

A DMFT insight into the Earth's core: many-electron effects in iron under extreme conditions

L. V. Pourovskii

Workshop « Dynamical Mean-Field Theory and Beyond: Recent Developments» Collège de France 11/06/2019

OUTLINE

- Inner core of Earth: iron alloy at extreme conditions
- Electronic correlations in the 3 phases of iron
- Fermi-liquidness and transport in hcp-Fe at Earth core conditions
- Lattice distorsions, correlations and transport in bcc-Fe

Solid inner core of Earth

- radius ≈ 1200 km
- density \approx 13 g/cm³
 - composition:
 mainly Fe+(~5-10% Ni, Si, S, O...)
- temperature 5200÷6500 K (uncertain)
- pressure 330÷370 Gpa
- age: may be < 1 bY
- anisotropy in seismic wave propagation:
- 3-4% faster \vec{v} along spin axis (Creager Nature 1992)
 - strong anisotropy (different Fe phases?) in the inner part R < 500 km
 - weak anisotropy in the outmost part; different \vec{v} in hemispheres

Hirose *et al*. Annu. Rev. Earth Planet. Sci. 2013 Tkalčić Rev. of Geophys. 2015

State of iron in the inner core of Earth

Density functional theory (DFT):

<u>bcc</u> α: Belonoshko *et al.* Nature 2004 Luo *et al.* PNAS 2010 Belonoshko *et al.* Nat. Geo. 2017

fcc γ: Mikhaylushkin *et al.* PRL 2007 hcp ε: Vočadlo *et al.*, Nature 2003

Diamond anvil cell experiments:

bcc *Fe* Hrubiak et al. arXiv 2018 *Fe*_{0.9}*Ni*_{0.1}: Dubrovinsky *et al.* Science 2007

hcp: Tateno *et al. Fe* (370 GPa, 5800 K): Science 2010
 *Fe*_{0.9}*Ni*_{0.1}: Geophys. Res. Lett. 39 L12305 (2012)

Anisotropy of Fe inside the inner core

Relative velocity vs. angle to the rotation axis

Deuss Ann. Rev. Ear. Pl. Sci. 2014

DFT ab initio molecular dynamics

0.98

0.97

0.96

0

20

10

50

Polar/Crystallographic angle (ξ)

70

80

90

c/a ratio (hence, T) Belonoshko et al. Nature 2004,

Science 2008 Mattesini PNAS 2010

hcp-Fe:

Vočaldo et al.

anisotropy

sensitive to

Earth. Pl. Sci. Lett. 2009

hcp-Fe: velocity

low anisotropy in hcp (high-T c/a ~1.633)

bcc-Fe:

large anisotropy [100] vs. [111]

Iron metal at low P-T and electronic correlations

Low P-T phase diagram of Fe

 narrow (*W*~6 eV) 3d band hybridized with wide 4s

U(3d)≈3-5 eV < *W* but large *J_H*~0.9 eV

α-Fe: moderate QP renormalization(Z~0.5) in ARPES and theory

Schäfer et al. 2005 Sànchez-Barriga et al. 2009 , Sànchez-Barriga et al., 09, Sponza et al., PRB 17, Hausoel et al., Nat. Com. 17

PM α -Fe and $\alpha \rightarrow \gamma$ transition phonon spectra of PM α and γ Leonov et al. PRL 11, SciRep. 14, Han et al. PRL 17

- α bcc, ground state, FM
- γ fcc, T> 1185 K (P=0)
- **δ** bcc, T > 1667 K (P=0)
- hcp, P-stabilized, paramagnetic, superconducting

Are correlations still relevant at high P and T?

$$\mathsf{P} \uparrow \longrightarrow \mathsf{V} \downarrow \longrightarrow \mathsf{W} \uparrow \mathsf{and} \mathsf{U}/\mathsf{W} \downarrow$$

at high pressure correlation effects can be ignored **?**

- U/W < 1 in Fe even at P=0 (but J_H is more important)
- high T stabilizes high-entropy (local moment) phases
- for metals el.-el. scattering $\sim T^2 \rightarrow$ significant at high T

self-consistent DFT+DMFT method

- hybridization-expansion CT-QMC: segment picture (mostly),
 full U: Seth *et al.* Comp. Phys. Comm. 2016
- self-consistency over the charge density ρ
- conductivity: Kubo formula neglecting vertex corrections
- Calculation for the Earth core atomic volume 7.05 Å³/atom
- U in the range $3.3 \div 5 \text{ eV}$, $J_H \sim 0.9 \text{ eV}$

Fermi-liquid vs. non-Fermi liquid behavior of bcc, fcc and hcp-Fe at extreme conditions

Inverse quasiparticle lifetime:

 $\Gamma=Z Im[\Sigma(0)] \sim T^2$ in Fermi-liquid (FL) regime

Hence Γ/T^T in FLs

hcp ε-Fe: Fermi-liquid behavior in the full T range up to 6000 K bcc α-Fe: a strongly non-FL behavior for T > 1000 K fcc γ-Fe: Fermi-liquid in t2g, an intermediate case for eg Pourovskii *et al.* PRB 2013

Why is the bcc phase more correlated? DFT DOS

Large peak in bcc DOS due to a Van-Hove singularity

Suppression of hybridization at low E: $Im[\Delta(E_F)] \approx -[\pi D(E_F)]^{-1}$

Enhancement of correlations

Mravlje *et al.* PRL 2011 Leonov *et al.* PRL 2015

Uniform magnetic susceptibility in applied field

Pauli behavior
 fcc and hcp

• Curie-Weiss χ in bcc due to a local moment

Earth core thermal conductivity "puzzle"

Low thermal conductivity is necessary to sustain the convection

For the geodynamo (liquid iron) <u>extrapolation of shock-wave results</u> Stacey&Andereson Phys. Earth Planet. Inter. 2001 about **30-50 W/(m·K)**

ab initio DFT calculations:

thermal conductivity in liquid Fe: > 200 W/(m·K)

in iron-rich Fe-(Ni)-(Si)-(O): ~ 150 W/(m·K)

DFT calculations of el.-ph. electrical and thermal conductivities:

Pozzo *et al.* Nature 2012, PRB 2013 Earth Planet. Sci. Lett. 2014 de Koker *et al.* PNAS 2012 Shi *et al.* J. Phys. Condens. Matter 2011

Formation of solid core anisotropy

requires κ well below 200 W/(m·K) see B. Buffet Nature 2012

ab initio DFT value for el-ph κ: pure ε-Fe ~300 W/(m·K) Fe-Si alloy ~235 W/(m·K)

Inconclusive experiments in DAC

Konôpková *et al.* Nature 2016 direct measurements of κ +extrapolation

Ohta *et al.* Nature 2016 direct measurements of ρ +WF law

Theory:

previous ab initio DFT calculations: only electron-phonon scattering included what is the contribuiton of electron-electron scattering?

Fermi-liquid behavior of ε-Fe: DMFT self-energy at real frequencies

Fermi-liquid behavior of Γ stems from $Im[\Sigma(\omega, T)] = const * (\omega^2 + \pi^2 T^2)$

Fermi-liquid temperature scale $T_{FL} \approx 0.1T_0 = 14\ 000\ K$

Electron-electron contribution to electrical resistivity of ε-Fe: weak

The electron-phonon ρ_{e-ph} is about 5.3 · 10⁻⁵ Ω · cm from Pozzo *et al.* Earth & PI. Sci. Let. 2014

Electron-electron contribution to thermal resistivity of ϵ -Fe: significant

Smaller than predicted by Wiedemann-Franz with standard Lorenz number

$$L = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$$

At T~6000 K κ_{ee} ≈ **540 W/(m·K)**

Electron-phonon $\kappa_{e-ph} \approx 300$ W/(m·K) from Pozzo *et al.* Earth & PI. Sci. Let. 2014

Total
$$\kappa_{tot} = (1/\kappa_{e-ph} + 1/\kappa_{ee})^{-1} \approx 190 \text{ W/(m \cdot K)}$$

Reduction of the Lorenz number in Fermi liquids

In the semi-classical Boltzmann formalism:

$$\sigma = e^2 \int d\epsilon \Phi(\epsilon) (-f'(\epsilon)) \tau(\epsilon) \qquad \kappa = \frac{1}{T} \int d\epsilon \epsilon^2 \Phi(\epsilon) (-f'(\epsilon)) \tau(\epsilon)$$

$$\kappa/(\sigma T) = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = L \quad \text{, in SI units} \quad 2.44 \cdot 10^{-8} W\Omega$$

assuming frequency-independent lifetime $\boldsymbol{\tau}$

But in Fermi liquids frequency dependence of $\tau_{ee} \sim 1/Im[\Sigma(\omega)]$ is strong

$$1/\tau(\epsilon) = 1/\tau(\epsilon = 0) \cdot (1 + \epsilon^2/\pi^2 T^2 k_B^2)$$

and additional ϵ^2 in κ enhances contributions of high frequencies.

One obtains
$$\kappa/(\sigma \cdot T) = L/1.54 = L_{FI}$$

thus significanly reducing $\boldsymbol{\kappa}$

Electron correlations and conductivity in bcc-Fe

- bcc-Fe observed(?)

 in anvil cell experiments
 Dubrovinsky et al. Science 2008
 Hrubiak et al. arXiv:1804.05109
- dynamically unstable in the harmonic approximation at high P
- can be stablized by unharmonic vibrations

Belonoshko et al. Nat. Geo 2018

fixed lattice calculations not reliable for bcc!

- 1. perform *ab initio* DFT mol. dynamics (MD) simulations
- 2. run DFT+DMFT for a set of MD snapshots

3x3x3 undistorted

3x3x3 MD snapshot

non-Fermi-liquid effects in bcc washed away by lattice distorsions!

bcc-Fe DFT DOS at EIC volume

- van Hove singularity due to drives nonFL behavior of e_q orbitals
- it's almost washed away by lattice vibrations

bcc-Fe: Suppression of conductivity by distortions

thermal conductivity of fully distorted cells ~4 times lower than in perfect bcc

can be understood

$$r_{t} = rac{1}{\kappa_{latt}} + rac{1}{\kappa_{el.-el}}$$

where $\kappa_{latt} \approx 280 \text{ W/(m·K)}, \kappa_{el.-el.} \approx 800 \text{ W/(m·K)}$

K₁

Electrical and thermal resistivity vs. distorsions

 $\lambda = 0$: transport is determined by electron-electron scattering

 $\lambda = 1$: what determines the conductivity?

Optical conductivity vs. distorsions in bcc Fe

optical conductivity for perfect and fully distorted case for different $\Sigma(\omega)$:

In the distorted limit enhancing $\langle \Sigma(\omega) \rangle$ seems to have little impact

the conductivity is fixed by the distorsion levels

Coauthors

- University of Linköping, Sweden:
 I. Abrikosov
 - S. Simak

•

- O. Vekilova
- AIST, Tsukuba, Japan
 T. Miyake
 - Universität Bayreuth, Germany L. Dubrovinsky

- Jozef Stefan Institute Slovenija
 J. Mravlje
- Collège de France/Flatiron Institute US
 A. Georges
- University College London, UK
 D. Alfè

References

LP, Miyake, Simak, Ruban, Dubrovinsky, Abrikosov PRB **87,** 115130 (2013) Vekilova, LP, Abrikosov, Simak, PRB **91,** 245116 (2015) LP, Mravlje, Georges, Simak, Abrikosov, New J. Phys. **19,** 073022 (2017) LP, Mravlje, Alfe ... (in preparation)

review: LP Ψ_k Highlight 11/2018 & Topical Review JPCM (in press)

bcc Fe: hybridization suppression at low

Large peak in bcc DOS due to a Van-Hove singularity Suppression of hybridization at low $Im[\Delta (E_F)] \approx -[\pi D (E_F)]^{-1}$