## Transport experiments with ultracold Fermions



J.P. Brantut, J. Meineke, D. Stadler, S. Krinner, D. Husmann, S. Häusler, T. Esslinger

Institute for Quantum Electronics ETH Zürich

|         | Cold Fermionic atoms              | Electrons in a solid                       |
|---------|-----------------------------------|--------------------------------------------|
| Density | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |

|         | Cold Fermionic atoms              | Electrons in a solid                       |
|---------|-----------------------------------|--------------------------------------------|
| Density | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |

Interparticle spacing: 1 µm

### Wavelength of atomic wave functions is in the optical domain -> optical lattices, microscopic disorder, etc

|         | Cold Fermionic atoms              | Electrons in a solid                       |
|---------|-----------------------------------|--------------------------------------------|
| Density | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass    | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |

Interparticle spacing: 1 µm Fermi temperature: 1 µK

*Requires laser cooling + evaporation* 

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μK                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |

Temperature range : 
$$\frac{T}{T_F} \sim 0.1$$

#### *Requires laser cooling + evaporation (+ new ideas ?)*

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μΚ                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |
| Charge            | 0                                 | -1                                         |
| Interactions      | Contact, <i>tunable</i>           | Coulomb, material dep.                     |

### Feshbach resonances

Use the internal structure of atoms to manipulate scattering



### Feshbach resonances



# Superfluidity emerges at low temperatures



#### M. Zwierlein et al, Nature 435, 1047 (2005)

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μК                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |
| Charge            | 0                                 | -1                                         |
| Interactions      | Contact, <i>tunable</i>           | Coulomb, material dep.                     |
| Potential shaping | Laser light                       | growing, lithography                       |
|                   |                                   |                                            |



K. Ensslin, ETH

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μΚ                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |
| Charge            | 0                                 | -1                                         |
| Interactions      | Contact, <i>tunable</i>           | Coulomb, material dep.                     |
| Potential shaping | Laser light                       | growing, lithography                       |
|                   |                                   | K. Enssl                                   |

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μΚ                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |
| Charge            | 0                                 | -1                                         |
| Interactions      | Contact, <i>tunable</i>           | Coulomb, material dep.                     |
| Potential shaping | Laser light                       | growing, lithography                       |
| Probing           | Imaging, spectroscopy             | AC/DC characteristics, response functions  |

|                   | Cold Fermionic atoms              | Electrons in a solid                       |
|-------------------|-----------------------------------|--------------------------------------------|
| Density           | 10 <sup>12</sup> cm <sup>-3</sup> | 10 <sup>22</sup> cm <sup>-3</sup> (Metals) |
| Mass              | 6 (Li), 40 (K)                    | 5.4 10 <sup>-4</sup>                       |
| Fermi Temperature | μΚ                                | 10 <sup>4</sup> K                          |
| Temperature       | 100 nK                            | 10 mK                                      |
| Charge            | 0                                 | -1                                         |
| Interactions      | Contact, <i>tunable</i>           | Coulomb, material dep.                     |
| Potential shaping | Laser light                       | growing, lithography                       |
| Probing           | Imaging, spectroscopy             | AC/DC characteristics, response functions  |

\_

### From materials to devices

Material





Collège de France

### From materials to devices



#### From materials to devices



#### Experimental setup

- Two terminals Landauer configuration
- Strongly attractive interactions: superfluids
- Disordered superfluids

- Thermoelectric transport Theory : Charles Grenier, Corinna Kollath and Antoine Georges
  - Ballistic channel
  - Disordered channel : ballistic to diffusive crossover
  - Efficiency of heat to work conversion

- Outlook
  - Lithography for cold atoms

#### Experimental setup

- Two terminals Landauer configuration
- Strongly attractive interactions: superfluids
- Disordered superfluids

Thermoelectric transport

Collaboration with Charles Grenier, Corinna Kollath and Antoine Georges

- Ballistic channel
- Disordered channel : ballistic to diffusive crossover
- Efficiency of heat to work conversion

- Outlook
  - Lithography for cold atoms



#### 10<sup>5</sup> <sup>6</sup>Li atoms

 $T \sim 0.2 T_F$ 

#### $T_F = 930 \text{ nK}$

J-P Brantut







Repulsive TEM<sub>01</sub> laser beam on the center of the cloud

Trap frequency up to 11 kHz

Creates a narrow multimode, *ballistic* channel











### Linear response

Ohm's Law channel

$$I_{\rm N} = G \cdot \Delta \mu$$



 $\kappa$ 

### Linear response





#### Linear response





### Atomic flow through the channel



ETH

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



### Atomic flow through the channel



Ballistic channel :

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

 $\kappa/G = 481(30) \,\mathrm{ms}$  Experimental fit



### Atomic flow through the channel



Ballistic channel :

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

$$\kappa/G = 481(30) \,\mathrm{ms}$$
  
 $\kappa/G = 450(30) \,\mathrm{ms}$ 

Experimental fit Landauer-Büttiker + ideal reservoirs

### Where does the voltage drop ?







### Where does the voltage drop?







### Where does the voltage drop?







Strongly attractive Fermi gases : pairing and superfluidity





Strongly attractive Fermi gases : pairing and superfluidity
#### **Resistance of cold atom systems : interactions**



Strongly attractive Fermi gases : pairing and superfluidity



#### Projected disorder (laser speckle)

See also : M. Inguscio (Florence), B. DeMarco (Urbana), A. Aspect (Palaiseau), S. Rolston (NIST)

 $\vec{B}$ 











J-P Brantut

#### Experimental setup

- Two terminals Landauer configuration
- Strongly attractive interactions: superfluids
- Disordered superfluids

Thermoelectric transport

Collaboration with Charles Grenier, Corinna Kollath and Antoine Georges

- Ballistic channel
- Disordered channel : ballistic to diffusive crossover
- Efficiency of heat to work conversion

- Outlook
  - Lithography for cold atoms









# Temperature bias : a thermodynamic effect



J-P Brantut







# Entropy flow from hot to cold







# Entropy flow from hot to cold

J-P Brantut







J-P Brantut



### Intrinsic thermoelectric effect





#### Intrinsic thermoelectric effect







# Thermoelectric capacitor description







# Thermoelectric capacitor description



$$\tau_0 \frac{d}{dt} \left( \begin{array}{c} \Delta N \\ \Delta T \end{array} \right) = -\underline{\Lambda} \left( \begin{array}{c} \Delta N \\ \Delta T \end{array} \right)$$

Provides a fitting procedure to extract resistance and thermopower



## **Ballistic channels**





Trap frequency in the channel : 9.3 kHz



## **Ballistic channels**





Trap frequency in the channel : 9.3 kHz

Trapped ideal Fermi gas + Landauer-Büttiker formula

No adjustable parameter

## Ballistic channels : thermoelectric response



Normalized atom number difference as a response to the temperature bias

$$\mathcal{R} = \frac{(\Delta N/N_{\rm tot})}{(\Delta T_0/T_F)}$$

Increasing confinement:

- decreases the conductance
- increases the thermoelectric response







Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



Disorder strength = 0.13  $\mu$ K



Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



Disorder strength = 0.26  $\mu$ K



Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



Disorder strength = 0.54  $\mu$ K



Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



Disorder strength = 0.81  $\mu$ K



Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich



Disorder strength = 1.08  $\mu$ K



Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Increase thermoelectric response at the expense of a decrease of conductance



#### **Thermopower / Resistance tradeoff**



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# **Thermopower / Resistance tradeoff**



= 11 +

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

# **Thermopower / Resistance tradeoff**



Transmission has a larger dependence on energy in the diffusive case

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### **Energy dependance of transmission**



#### **Energy dependance of transmission**



# **Efficiency and Power**



Thermoelectricity drives current against the potential difference

$$\eta = \frac{W}{Q_{irr}} = \frac{\int I_N \Delta \mu dt}{\int I_S \Delta T dt} \qquad \approx \begin{array}{c} 0.2 \\ 0.1 \\ 0.0 \end{array} \left[ \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ 4 & 6 & 8 & 10 \end{array} \right] \quad \begin{array}{c} \bullet & \bullet & \bullet \\ 0.2 & 0.6 & 1.0 \\ \hline V(kHz) \end{array} \right]$$
efficiency relative to a reversible process 
$$\nu(kHz) \qquad \overline{V}(\mu K)$$

# **Efficiency and Power**



Thermoelectricity drives current against the potential difference

$$\eta = \frac{W}{Q_{\rm irr}} = \frac{\int I_{\rm N} \Delta \mu dt}{\int I_{\rm S} \Delta T dt}$$



efficiency relative to a reversible process



see also E.L.Hazlett *et al,* arXiv 1306.4018
#### Experimental setup

- Two terminals Landauer configuration
- Strongly attractive interactions: superfluids
- Disordered superfluids

### Thermoelectric transport

- Ballistic channel
- Disordered channel : ballistic to diffusive crossover
- Efficiency of heat to work conversion

- Outlook
  - Lithography for cold atoms

### Conclusion



# Transport properties of cold Fermions with tunable interactions / disorder / dimensionality

### Conclusion



J.P. Brantut *et al*, Science **337**, 1069 (2012) D. Stadler *et al*, Nature **491**, 736 (2012)



S. Krinner *et al*, PRL. **110**, 100601 (2013) S. Krinner *et al*, arXiv:1311:5174 (2013)



J.P. Brantut *et al*, Science **342**, 713 (2013)

Transport properties of cold Fermions with tunable interactions / disorder / dimensionality

## Conclusion

J.P. Brantut *et al*, Science **337**, 1069 (2012) D. Stadler *et al*, Nature **491**, 736 (2012)

> S. Krinner *et al*, PRL. **110**, 100601 (2013) S. Krinner *et al*, arXiv:1311:5174 (2013)



J.P. Brantut *et al*, Science **342**, 713 (2013)

Transport properties of cold Fermions with tunable interactions / disorder / dimensionality

Towards quantum simulation of mesoscopic devices





*Experiment*: (ETH Zürich)
S. Krinner D. Husmann
J.P. Brantut, S. Haüsler
J. Meineke M. Lebrat
D. Stadler
T. Esslinger

Theory of thermoelectricity : C. Grenier (Ecole Polytechnique) C. Kollath (University of Bonn) A. Georges (College de France)

Discussions :

T. Giamarchi, J. Blatter, W. Zwerger, L. Pollet, T. Bourdel, D. Shahar, V. Shenoy, V. Josse, P. Lugan, C. Mueller, S. Pilati, M. Mueller, T. Ihn, Y. Imry, D. Shepelyanski





Swiss National Science Foundation





Collège de France

J-P Brantut