma} \sigma}-X_{i}^{\sigma \sigma} X_{j}^{\bar{\sigma} \bar{\sigma}}\right)
\end{aligned}
$$

> Shift invariance: Under the shifts
> $t_{i j} \rightarrow t_{i j}-u_{t} \delta_{i j}, \quad J_{i j} \rightarrow J_{i j}+u_{J} \delta_{i j}$

$$
H \rightarrow H+\left(u_{t}+\frac{1}{4} u_{J}\right) \hat{N}
$$

- Shift theorem-(I): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.
- Shift theorem-(II): The two shifts of t and J cancel each other when $u_{J}=-4 \times u_{t}$.

QThe auxiliary Fermi problem leading to $g(k)$ is canonical in all respects.
Qlt has a Hamiltonian with canonical electrons, and one can use the Feynman series to each order in λ.
QThe procedure outlined here "stitches" together this Feynman theory with the caparison factor to give the exact physical Greens function.
QExact shift identities help us formulate a rigorous theory to each order in λ.

$$
\begin{aligned}
H_{e f f}= & -\sum_{i j} t_{i j} f_{i \sigma}^{\dagger} f_{j \sigma}+\sum_{i}\left(\frac{1}{4} J_{0}-\mu\right) f_{i \sigma}^{\dagger} f_{i \sigma}+V_{e f f} \\
V_{e f f}= & \lambda \frac{1}{4} \sum_{i j} t_{i j}\left(\sigma_{1} \sigma_{2}\right)\left[\left(f_{i \sigma_{1}}^{\dagger} f_{i \bar{\sigma}_{1}}^{\dagger}+f_{j \sigma_{1}}^{\dagger} f_{j \bar{\sigma}_{1}}^{\dagger}\right) f_{i \bar{\sigma}_{2}} f_{j \sigma_{2}}+(h . c .)\right]-\frac{1}{4} \sum_{i j} J_{i j}\left(\sigma_{1} \sigma_{2}\right) f_{i \sigma_{1}}^{\dagger} f_{j \bar{\sigma}_{1}}^{\dagger} f_{j \bar{\sigma}_{2}} f_{i \sigma_{2}} \\
& +\frac{1}{4} \sum_{i} u_{0}\left(\sigma_{1} \sigma_{2}\right) f_{i \sigma_{1}}^{\dagger} f_{i \bar{\sigma}_{1}}^{\dagger} f_{i \bar{\sigma}_{2}} f_{i \sigma_{2}}
\end{aligned}
$$

SUMMARY OF THE $O\left(\lambda^{2}\right)$ THEORY

$$
\begin{gathered}
\mathcal{G}(k)=\mathbf{g}(k) \mu(k)=\frac{\mu(k)}{i \omega_{n}+\boldsymbol{\mu}-\bar{\varepsilon}_{k}-\bar{\Phi}(k)} . \\
\mu(k)=1-\gamma+\lambda \Psi(k) \\
\frac{n}{2}=\sum_{k} \mathcal{G}(k) e^{i \omega_{n} 0^{+}}, \quad \frac{n}{2}=\sum_{k} \mathbf{g}(k) e^{i \omega_{n} 0^{+}}
\end{gathered}
$$

$$
\begin{aligned}
\mu(k)= & 1-\lambda \frac{n}{2}+\lambda^{2} \frac{n^{2}}{4}+\lambda^{2} \Psi(k), \quad \text { where }(k) \equiv\left(\vec{k}, i \omega_{k}\right), \\
\Psi(k)= & -\sum_{p, q}\left(\varepsilon_{p}+\varepsilon_{k+q-p}+\varepsilon_{k}+\varepsilon_{q}+J_{k-p}-u_{0}\right) \mathbf{g}(p) \mathbf{g}(q) \mathbf{g}(q+k-p) \\
\mathbf{g}^{-1}(k)= & i \omega_{n}+\boldsymbol{\mu}-\bar{\varepsilon}_{k}-\lambda^{2} \bar{\Phi}(k) \\
\bar{\varepsilon}_{k}= & \left(1-\lambda n+\lambda^{2} \frac{3 n^{2}}{8}\right) \varepsilon_{k}+\lambda \sum_{q} \frac{1}{2} J_{k-q} \mathbf{g}(q) \\
\bar{\Phi}(k)= & -\sum_{q, p} \mathbf{g}(q) \mathbf{g}(p) \mathbf{g}(k+q-p) \\
& \times\left(\varepsilon_{k}+\varepsilon_{p}+\varepsilon_{q}+\varepsilon_{k+q-p}+J_{k-p}-u_{0}\right)\left\{\varepsilon_{k}+\varepsilon_{p}+\varepsilon_{q}+\varepsilon_{k+q-p}+\frac{1}{2}\left(J_{k-p}+J_{p-q}\right)-u_{0}\right\} .
\end{aligned}
$$

9Domain of validity of second order theory $n<.7$
(from the high frequency sum rule).
9Can be pushed to higher densities by going to higher order in lambda
9Already leads to interesting answers at the second order.
QLeads to insight about Fermi liquid behaviour of the two self energies $\sim g g g$. This is as in 2nd order perturbation of Fermi liquids.

