Thermoelectric transport of ultracold fermions : theory

Collège de France, December 2013

UNIVERSITÉ

DE GENÈVE

Theory : Ch. Grenier

C. Kollath A. Georges

ETH

POLYTECHNIQUE

ParisTech

COLLÈGE DE FRANCE

- J.-P. Brantut
- J. Meineke
- D. Stadler
- S. Krinner
- T. Esslinger

Introduction to Thermoelectricity

• Seebeck effect : A difference of temperature ΔT creates a voltage ΔV

- Peltier effect : An electric current *I* generates a heat current $I_Q = \Pi \cdot I = (T \cdot \alpha) \cdot I$
- i. Seebeck coefficient α : Entropy per carrier $I_S = \alpha I_N \lambda \Delta T$
- i. Stationary effects : permanent currents/differences

L. Onsager, Phys. Rev. 38, 2265 (1931)& Phys. Rev. 37, 405 (1931)

H.B. Callen, Phys. Rev. 73, 1349-1358 (1948)

Thermoelectricity and materials

Good thermoelectrics : a recurrent interest in material physics

- Good Peltier cooling •
- Efficient wasted heat recovery : energy saving ٠ purposes

Idea : increase figure of merit $ZT = \frac{\sigma_{el}T\alpha^2}{\sigma_{tb}}$

- Fundamental purposes : High temperature transport properties
 - Understanding of electron/phonon coupling ...

Thermoelectricity and mesoscopic physics

GOALS :

• Extract energy from fluctuating environment

• Optimize energy to electricity conversion (cooling purposes)

Heat engine with quantum dots

A. Jordan *et al.* Phys. Rev. B 87, 075312 (2013)

Nonlinear thermoelectric transport

R. Whitney Phys. Rev. B, 88, 064302 (2013)

Quantum limited refrigerator

Timofeev et al PRL (2009)

Quantum dot refrigerator

Prance et al PRL (2009)

What about cold atoms?

Introduction - Transport and cold atoms

Disorder (Inst. d'optique - LENS, 2008)

J. Billy et al.-G. Roati et al., Nature

Interactions (LMU, 2012)

Also:

H. Ott *et al*, Phys. Rev. Lett. 92, 160601 (2004)
S. Palzer *et al*, Phys. Rev. Lett. 103, 150601 (2009)
J. Catani *et al*, Phys. Rev. A 85, 023623 (2012)
K.K. Das *et al*, Phys. Rev. Lett. 103, 123007 (2009)
And many others ...

Introduction - Experimental motivation

J.P. Brantut et al., Science

 \rightarrow Realization of a two terminal transport setup

Discharge of a mesoscopic capacitor (reservoirs) in a resistor (the channel)

 \Rightarrow Simulation of mesoscopic physics with cold atoms **Question** : Can this setup demonstrate offdiagonal transport ?

イロト イ理ト イヨト イヨト

Э

Sac

Outline

< □ ト < @ ト < E ト < E ト E 9 < @</p>

1 Experimental setup and theory framework

A cold atom based heat engine

Outline

< □ > < @ > < E > < E > E のQ@

1 Experimental setup and theory framework

Thermoelectricity with cold atoms

A cold atom based heat engine

Experimental procedure

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- i. Heating of one reservoir at constant particle number (closed channel)
- ii. Reopen the channel
- iii. Monitor temperature difference and particle number imbalance

Typical results

Transport in linear response

<u>Our approach</u> : Constriction ↔ Black box responding linearly ≡ Linear circuit picture

Linear response :
$$\begin{pmatrix} I_N \\ I_{\mathscr{S}} \end{pmatrix} = -\underline{\mathscr{L}} \begin{pmatrix} \Delta \mu \\ \Delta T \end{pmatrix}, \quad \underline{\mathscr{L}} = \begin{pmatrix} \mathscr{L}_{11} & \mathscr{L}_{12} \\ \mathscr{L}_{12} & \mathscr{L}_{22} \end{pmatrix}$$

And thermodynamics :

$$\begin{pmatrix} \Delta N \\ \Delta S \end{pmatrix} = \underline{\mathscr{M}} \begin{pmatrix} \Delta \mu \\ \Delta T \end{pmatrix}, \quad \underline{\mathscr{M}} = \begin{pmatrix} \kappa & \gamma \\ \gamma & \underline{C}_{\mu} \end{pmatrix}$$

< □ > < @ > < E > < E > E のQ@

 \Rightarrow Equations for chemical potential and temperature difference

$$\frac{d}{dt} \begin{pmatrix} \Delta \mu \\ \Delta T \end{pmatrix} = -\underline{\mathscr{M}}^{-1} \underline{\mathscr{L}} \begin{pmatrix} \Delta \mu \\ \Delta T \end{pmatrix}$$

Transport equations and coefficients

Equations for particle number and temperature difference :

$$\tau_0 \frac{d}{dt} \begin{pmatrix} \Delta N/\kappa \\ \Delta T \end{pmatrix} = -\underline{\Lambda} \begin{pmatrix} \Delta N/\kappa \\ \Delta T \end{pmatrix}, \underline{\Lambda} = \begin{pmatrix} 1 & -\alpha \\ -\frac{\alpha}{\ell} & \underline{L+\alpha^2} \end{pmatrix}.$$

⇒ Discharge of a capacitor through a resistor, including thermal properties Global timescale $\tau_0 = \frac{\kappa}{\mathscr{L}_{11}} \sim RC$

Effective transport coefficients :

 $L \equiv \mathscr{L}_{22}/\mathscr{L}_{11} - (\mathscr{L}_{12}/\mathscr{L}_{11})^2 \sim R/TR_T \rightarrow \text{Lorenz number}$ $\ell \equiv \mathcal{C}_N/\kappa T \rightarrow \text{Reservoir analogue to } L$ $\alpha \equiv \alpha_r - \alpha_{ch} \equiv \gamma/\kappa - \mathscr{L}_{12}/\mathscr{L}_{11} \rightarrow \text{Total Seebeck coefficient}$

Both thermodynamic and linear response coeffs participate to transport Competition for offdiagonal contributions

How to compute transport coefficients ?

Need to take care of constriction and reservoirs

 \rightarrow Reservoirs and constriction are treated separately

Reservoirs

- Trapped Fermi gas
- Noninteracting fermions

Constriction

- Geometry: Transverse harmonic trap 1-2-3 D
- Conduction regime : Ballistic or diffusive
- Response coefficients : Landauer-Büttiker formalism

Computing coefficients

• Thermo. coefficients \Rightarrow Proportional to moments of $DOS \cdot \partial f / \partial \varepsilon$

$$\mathcal{R}_n = \int_0^{+\infty} d\varepsilon \, g_r(\varepsilon) \left(-\frac{\partial f}{\partial \varepsilon}\right) (\varepsilon - \mu)^n$$
$$\kappa \to n = 0, \, \gamma \to n = 1 \, \frac{C_\mu}{T} \to n = 2$$

• Transport coefficients \Rightarrow Proportional to moments of $\Phi \cdot \partial f / \partial \varepsilon$

$$\mathcal{T}_n = \int_0^{+\infty} d\varepsilon \, \Phi(\varepsilon) (-\frac{\partial f}{\partial \varepsilon}) (\varepsilon - \mu)^n$$
$$\mathcal{L}_{11} \to n = 0, \ \mathcal{L}_{12} \to n = 1 \ \mathcal{L}_{22} \to n = 2$$

$$\Phi$$
: transport function \simeq DOS \cdot velocity \cdot transmission
 \propto Differential conductance

R. Kim et al Appl. Phys. Lett. 105, 034506 (2009)

G. D. Mahan & J. O. Sofo, PNAS 93, 7436 (1996)

Transport function

For $v_z = 5 \text{ kHz}$, $v_x = 0.5 \text{ kHz}$

Simple estimates for Seebeck(s)

Two contributions to thermopower :

Channel :
$$\alpha_{ch} = \frac{\mathscr{L}_{12}}{\mathscr{L}_{11}}$$

Reservoirs : $\alpha_r = \frac{\gamma}{\kappa}$

At low $T \Rightarrow$ Mott-Cutler formula :

$$\alpha_{ch} \simeq \frac{\pi^2 k_B^2 T}{3} \frac{\Phi'(\mu)}{\Phi(\mu)} \quad \text{and} \quad \alpha_r \simeq \frac{\pi^2 k_B^2 T}{3} \frac{g_r'(\mu)}{g_r(\mu)}$$

Reservoirs = **3D** harmonic traps : $g_r \propto \varepsilon^2 \Rightarrow \alpha_r \simeq \frac{2\pi^2 k_B^2 T}{3\mu}$

Two cases for the channel:

I. Diffusive: $\Phi \propto \epsilon^{5/2} \rightarrow \alpha_{ch} \simeq \frac{5\pi^2 k_B^2 T}{6\mu}$: Channel dominates II. Ballistic: $\Phi \propto \epsilon^2 \rightarrow \alpha_{ch} \simeq \frac{2\pi^2 k_B^2 T}{3u}$: Need corrections, small effect expected

M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969)

Resulting Seebeck

< ロ ト < 昼 ト < 臣 ト < 臣 ト 三 の < で</p>

Outline

< □ > < @ > < E > < E > E のQ@

2 Thermoelectricity with cold atoms

A cold atom based heat engine

Comparison data-theory in the ballistic case

ヘロト 人間 とくほ とくほとう

3

990

Particle imbalance vs. time for : A 3.5 kHz and B 9.3 kHz

Nanostructuration with harmonic confinement

$$T/T_F = 0.1$$
 $T/T_F = 0.3$

Hicks and Dresselhaus, Phys. Rev. B 47 12727 (1993) Hicks and Dresselhaus, Phys. Rev. B 47 16631 (1993)

En route for diffusive conduction

Unified description :

$$T(\varepsilon) = \frac{l(\varepsilon)}{\mathscr{L} + l(\varepsilon)}$$

 $I(\varepsilon)$: mean free path, $I(\varepsilon) = \tau_{s} v(\varepsilon)$

- Low disorder $l \gg \mathcal{L} : T \rightarrow 1$ Ballistic transport
- Strong disorder $I \ll \mathcal{L} : T \simeq \frac{1}{\mathcal{L}}$ Diffusive transport

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Energy-independent $\tau_s \Rightarrow$ Universal regime at strong speckle Seebeck coefficient is a <u>ratio</u> of conduction coefficients

Enhancing thermoelectric response

Rescaled evolution of particle imbalance : Universal regime

- Thermoelectric effect grows with disorder
- At strong disorder The effect saturates : Constant $\tau_{S} \checkmark$
- Seebeck coefficient ≠ Conductivity

<ロト < 得ト < ヨト < ヨト

Sac

Systematic comparison between ballistic and diffusive conduction

ヘロト 人間 ト 人 ヨト 人 ヨトー

€ 9 Q (°

- Comparison of ballistic and diffusive channel
- Disorder more efficient than geometry
- Resistance ≠ thermopower

Outline

< □ > < @ > < E > < E > E のQ@

Thermoelectricity with cold atoms

3 A cold atom based heat engine

The setup as a heat engine

 Channel : converts heat into (chemical) work

QUESTION : Efficiency of the process ?

- Evolution in the μN plane
- Access to thermodynamic evolution ⇒ Extraction of work

Efficiency

No DC regime \Rightarrow compare work, not power

Expression for the efficiency : compare output chemical work to heat

$$\eta \equiv \frac{Work}{Heat} = \frac{\int_{evolution} \Delta \mu \cdot d\Delta N}{\int_{evolution} \Delta T \cdot d\Delta S} = \frac{\int_0^\infty dt \Delta \mu \cdot I_N}{\int_0^\infty dt \Delta T \cdot I_S}$$

Solution to transport equations $\Rightarrow \eta$ in terms of transport coefficients : ℓ , L, α

$$\eta = \frac{-\alpha \alpha_r}{\ell + L + \alpha^2 - \alpha \alpha_r}$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- i. Comparison to data ?
- ii. Relation to channel properties ?
- iii. Output power ?

Power and efficiency

For the channel only :

Optimize power \neq optimize efficiency

- Cycle averaged power $\frac{W}{\tau_0}$
- Optimize power ≠ Optimizing efficiency
- Strong confinement/speckle : Slow dynamics ⇒ Low power

Conclusions-Outlook

- Thermoelectricity with cold atoms !
- Transport : combination of reservoir and channel properties
- Control on the effect via geometry (≃ nanostructuration) or transport regime (ballistic -> diffusive)
- High figure of merit
- High-T transport without phonons

What's next ?

- Superfluid : Thermomechanical (fountain) effects
- Interactions : improvement of thermopower
- Lattice ?

J.P- Brantut, CG, J. Meineke, S. Krinner, D. Stadler, C. Kollath, T. Esslinger & A. Georges Science 342, 713-715 (2013) CG, C. Kollath & A. Georges arxiv:1209.3942

Outlook - Cooling by transport : Peltier effect

Peltier effect \equiv injection of electron and holes around μ :

 \Rightarrow Rectification of the Fermi distribution

Here : Design transport properties

⇒ Injection in a chosen energy window Goal : improve evaporative cooling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thermodynamic coefficients

< ロ ト < 昼 ト < 臣 ト < 臣 ト 三 の < で</p>

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Lorentz et al

< □ ト < @ ト < E ト < E ト E 9 < @</p>