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FIG. 5: Left, the collinear spin density around Co atoms in orthorhombic Pr0.5Ca0.5CoO3 with O (blue), Ca

(light blue) and Pr (grey). Middle, the energies of the Pr 4f states with spin-orbit coupling: no EC order

(black), the order parameter transforms according to A′′ representation (red), the order parameter with A′

contribution (green). The inset shows the exchange splitting of the 4f levels when spin-orbit coupling is

not included. Right, a cartoon picture of the orbital pseudo-vectors on the symmetry related Co atoms

transforming according to A′ and A′′ representations.

c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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Fig. 4. The inverse of the magnetic susceptibility as a function
of the temperature for (Pr1−yYy)0.7Ca0.3CoO3 (y = 0.0−0.15)
and Pr0.5Ca0.5CoO3.

Fig. 5. Magnetization loops measured at 2 K for
(Pr1−yYy)0.7Ca0.3CoO3 (y = 0.0−0.15) and Pr0.5Ca0.5CoO3.

behaviour with temperature independent parameters.
This fact corroborates the hypothesis that Co ions
gradually, i.e. starting at temperatures well above the
TMI, change their spin state from the high-temperature
alloy with main weight of IS states towards the “novel”
ground-state based on mixture of low-spin (LS) species
(LS Co3+ is diamagnetic while LS Co4+ has spin 1/2
yielding µ2

eff ∼ 3 µ2
B), which is finally stabilized below

TMI [8].
To shed more light on the magnetic background of

the in principle “utmost” non-magnetic ground-state, we
present in Figure 5 the magnetization loops measured at
2 K. The metallic counterpart Pr0.7Ca0.3CoO3 with FM-
like transition at TC ∼ 55 K exhibits nearly rectangular
hysteresis with large coercivity. For Pr0.5Ca0.5CoO3, the
hysteresis is preserved though in smaller extent, whereas
the magnetization curves for (Pr1−yYy)0.7Ca0.3CoO3

are of Brillouin type without perceptible coercivity
and remanence. In addition to observed ferro- and/or
Brillouin-like magnetism the superposed paraprocess of
significant magnitude is observed in all samples. This low-
temperature feature is associated with Van Vleck sus-
ceptibility of Pr3+ ions in the nonmagnetic ground sin-

glet due to crystal field effects. Our experimentally esti-
mated value χVV ∼ 0.03−0.06 emu mol−1 Oe−1 per Pr3+
matches the absolute value determined by Kńıžek et al. for
Pr0.3CoO2 [16]. Turning back to the open hysteresis loop
of the Pr0.5Ca0.5CoO3, we note that its occurrence can
be related to the fact that due to some composition inho-
mogeneity and/or oxygen nonstoichiometry in the sample,
not all Co species are transformed into the low spin state.
A minor phase of supposedly FM character is thus de-
veloped below 70 K and interacts with the major glassy
FM phase (Tf ∼ 6.5 K) [17]. This complication is absent
in (Pr1−yYy)0.7Ca0.3CoO3 samples and, in our opinion,
the observed Brillouin-like magnetism cannot be explained
without considering a contribution of magnetic Pr4+ ions.
More detailed analysis exceeds, however, the scope of the
presented work and will be published later.

The thermodynamics of the Pr0.5Ca0.5CoO3 and
(Pr1−yYy)0.7Ca0.3CoO3 systems has been investigated
using the specific heat measurements from room
temperature down to 0.4 K (see Fig. 1). Important in-
formation on the nature of the low-temperature insu-
lating phase is, nonetheless, contained in the temper-
ature range 0.4−10 K. As we demonstrated previously
for the (Pr1−yYy)0.7Ca0.3CoO3 sample with y = 0.15,
the low-temperature specific heat of insulating Pr-based
cobaltites, contrary to their metallic counterparts, is ac-
companied by Schottky peaks which we associate with the
ground doublet of Kramers ion Pr4+, split by the internal
magnetic field existing in the samples [8]. The existence
of internal magnetic field acting on Pr sites is, however,
somewhat contradicted by apparent absence of long-range
magnetic order of the Co and/or Pr sublattice, according
to our neutron diffraction patterns taken on the y = 0.15
compound down to 0.2 K. Also for Pr0.5Ca0.5CoO3 no ob-
servable long-range order has been detected in the study
of Barón-González et al. [18], though the magnetization
curve in present Figure 4 suggests an existence of satu-
rated moment of about 0.3µB per f.u., which is above the
resolution limit of powder neutron diffraction. We consider
this point as highly interesting and controversial and, con-
sequently, we intend to analyze it in a separate paper.

The low temperature specific heat for Pr0.5Ca0.5CoO3

(TMI = 76 K) and Pr0.63Y0.07Ca0.3CoO3 (the y =
0.10 sample, TMI = 93 K), measured at various magnetic
fields, is shown in Figure 6. To separate the Pr4+ related
Schottky peaks, a background line is modeled using com-
mon contributions of specific heat, the hyperfine nuclear
Chyp

p ∼ αT−2, lattice Clatt
p ∼ βT 3 and linear “glassy”

Cglass
p ∼ γT terms, and includes, as well a Schottky-like

contribution due to thermal excitation of Pr3+ ions from
the ground singlet to excited one at ∆E = 6 meV [19].
This latter contribution becomes important for T > 15 K
and peaks at about 30 K. The values actually used are
α ∼ 0.060 J mol−1 K, β ∼ 0.000130 J mol−1 K−4,
γ ∼ 0.050 J mol−1 K−2 for Pr0.5Ca0.5CoO3 and α ∼
0.028 J mol−1 K, β ∼ 0.000175 J mol−1 K−4, γ ∼
0.028 J mol−1 K−2 for Pr0.63Y0.07Ca0.3CoO3. The hyper-
fine nuclear contribution, emphasized in Figure 6 by use
of log-log scale, is especially large for Pr0.5Ca0.5CoO3. It

spin susceptibility
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Fig. 1. Temperature dependence of the specific heat
of (Pr1−yYy)0.7Ca0.3CoO3 (y = 0.0625−0.15) and
Pr0.5Ca0.5CoO3. The critical temperatures of M-I transi-
tions are marked.

Fig. 2. The temperature dependence of electrical resis-
tivity of (Pr1−yYy)0.7Ca0.3CoO3 (y = 0.0625−0.15) and
Pr0.5Ca0.5CoO3, plotted in log-log scale. The data for
Pr0.7Ca0.3CoO3 with ferromagnetic metallic ground state are
added for comparison.

with y = 0.0625−0.15. The electrical resistivity of the
studied samples is presented in Figure 2 together with the
data for ferromagnetic “metallic” Pr0.7Ca0.3CoO3 sam-
ple. Although the character of conduction can be some-
what “masked” by the polycrystalline form of samples,
we clearly identify two distinct behaviors: (i) the real
macroscopically “insulating” state with steeply increas-
ing resistivity at low temperatures, represented by the
(Pr1−yYy)0.7Ca0.3CoO3 sample y = 0.15 and (ii) the
behavior typical for “bad” or “highly disordered” met-
als characterized by slowly increasing but finite resis-
tivity at low temperatures, which is represented by the
Pr0.7Ca0.3CoO3 compound. Most interestingly, similar fi-
nite resistivity is also observed in the low-temperature
“insulating” state of prototypical Pr0.5Ca0.5CoO3. The
corresponding ground state of the Pr0.5Ca0.5CoO3 sam-
ple is thus quite complex, likely linked to the first order
transition associated with magnetic disorder and strong
electronic correlations [14]. Let us note that our sample

Fig. 3. The thermoelectric power of (Pr1−yYy)0.7Ca0.3CoO3

(y = 0.0−0.15) and Pr0.5Ca0.5CoO3. The transition is evi-
dent from the increase below the TMI, the data for cobaltites
Pr1−xCaxCoO3 of lower hole doping are given for comparison.

and the original one of Tsubouchi et al. [1], exhibit
both a thermal hysteresis at M-I transition. For the
(Pr1−yYy)0.7Ca0.3CoO3 samples, however, the transition
shows itself as non-hysteretic within the experimental un-
certainty, as documented simultaneously by the thermo-
electric power data in Figure 3. Here, the sharp jump
of thermopower coefficient below the TMI indicates that
the charge carrier concentration is decreased and their
itinerancy is strongly inhibited in the low-temperature
phase. In contrast to the 30% doping of holes in the Co
subsystem at 300 K, the final level can be estimated to
hole concentration between 10−20% based on a compar-
ison of the low-temperature thermopower with data on
the Pr0.9Ca0.1CoO3 and Pr0.8Ca0.2CoO3 compounds, in-
cluded also in Figure 3.

It is worth mentioning to the Pr0.5Ca0.5CoO3 samples
and their highly hysteretic transition that the electrical
resistivity after a cooling run never recovers the anterior
value, and further cycling over the transition gradually
increases its absolute value. This fact can be explained
supposing that this 1st order transition is accompanied
by high elastic constraints of the crystal lattice, which are
at the origin of the gradual deterioration of the ceramic
sample when cycling over the transition.

The magnetic data of Pr0.5Ca0.5CoO3 and
(Pr1−yYy)0.7Ca0.3CoO3 samples are confronted in
Figures 4 and 5. The magnetic susceptibility, plotted
as 1/χ vs. temperature in Figure 4 jumps markedly at
TMI. At high temperatures, after the subtraction of the
paramagnetic contribution of the Pr3+ ions, the simple
analysis enables us to estimate the effective moment of Co
species to µ2

eff ∼ 10µ2
B. This value matches the theoretical

value for intermediate-spin (IS) Co3+/Co4+ mixture –
see also similar results obtained for the La1−xSrxCoO3

samples in the range 300−600 K by Wu and Leighton [15].
With decreasing temperature, the inverse susceptibility
associated with the cobalt subsystem does not decrease
linearly, and thus does not follow the Curie-Weiss

transport
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Fig. 6. The low-temperature specific heat of Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 measured in fields 0–9 T and plot-
ted in log-log scale. In order to separate the Pr4+ related
Schottky peaks, the background contribution comprising com-
mon terms is marked by full line (see the text).

is characterized by coefficient α ∼ 0.060 Jmol−1 K, which
is apparently field independent and surpassing by more
then one order the nuclear specific heat originating from
the spin I = 7/2 multiplet of 59Co nuclei in the ferromag-
netic cobaltites [20]. The origin of such anomalously large
value may be associated to the contribution of 141Pr nuclei
with spin I = 5/2 in the hyperfine field of Pr4+ electronic
pseudospins [8].

After subtraction of the background, the Pr4+ con-
tribution for Pr0.5Ca0.5CoO3 and Pr0.63Y0.07Ca0.3CoO3

samples is plotted as Cp/T vs. T in Figure 7. The anal-
ysis is made supposing anisotropic g-factor of axial sym-
metry, so that it is described by two components g∥ and
g⊥ only. This model leads to a modified Schottky form,
where the energy splitting ∆E for a particular direction
is given by the angle θ corresponding to the deviation from
the direction of the magnetic field. The partial contribu-
tion to the overall Schottky-like anomaly is calculated as
[(∆E∥cosθ)2 + (∆E⊥ sin θ)2]1/2 and the contribution to
specific heat is weighted by sin θ, which corresponds to
the random orientation of crystallites in the sample. The
fit for Pr0.5Ca0.5CoO3, represented by solid lines in up-
per panel of Figure 7, gives the g factors for Pr4+ species
as g⊥ ∼= 1.4 and g∥ ∼= 4.0, respectively. Furthermore the
magnetic field dependence of the characteristic energies
∆E⊥(∆E∥) = f(B) in Figure 8 enables us to determine
the molecular field experienced by rare earth moments
as the intercept with B axis to Bmol(Pr4+) ∼ 7.5 T.

Fig. 7. The Schottky Pr4+ contribution for Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 plotted as Cp/T vs. T together with
the fit based on anisotropic g-factor as described in the text
(solid lines).

Fig. 8. Zeeman splitting (∆E∥ and ∆E⊥) of the Pr4+

ground doublet for Pr0.5Ca0.5CoO3 (open symbols) and
Pr0.63Y0.07Ca0.3CoO3 (full symbols), determined from the fit
of Schottky peaks in Figure 7.

For Pr0.63Y0.07Ca0.3CoO3, somewhat larger g⊥ ∼= 1.65
and g∥ ∼= 4.7 are obtained, but the molecular field is
smaller, Bmol(Pr4+) ∼ 2.5 T. The most important result
of this analysis is, however, offered by the integration of
the Schottky specific heat as:

∆ΣSchottky =
∫

CSchottky
p /TdT,
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Fig. 11. The temperature dependence of the average valence
of Pr ions in the samples with occurrence of M-I transition.
The uncertainty of the estimated valence values is ±0.03, re-
sulting from the arbitrariness of parameters in the arctan-
gent background and three Lorentzian peaks, which fit the
Pr-L3-edge XANES spectra. For more details see the text and
reference [12].

The low temperature chemical formula de-
rived from the XANES result on average Pr3.40+

valence, Pr3+0.30Pr4+0.20Ca2+
0.5Co3+

0.70Co4+
0.30O3, is in rea-

sonable agreement with the above-mentioned formula
Pr3+0.24Pr4+0.26Ca2+

0.5Co3+
0.76Co4+

0.24O3, based on Pr3.52+ va-
lence as derived from Schottky analysis. Taking a mean
between the two valence values, Pr3.46+, and supposing
the charge neutrality and full oxygen stoichiometry, we
may estimate that the formal cobalt valence changes from
Co3.50+ to Co3.27+(±0.03) below the TMI transition. This
result presumes the electron transfer of ∼0.23e between
Pr and Co in case of Pr0.5Ca0.5CoO3, which is still larger
than the electron transfer of ∼0.10 and 0.17e observed
for (Pr1−yYy)0.7Ca0.3CoO3 systems with y = 0.075 and
0.15, respectively.

The spin-state change that occurs concomitantly with
the M-I transition has been investigated using XANES
at Co-K-edge. The spectra seen in Figure 12 refer to the
Pr0.63Y0.07Ca0.3CoO3 (or y = 0.10) sample, where the
electron transfer of ∼0.13e between Pr and Co is deter-
mined based on the Schottky peak analysis. Two dom-
inant features can be noticed in the XANES region –
the main absorption peak at 7726 eV due to the dipole
1s → 4p transitions, and the pre-edge peak centered
around 7710 eV that reflects the quadrupole 1s → 3d
or nonlocal dipole transitions. As evidenced in Figure 12,
the main absorption peak does not show any detectable
shift with decreasing temperature. This is quite surprising
considering the significant population of Pr4+ ions below
the TMI that should be compensated by an appropriate
decrease of Co valence. A plausible explanation why the
change of Co valence is not directly reflected by the chem-
ical shift of the main peak could be found in an inter-
play of competing effects between: (i) the chemical shift,
which may make about 0.4 eV to low energy side in the
case of Co valence change 3.3+ to 3.13+ encountered in
Pr0.63Y0.07Ca0.3CoO3, and (ii) the lowering of spin state,

Fig. 12. The temperature dependence of the nor-
malized XANES spectra at the Co-K-edge for the
Pr0.63Y0.07Ca0.3CoO3 sample. The inset shows the mag-
nification of the pre-edge peak including the data after
subtraction of arctangent background (full lines). The arrows
indicate the most marked changes of spectral weight between
300 and 8 K.

which increases the main edge energy for the same va-
lence of Co. The impact of the spin state is difficult to
estimate quantitatively, but very roughly, based on the
paper of Vankó et al. [21] on LaCoO3 the shift from LS to
HS leads to increase of the main edge energy of ∼0.5 eV.

The pre-edge peak, shown in more detail in the inset of
Figure 12, exhibits also little change with decreasing tem-
perature. Compared to the spectra of LnCoO3, that allow
a decomposition into two components and the tempera-
ture induced spin states can be readily probed [21–23], the
pre-edge peak in mixed-valent cobaltites is much broader
and rather featureless. The same vague shape applies also
for the pre-edge peak of present Pr0.63Y0.07Ca0.3CoO3

sample. The close inspection of the pre-edge feature after
the subtraction of the background (shown by the dashed
line) reveals, nevertheless, a small transfer of the spectral
weight from the low to high-energy side at low tempera-
tures, as expected for the transition to lower spin states.
The surplus of spectral weight seems to be less diffusive,
forming a rather separated bump at 7711.5 eV. We re-
late this feature to a stabilization of well-localized LS
Co3+ states in the Pr0.63Y0.07Ca0.3CoO3 sample below
TMI. Let us note that practically identical evolution of the
Co-K-edge pre-edge peak was presented most recently for
Pr0.5Ca0.5CoO3 by Herrero-Martin et al. [11].

4 Conclusions

Magnetic, electric, thermal and X-ray absorption
spectroscopy data have been accumulated for the
Pr0.5Ca0.5CoO3 and (Pr1−yYy)0.7Ca0.3CoO3 (y =
0.0625− 0.15) perovskites, which exhibit the unusual M-I
transition at 76 K and between 40−132 K, respectively.
The study provides conclusive arguments that the
transition is accompanied with large electron transfer
from the Pr3+ ions to the CoO3 subsystem on cooling
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FIG. 2: (color online) The typical q-dependence of the lead-
ing eigenvalues of the susceptibility matrix: spin longitudinal
(red), OD (green) and OO (blue) in a system with a large
band asymmetry ζ = 0.22, ∆ = 3.40 at temperatures 773 K,
644 K and 580 K (left to right).

briefly discuss the classical limit, which provides the sim-
ple understanding of the HS-LS phase, and then focus on
various aspects of the excitonic phase. In Section V we
summarize our main findings.

II. COMPUTATIONAL PROCEDURE

We consider the two-band Hubbard mode with nearest-
neighbor (nn) hopping on a bipartite (square) lattice with
the kinetic Ht and the interaction Hint = Hdd

int + H ′
int

terms given by
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∆
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i↑a

†
i↓bi↓bi↑ + c.c.

)

.

(1)

Here a†
iσ , b†iσ are the creation operators of fermions with

spin σ =↑, ↓ and nc
iσ = c†iσciσ. Symbol

∑

i,j implies
summation over ordered nn pairs, while

∑

⟨ij⟩ implies
summation over nn bonds (pairs without order). The
model is studied at half filling, two electrons per site on
average. The crystal field ∆ and the Hund’s exchange
J are chosen so that the system is in the vicinity of the
LS-HS transition.

The numerical calculations were performed in the dy-
namical mean-field approximation24,25 with the density-
density interaction Hdd

int only. The effect of adding H ′
int
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FIG. 3: (color online) Left: Leading eigenvalues for equal
bandwidths (ζ = 1) and ∆ = 3.40 eV at 1160 K. The blue
OO mode diverges faster than the green OD mode. Right:
Splitting of the OO mode from (b) due to added cross-hopping
V1,2 = 0.1 eV . The leading mode (two-fold degenerate) has
the form a†

σb−σ + b†σa−σ with σ =↑, ↓.

is considered in Section IV. We use the hybridization
expansion continuous time quantum Monte Carlo (CT-
HYB)26,27 to solve the auxiliary impurity problem and
obtain the local one-particle (1P) and two-particle (2P)
propagators. For selected parameters we have bench-
marked the CT-HYB results against those obtained with
the Hirsch-Fye implementation of the present proce-
dure11.

In order to study phase transitions, we search numer-
ically for divergent static particle-hole susceptibilities in
the disordered high temperature phase. The lattice sus-
ceptibility χαβ,γδ(T,q) is a q-dependent matrix function
indexed by pairs of spin-orbital indices. It is calculated
from the Bethe-Salpeter equation as a function of the full
1P propagator and the 2P-irreducible vertex. The cru-
cial DMFT simplification consists in the fact that the 2P
irreducible vertex is k-independent and equals the impu-
rity 2P irreducible vertex24. Therefore the momentum
dependence of χ(T,q) comes entirely from the 1P prop-
agator.

We calculate χ(T,q) on dense q-mesh in the Brillouin
zone, diagonalize for every q, and identify the largest
eigenvalues with the corresponding eigenvectors. The
transition temperature is obtained from the zero cross-
ing χ−1

λ (Tc) = 0 of the inverse of the largest eigenvalue
χ−1

λ (T,q) = 0. The advantage of this approach is that
no prior assumptions about the symmetry of the ordered
phase is needed.

III. NUMERICAL RESULTS

Following Ref. 11, we set U=4, J=1 and use eV as
energy units to allow for a straightforward comparison.
The basic phase diagram of model (1) at half filling was
computed by Werner and Millis9 and its cartoon version
is presented in Fig. 1. We are interested in a small region

 Hubbard model 
 Two-band Hubbard model at n=2 (half filling)

Dynamical mean-field theory
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the disordered high temperature phase. The lattice sus-
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indexed by pairs of spin-orbital indices. It is calculated
from the Bethe-Salpeter equation as a function of the full
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irreducible vertex is k-independent and equals the impu-
rity 2P irreducible vertex24. Therefore the momentum
dependence of χ(T,q) comes entirely from the 1P prop-
agator.
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FIG. 3: Left, the evolution of the one-particle spectral function corresponding to a and b orbitals with tem-

perature between 1160 K (bottom) and 290 K (top). Right, the optical conductivity in the same temperature

range. In the normal phase (red) the height of the Drude peak increases with decreasing temperature. Low-

ering the temperature below Tc (blue) leads to suppression of the Drude peak and transfer of the spectral

weight to higher energy. The inset shows the evolution of the dc resistivity.

captures the features (i)-(iii) observed in PCCO.

Next, we address the Pr3+ →Pr4+ valence transition and the fact that experimental transition

is observed in a doped system. An isostructural valence transition points to a near degeneracy

of the two charge states of the Pr 4f shell, which therefore acts as a charge reservoir keeping the

CoO3 subsystem at a fixed chemical potential rather than fixed particle density. Therefore we

have repeated the calculations at fixed chemical potential. In Fig. 2 we show the temperature

dependences of the order parameter |φ| and the particle density n, which reflects the average Pr

valence in the real material. Doping the system away from half filling leads to reduction of Tc.

While n(T ) is almost constant above Tc, below Tc the system draws particles from the reservoir to

approach the half filling in a process controlled by gain in the condensation energy and the energy

cost of adding electrons. This agrees well with the experimental behavior of the Pr valence6. Both

in experiment and in the model the average Pr valence changes rapidly, but continuously around Tc.

While theoretical n(T ) starts growing precisely at Tc its experimental counterpart varies already

6

Co
ol

in
g

0 500 1000
Temperature (K)

0

0.2

0.4

 φ

0

0.2

0.4

 φ

0 500 1000
Temperature (K)

a

b

1.9

1.95

2

n 
(e

le
ct

ro
ns

 p
er

 a
to

m
)

FIG. 2: (a) The order parameter φ = ⟨a†↑b↓ + a†↓b↑⟩ as a function of temperature for stoichiometric filling

n = 2 (black) and at fixed chemical potential corresponding to hole doping between 0.03 and 0.12 (red to

violet) in the normal phase. (b) Number of electrons per atom at fixed chemical potential across Tc (the

same color coding as in (a)). (c) Top, the magnetic susceptibility χ as a function of temperature at the

stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.

1), which leads to opening of a gap in the one-particle spectral density, as shown in Fig. 3. Opening

of a gap naturally affects the optical conductivity shown in Fig. 3. Below Tc, the Drude peak is

rapidly destroyed, as the spectral weight is pushed to higher frequencies, and the dc resistivity

grows exponentially. The spin susceptibility χS(T ), Fig. 2, changes from the Curie-Weiss behavior

above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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same color coding as in (a)). (c) Top, the magnetic susceptibility χ as a function of temperature at the
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Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal
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n = 2 (black) and at fixed chemical potential corresponding to hole doping between 0.03 and 0.12 (red to
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stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.
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FIG. 3: Left, the evolution of the one-particle spectral function corresponding to a and b orbitals with tem-

perature between 1160 K (bottom) and 290 K (top). Right, the optical conductivity in the same temperature

range. In the normal phase (red) the height of the Drude peak increases with decreasing temperature. Low-

ering the temperature below Tc (blue) leads to suppression of the Drude peak and transfer of the spectral

weight to higher energy. The inset shows the evolution of the dc resistivity.

captures the features (i)-(iii) observed in PCCO.

Next, we address the Pr3+ →Pr4+ valence transition and the fact that experimental transition

is observed in a doped system. An isostructural valence transition points to a near degeneracy

of the two charge states of the Pr 4f shell, which therefore acts as a charge reservoir keeping the

CoO3 subsystem at a fixed chemical potential rather than fixed particle density. Therefore we

have repeated the calculations at fixed chemical potential. In Fig. 2 we show the temperature

dependences of the order parameter |φ| and the particle density n, which reflects the average Pr

valence in the real material. Doping the system away from half filling leads to reduction of Tc.

While n(T ) is almost constant above Tc, below Tc the system draws particles from the reservoir to

approach the half filling in a process controlled by gain in the condensation energy and the energy

cost of adding electrons. This agrees well with the experimental behavior of the Pr valence6. Both

in experiment and in the model the average Pr valence changes rapidly, but continuously around Tc.

While theoretical n(T ) starts growing precisely at Tc its experimental counterpart varies already
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FIG. 2: (a) The order parameter φ = ⟨a†↑b↓ + a†↓b↑⟩ as a function of temperature for stoichiometric filling

n = 2 (black) and at fixed chemical potential corresponding to hole doping between 0.03 and 0.12 (red to

violet) in the normal phase. (b) Number of electrons per atom at fixed chemical potential across Tc (the

same color coding as in (a)). (c) Top, the magnetic susceptibility χ as a function of temperature at the

stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.

1), which leads to opening of a gap in the one-particle spectral density, as shown in Fig. 3. Opening

of a gap naturally affects the optical conductivity shown in Fig. 3. Below Tc, the Drude peak is

rapidly destroyed, as the spectral weight is pushed to higher frequencies, and the dc resistivity

grows exponentially. The spin susceptibility χS(T ), Fig. 2, changes from the Curie-Weiss behavior

above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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same color coding as in (a)). (c) Top, the magnetic susceptibility χ as a function of temperature at the

stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.
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of a gap naturally affects the optical conductivity shown in Fig. 3. Below Tc, the Drude peak is

rapidly destroyed, as the spectral weight is pushed to higher frequencies, and the dc resistivity

grows exponentially. The spin susceptibility χS(T ), Fig. 2, changes from the Curie-Weiss behavior

above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.
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vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation

5

0

0.2

0.4

 φ

0 500 1000
Temperature (K)

a

b

1.9

1.95

2

n 
(e

le
ct

ro
ns

 p
er

 a
to

m
)

FIG. 2: (a) The order parameter φ = ⟨a†↑b↓ + a†↓b↑⟩ as a function of temperature for stoichiometric filling
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stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars
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without cross-hopping reproduced from Ref. 18. The lines
lin. resp. ... Model with even (a) and odd (c) cross-hopping
V = 0.05. (d) Spin texture in the SCDW’ phase.

and compare them to the V
1,2

= 0 phase diagram from
Ref. 18. Characteristics for the di↵erent phases are sum-
marised in Table I. We start from the V = 0 phase dia-
gram18 in Fig. 2a. The V

1,2

= 0 phase diagram contains
three distinct ordered states: polar exciton condensate
(PEC) and ferromagnetic exciton condensates (FMEC,
FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
1

V
2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
double exchange mechanism, recently used by Chaloupka
and Khaliullin to study ruthenates.19 Analogous to the
well-known Zener double exchange20 in manganites, the

TABLE I: The characteristics of di↵erent condensate phases:
M? and Mk is magnetic moment per atom perpendicular and
parallel to the order parameter �, respectively; m(r) magne-
tization in direct space, mk magnetization is reciprocal space.
Mk in FMEC state is finite for even and zero for odd cross-
hopping.

Condensate state M? Mk m(r) mk Re� Im�
FMEC 3 3, 0 3 3 3 3
SDW 0 0 3 0 3 0
SCDW 0 0 0 0 0 3
SDW’ 0 3 3 3 3 0
SCDW’ 0 0 0 3 0 3

exciton condensate acts as a filter for propagation of
doped carriers. The stable phase is determined by the
competition between the kinetic energy of doped carriers
and the energy di↵erence between possible condensates.
In the strong coupling limit, propagation of a single

electron through the condensate with order parameter �
is described by an e↵ective Hamiltonian (see SM for the
derivation)
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the �-quadratic term in (2) is present, which describes the
interaction of the electron spin with the uniform magnetic
polarisation of the condensate M

C

= �i (�⇤ ^ �) /s2.
The analogy to double-exchange in manganites is quite
straightforward. At low doping the anti-ferromagnetic
interactions between the HS states dominates, rendering
the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
FMEC state.
With finite cross-hopping a �-linear term appears in

(2) that dominates over the �-quadratic term close to the
normal-phase boundary. Indeed, the normal to FMEC
transition disappears except for an isolated point. In the
low doping SDW and SCDW phases V
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and V
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contributions in (2) cancel out. The
c-fermions in (2) thus propagate as free particles with
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. As for V
1,2

= 0 case, there is
a critical doping at which the system lowers its energy
by polarizing the doped carriers along with changing the
type of the condensate from CSDW to SDW’ for even
and from SDW to CSWD’ for odd cross-hopping. At
higher temperatures the transition proceeds via the inter-
mediate FMEC phase while at low temperatures charge
separation leads to a first-order transition. The oder pa-
rameter � in the primed phases has the same properties
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V = 0.05. (d) Spin texture in the SCDW’ phase.
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FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
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The analogy to double-exchange in manganites is quite
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the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
FMEC state.
With finite cross-hopping a �-linear term appears in
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FIG. 2: (a)-(c) Phase digrams in the doping-temperature
plane. Full lines mark continuous transitions, dotted lines
mark the boundaries of phase coexistence regions. (b) Model
without cross-hopping reproduced from Ref. 18. The lines
lin. resp. ... Model with even (a) and odd (c) cross-hopping
V = 0.05. (d) Spin texture in the SCDW’ phase.

and compare them to the V
1,2

= 0 phase diagram from
Ref. 18. Characteristics for the di↵erent phases are sum-
marised in Table I. We start from the V = 0 phase dia-
gram18 in Fig. 2a. The V

1,2

= 0 phase diagram contains
three distinct ordered states: polar exciton condensate
(PEC) and ferromagnetic exciton condensates (FMEC,
FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
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2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
double exchange mechanism, recently used by Chaloupka
and Khaliullin to study ruthenates.19 Analogous to the
well-known Zener double exchange20 in manganites, the
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M? and Mk is magnetic moment per atom perpendicular and
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tization in direct space, mk magnetization is reciprocal space.
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Ī � it
a

4s2
(�⇤ ^ �) · �̄ +

1

2
(V

1

�+ V
2

�⇤) · �̄,

(2)

and t
s

= �t
b

s2 � t
a

�
1� s2

�
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the HS-HS exchange energy and the systems adopts the
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(2) that dominates over the �-quadratic term close to the
normal-phase boundary. Indeed, the normal to FMEC
transition disappears except for an isolated point. In the
low doping SDW and SCDW phases V

1

� + V
2

�⇤ = 0,
as the V

1

and V
2

contributions in (2) cancel out. The
c-fermions in (2) thus propagate as free particles with
renormalised hopping t

s

. As for V
1,2

= 0 case, there is
a critical doping at which the system lowers its energy
by polarizing the doped carriers along with changing the
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and from SDW to CSWD’ for odd cross-hopping. At
higher temperatures the transition proceeds via the inter-
mediate FMEC phase while at low temperatures charge
separation leads to a first-order transition. The oder pa-
rameter � in the primed phases has the same properties
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. Here, Ī and �̄ are the

unit and Pauli matrices, respectively, and s2 is the LS
fraction in the condensate. Without cross-hopping, only
the �-quadratic term in (2) is present, which describes the
interaction of the electron spin with the uniform magnetic
polarisation of the condensate M

C

= �i (�⇤ ^ �) /s2.
The analogy to double-exchange in manganites is quite
straightforward. At low doping the anti-ferromagnetic
interactions between the HS states dominates, rendering
the system PEC with spin-independent hopping in (2).
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FIG. 2: (a)-(c) Phase digrams in the doping-temperature
plane. Full lines mark continuous transitions, dotted lines
mark the boundaries of phase coexistence regions. (b) Model
without cross-hopping reproduced from Ref. 18. The lines
lin. resp. ... Model with even (a) and odd (c) cross-hopping
V = 0.05. (d) Spin texture in the SCDW’ phase.

and compare them to the V
1,2

= 0 phase diagram from
Ref. 18. Characteristics for the di↵erent phases are sum-
marised in Table I. We start from the V = 0 phase dia-
gram18 in Fig. 2a. The V

1,2

= 0 phase diagram contains
three distinct ordered states: polar exciton condensate
(PEC) and ferromagnetic exciton condensates (FMEC,
FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
1

V
2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
double exchange mechanism, recently used by Chaloupka
and Khaliullin to study ruthenates.19 Analogous to the
well-known Zener double exchange20 in manganites, the

TABLE I: The characteristics of di↵erent condensate phases:
M? and Mk is magnetic moment per atom perpendicular and
parallel to the order parameter �, respectively; m(r) magne-
tization in direct space, mk magnetization is reciprocal space.
Mk in FMEC state is finite for even and zero for odd cross-
hopping.

Condensate state M? Mk m(r) mk Re� Im�
FMEC 3 3, 0 3 3 3 3
SDW 0 0 3 0 3 0
SCDW 0 0 0 0 0 3
SDW’ 0 3 3 3 3 0
SCDW’ 0 0 0 3 0 3

exciton condensate acts as a filter for propagation of
doped carriers. The stable phase is determined by the
competition between the kinetic energy of doped carriers
and the energy di↵erence between possible condensates.
In the strong coupling limit, propagation of a single
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is described by an e↵ective Hamiltonian (see SM for the
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the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
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gram18 in Fig. 2a. The V
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= 0 phase diagram contains
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FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V
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. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
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,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
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Doping has a profound e↵ect on the phase diagrams in
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,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
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condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
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. Here, Ī and �̄ are the

unit and Pauli matrices, respectively, and s2 is the LS
fraction in the condensate. Without cross-hopping, only
the �-quadratic term in (2) is present, which describes the
interaction of the electron spin with the uniform magnetic
polarisation of the condensate M

C

= �i (�⇤ ^ �) /s2.
The analogy to double-exchange in manganites is quite
straightforward. At low doping the anti-ferromagnetic
interactions between the HS states dominates, rendering
the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
FMEC state.
With finite cross-hopping a �-linear term appears in

(2) that dominates over the �-quadratic term close to the
normal-phase boundary. Indeed, the normal to FMEC
transition disappears except for an isolated point. In the
low doping SDW and SCDW phases V

1

� + V
2

�⇤ = 0,
as the V

1

and V
2

contributions in (2) cancel out. The
c-fermions in (2) thus propagate as free particles with
renormalised hopping t

s

. As for V
1,2

= 0 case, there is
a critical doping at which the system lowers its energy
by polarizing the doped carriers along with changing the
type of the condensate from CSDW to SDW’ for even
and from SDW to CSWD’ for odd cross-hopping. At
higher temperatures the transition proceeds via the inter-
mediate FMEC phase while at low temperatures charge
separation leads to a first-order transition. The oder pa-
rameter � in the primed phases has the same properties

2

FIG. 2: (a)-(c) Phase digrams in the doping-temperature
plane. Full lines mark continuous transitions, dotted lines
mark the boundaries of phase coexistence regions. (b) Model
without cross-hopping reproduced from Ref. 18. The lines
lin. resp. ... Model with even (a) and odd (c) cross-hopping
V = 0.05. (d) Spin texture in the SCDW’ phase.

and compare them to the V
1,2

= 0 phase diagram from
Ref. 18. Characteristics for the di↵erent phases are sum-
marised in Table I. We start from the V = 0 phase dia-
gram18 in Fig. 2a. The V

1,2

= 0 phase diagram contains
three distinct ordered states: polar exciton condensate
(PEC) and ferromagnetic exciton condensates (FMEC,
FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
1

V
2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
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FMEC’ here as they become indistinguishable for any fi-
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. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
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0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
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,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
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tinguished by their symmetry under time reversal, re-
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 In charge-based information devices, perturbations such as 
ionizing radiation can lead to data loss. In contrast, spin-
based devices, in which different magnetic moment orienta-
tions in a ferromagnet (FM) represent the zeros and ones 
(1), are robust against charge perturbations. However, the 
FM moments can be unintentionally reoriented and the da-
ta erased by perturbing magnetic fields generated externally 
or internally within the memory circuitry. If magnetic 
memories were based on antiferromagnets (AFMs) instead, 
they would be robust against charge and magnetic field per-
turbations. Additional advantages of AFMs compared to 
FMs include the invisibility of data stored in AFMs to exter-
nal magnetic probes, ultrafast spin dynamics in AFMs, and 
the broad range of metal, semiconductor, or insulator mate-
rials with room-temperature AFM order (2–7). 

The energy barrier separating stable orientations of or-
dered spins is due to the magnetic anisotropy energy. It is 
an even function of the magnetic moment which implies 
that the magnetic anisotropy and the corresponding 
memory functionality are readily present in both FMs and 
AFMs (8, 9). The magneto-transport counterpart of the 
magnetic anisotropy energy is the anisotropic magnetore-
sistance (AMR). In the early 1990’s, the first generation of 
FM MRAM micro-devices used AMR for the electrical read-
out of the memory state (10). AMR is an even function of the 
magnetic moment which again implies its presence in AFMs 

(11). Although AMR in AFMs was experimentally confirmed 
in several recent studies (12–17), efficient means for manipu-
lating AFM moments have remained elusive. 

It has been proposed that current-induced spin transfer 
torques of the form / ~ ( )dM dt M M pu u , which are used 

for electrical writing in the most advanced FM magnetic 
random access memories (MRAMs) (1), could also produce 
large angle reorientation of the AFM moments (18). In these 
antidamping-like torques, M  is the magnetic moment vec-
tor and p  is the electrically injected carrier spin-

polarization. Translated to AFMs, the effective field propor-
tional to ,( )A BM pu  that drives the antidamping-like torque 

, , ,/ ~ ( )A B A B A BdM dt M M pu u  on individual spin sublattices 

A and B has the favorable staggered property, i.e., alternates 
in sign between the opposite spin sublattices. 

In FM spin-transfer-torque MRAMs, spin polarized car-
riers are injected into the free FM layer from a fixed FM 
polarizer by an out-of-plane electrical current driven 
through the FM-FM stack. In analogy, Ref. (18) assumes in-
jection of the spin polarized carriers into the AFM from a 
fixed FM polarizer by out-of-plane electrical current driven 
in a FM-AFM stack. However, relativistic spin-orbit coupling 
may offer staggered current-induced fields which do not 
require external polarizers and which act in bare AFM crys-
tals (19). The effect occurs in AFMs with specific crystal and 

Electrical switching of an antiferromagnet 
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Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of 
magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic 
quantum mechanics allows for generating current-induced internal fields whose sign alternates with the 
periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the 
antiferromagnetic order, we demonstrate room-temperature electrical switching between stable 
configurations in antiferromagnetic CuMnAs thin film devices by applied current with magnitudes of order 
106 Acm−2. Electrical writing is combined in our solid-state memory with electrical readout and the stored 
magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates 
the unique merits of antiferromagnets for spintronics. 
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Spin-texture inversion in the giant Rashba
semiconductor BiTeI
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Semiconductors with strong spin–orbit interaction as the underlying mechanism for the

generation of spin-polarized electrons are showing potential for applications in spintronic

devices. Unveiling the full spin texture in momentum space for such materials and its relation

to the microscopic structure of the electronic wave functions is experimentally challenging

and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a

state-of-the-art photoelectron momentum microscope with a multichannel spin filter to

directly image the spin texture of the layered polar semiconductor BiTeI within the full

two-dimensional momentum plane. Our experimental results, supported by relativistic ab

initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have

spin textures of opposite chirality and of pronounced orbital dependence beyond the standard

Rashba model, the latter giving rise to strong optical selection-rule effects on the

photoelectron spin polarization. These observations open avenues for spin-texture

manipulation by atomic-layer and charge carrier control in polar semiconductors.
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Excitonic condensation in real materials

Immanuel Kant

“Experience without theory is blind, but theory 
without experience is mere intellectual play.”
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FIG. 5: Left, the collinear spin density around Co atoms in orthorhombic Pr0.5Ca0.5CoO3 with O (blue), Ca

(light blue) and Pr (grey). Middle, the energies of the Pr 4f states with spin-orbit coupling: no EC order

(black), the order parameter transforms according to A′′ representation (red), the order parameter with A′

contribution (green). The inset shows the exchange splitting of the 4f levels when spin-orbit coupling is

not included. Right, a cartoon picture of the orbital pseudo-vectors on the symmetry related Co atoms

transforming according to A′ and A′′ representations.

c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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• Numerous excitonic phases are possible	
• Rhombohedral distortion (real structure) suppresses excitonic order 	
• Spin-orbit coupling favors the excitonic order

cubic d6 cobaltite (LaCoO3): LDA+U results

J. Fernandez Afonso and JK, PRB 95, 115131 (2017)  
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Exp + Theory

Wang et al. PRB 90, 035149 (2018)
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Why not?   	 formation of immobile bi-excitons IS+IS->HS	
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Why not spin state order HS-LS-HS-LS?   	
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	 	 HS ⇄ IS + IS ???	

!
Possible route to exciton magnet in cobaltites:	
!
2D structure, e.g., (SrLa)2CoO4	

=> smaller EIS-EHS
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c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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Pr4+ Schottky peak:
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Fig. 6. The low-temperature specific heat of Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 measured in fields 0–9 T and plot-
ted in log-log scale. In order to separate the Pr4+ related
Schottky peaks, the background contribution comprising com-
mon terms is marked by full line (see the text).

is characterized by coefficient α ∼ 0.060 Jmol−1 K, which
is apparently field independent and surpassing by more
then one order the nuclear specific heat originating from
the spin I = 7/2 multiplet of 59Co nuclei in the ferromag-
netic cobaltites [20]. The origin of such anomalously large
value may be associated to the contribution of 141Pr nuclei
with spin I = 5/2 in the hyperfine field of Pr4+ electronic
pseudospins [8].

After subtraction of the background, the Pr4+ con-
tribution for Pr0.5Ca0.5CoO3 and Pr0.63Y0.07Ca0.3CoO3

samples is plotted as Cp/T vs. T in Figure 7. The anal-
ysis is made supposing anisotropic g-factor of axial sym-
metry, so that it is described by two components g∥ and
g⊥ only. This model leads to a modified Schottky form,
where the energy splitting ∆E for a particular direction
is given by the angle θ corresponding to the deviation from
the direction of the magnetic field. The partial contribu-
tion to the overall Schottky-like anomaly is calculated as
[(∆E∥cosθ)2 + (∆E⊥ sin θ)2]1/2 and the contribution to
specific heat is weighted by sin θ, which corresponds to
the random orientation of crystallites in the sample. The
fit for Pr0.5Ca0.5CoO3, represented by solid lines in up-
per panel of Figure 7, gives the g factors for Pr4+ species
as g⊥ ∼= 1.4 and g∥ ∼= 4.0, respectively. Furthermore the
magnetic field dependence of the characteristic energies
∆E⊥(∆E∥) = f(B) in Figure 8 enables us to determine
the molecular field experienced by rare earth moments
as the intercept with B axis to Bmol(Pr4+) ∼ 7.5 T.

Fig. 7. The Schottky Pr4+ contribution for Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 plotted as Cp/T vs. T together with
the fit based on anisotropic g-factor as described in the text
(solid lines).

Fig. 8. Zeeman splitting (∆E∥ and ∆E⊥) of the Pr4+

ground doublet for Pr0.5Ca0.5CoO3 (open symbols) and
Pr0.63Y0.07Ca0.3CoO3 (full symbols), determined from the fit
of Schottky peaks in Figure 7.

For Pr0.63Y0.07Ca0.3CoO3, somewhat larger g⊥ ∼= 1.65
and g∥ ∼= 4.7 are obtained, but the molecular field is
smaller, Bmol(Pr4+) ∼ 2.5 T. The most important result
of this analysis is, however, offered by the integration of
the Schottky specific heat as:

∆ΣSchottky =
∫

CSchottky
p /TdT,
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c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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Fig. 6. The low-temperature specific heat of Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 measured in fields 0–9 T and plot-
ted in log-log scale. In order to separate the Pr4+ related
Schottky peaks, the background contribution comprising com-
mon terms is marked by full line (see the text).

is characterized by coefficient α ∼ 0.060 Jmol−1 K, which
is apparently field independent and surpassing by more
then one order the nuclear specific heat originating from
the spin I = 7/2 multiplet of 59Co nuclei in the ferromag-
netic cobaltites [20]. The origin of such anomalously large
value may be associated to the contribution of 141Pr nuclei
with spin I = 5/2 in the hyperfine field of Pr4+ electronic
pseudospins [8].

After subtraction of the background, the Pr4+ con-
tribution for Pr0.5Ca0.5CoO3 and Pr0.63Y0.07Ca0.3CoO3

samples is plotted as Cp/T vs. T in Figure 7. The anal-
ysis is made supposing anisotropic g-factor of axial sym-
metry, so that it is described by two components g∥ and
g⊥ only. This model leads to a modified Schottky form,
where the energy splitting ∆E for a particular direction
is given by the angle θ corresponding to the deviation from
the direction of the magnetic field. The partial contribu-
tion to the overall Schottky-like anomaly is calculated as
[(∆E∥cosθ)2 + (∆E⊥ sin θ)2]1/2 and the contribution to
specific heat is weighted by sin θ, which corresponds to
the random orientation of crystallites in the sample. The
fit for Pr0.5Ca0.5CoO3, represented by solid lines in up-
per panel of Figure 7, gives the g factors for Pr4+ species
as g⊥ ∼= 1.4 and g∥ ∼= 4.0, respectively. Furthermore the
magnetic field dependence of the characteristic energies
∆E⊥(∆E∥) = f(B) in Figure 8 enables us to determine
the molecular field experienced by rare earth moments
as the intercept with B axis to Bmol(Pr4+) ∼ 7.5 T.

Fig. 7. The Schottky Pr4+ contribution for Pr0.5Ca0.5CoO3

and Pr0.63Y0.07Ca0.3CoO3 plotted as Cp/T vs. T together with
the fit based on anisotropic g-factor as described in the text
(solid lines).

Fig. 8. Zeeman splitting (∆E∥ and ∆E⊥) of the Pr4+

ground doublet for Pr0.5Ca0.5CoO3 (open symbols) and
Pr0.63Y0.07Ca0.3CoO3 (full symbols), determined from the fit
of Schottky peaks in Figure 7.

For Pr0.63Y0.07Ca0.3CoO3, somewhat larger g⊥ ∼= 1.65
and g∥ ∼= 4.7 are obtained, but the molecular field is
smaller, Bmol(Pr4+) ∼ 2.5 T. The most important result
of this analysis is, however, offered by the integration of
the Schottky specific heat as:

∆ΣSchottky =
∫

CSchottky
p /TdT,
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c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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(black), the order parameter transforms according to A′′ representation (red), the order parameter with A′

contribution (green). The inset shows the exchange splitting of the 4f levels when spin-orbit coupling is

not included. Right, a cartoon picture of the orbital pseudo-vectors on the symmetry related Co atoms

transforming according to A′ and A′′ representations.

c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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contribution (green). The inset shows the exchange splitting of the 4f levels when spin-orbit coupling is

not included. Right, a cartoon picture of the orbital pseudo-vectors on the symmetry related Co atoms

transforming according to A′ and A′′ representations.

c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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Exchange splitting in Pr0.5Ca0.5CoO3 
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Pr0.5Ca0.5CoO3 

T. Yamaguchi, K. Sugimoto and Y. Ohta, JPSJ 86, 043701 (2017)  

RPA calculation in ideal cubic structure

Order parameter:

Excitonic and spin susceptibility:
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strong-coupling picture:

Similar behavior recently observed in INS experiment	
on (Pr1-yYy)1-xCaxCoO3 !
T. Mojoshi et al. PRB 98, 205105 (2018)

How to detect excitonic condensate (PEC)?
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Conclusions

• Excitonic magnetism provides a rich field of new physics with 
potentially interesting application	
!

• Excitonic magnets have yet to be found (promising candidates exist)	
!
• Experimental techniques for unambiguous identification of excitonic 
condensate have to be established
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