Three-terminal quantum-dot thermoelectrics

Björn Sothmann

Université de Genève

Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker

5.11.2013



# **Outline**

#### Introduction

Quantum dots and Coulomb blockade Quantum dots and Thermoelectrics Three-terminal thermoelectrics

#### **Coulomb-coupled conductors**

Coulomb-blockade regime Chaotic cavities Resonant tunneling

#### Harvesting bosons

Phonons Magnons Microwave photons

#### Summary





### Introduction



# **Quantum dots**

Confine electrons in all three spatial directions, quasi 0-dimensional "Artificial atom"



Characteristic energy scales

- Charging energy  $E_{ch} = E_C (N C_g V_g / e)^2$ ,  $E_C = \frac{e^2}{2C}$
- Level quantization  $\Delta \varepsilon$
- Tunnel couplings  $\Gamma = 2\pi |t|^2 \rho$



## **Coulomb blockade**



- Charging energy  $E_{ch} = \frac{e^2}{2C} (N C_g V_g / e)^2$
- Charge fixed away from degeneracy points
- Transport only at degeneracy points
- Coulomb oscillations



# **Energy quantization and level scheme**



- Finite level spacing in small quantum dots  $E_N = E_{ch} + \sum_{i=1}^N \varepsilon_i$
- Addition energy  $\Delta = 2E_C + \Delta \varepsilon$
- $\Delta \varepsilon \ll k_{\rm B}T, eV$ : many levels involved  $\rightarrow$  metallic island
- $\Delta \varepsilon \gg k_{\rm B}T, eV$ : only single level  $\rightarrow$  quantum dot



NANOPOWER

## **Transport regimes**



- Sequential tunneling
  - Tunneling of single electron
  - First order in  $\Gamma$
  - Real occupation of the dot
  - Energy conservation
  - Dominant on resonance  $k_{\mathsf{B}}T \gg \Gamma, |\varepsilon|$  or  $eV \gg \Gamma, |\varepsilon|$



# **Transport regimes**



- Cotunneling
  - Tunneling of two electrons
  - Second order in  $\Gamma$
  - Virtual occupation of the dot
  - Energy conservation only for total process
  - Dominant off resonance  $|\varepsilon| \gg k_{\rm B}T, eV, \Gamma$



## **Transport regimes**



- Resonant tunneling
  - Many electrons tunnel
  - Nonperturbative in  $\Gamma$
  - Complicated many-body effects (Kondo)
  - Dominant for strong coupling  $\Gamma \gg k_{\rm B}T, eV$



# **Anderson model**

Single-level quantum dot



- Level position  $\varepsilon$  (tunable)
- Coulomb energy U
- Tunnel coupling  $\Gamma_r = 2\pi |t_r|^2 \rho$  (often tunable)
- Temperature T (tunable)
- Voltage V (tunable)



# **Master equation approach**

- Probability  $P_{\chi}$  to find quantum dot in state  $\chi \in \{0, \uparrow, \downarrow, d\}$
- Occupation probabilities obey master equation

$$\dot{P}_{\chi} = \sum_{\chi'} W_{\chi\chi'} P_{\chi'}$$

• Transition rates  $W_{\chi\chi'}$  from Fermi's golden rule

$$W_{\uparrow 0} = \sum_{r} \Gamma_r f_r(\varepsilon)$$

$$W_{\uparrow d} = \sum_{r} \Gamma_r [1 - f_r(\varepsilon + U)]$$

• Current  $I = \sum_{\chi\chi'} W^I_{\chi\chi'} P_{\chi'}$ 



# **Experimental realizations**



Kuemmeth et al., Nano Letters 2008

- 2-dimensional electron gas
- Metallic nanoparticles
- Self-assembled quantum dots



# **Experimental realizations**



Dirks et al., Nat. Phys. 2011

Leturcq, Nat. Phys. 2009

- Carbon nanotubes
- Graphene
- Nanowires



# **Thermoelectrics**

- 1823 Seebeck effect: Heat  $\rightarrow$  current
- 1834 Peltier effect: Current  $\rightarrow$  Cooling

Advantages of thermoelectrics:

- No moving parts
- Scalable to the nanoscale
- Heat is ubiquitous

Disadvantage

• Low efficiency, small power



# **Mesoscopic physics and thermoelectrics**

#### Fundamental research

- Theoretical analysis of thermopower of quantum dots, quantum point contacts Proetto PRB 1991, Beenakker and Staring PRB 1992, Nakpathomkun et al. PRB 2010
- Experiments on quantum dots Staring et al. EPL 1993, Dzurak PRB 1997, Godijn et al. PRL 1999, Scheibner et al. PRL 2005, PRB 2007, Svensson et al. NJP 2012, 2013
- Experiments on quantum point contacts Molenkamp et al. PRL 1990

Can mesoscopic systems be useful for thermoelectric applications?

- Quantum wires and wells for thermoelectrics Hicks and Dresselhaus PRB 1993
- Sharp spectral features increase thermoelectric performance Mahan and Sofo PNAS 1996
- Electronic refrigerator Edwards et al. APL 1993, PRB 1995, Prance et al. PRL 2009



# **Three-terminal thermoelectrics**



Sánchez, Büttiker, PRB 2011



McClure et al., PRL 2007

**NANO**POWER

- Connection to Coulomb-drag setups
- Crossed heat and charge currents
- Separation of heat source and rectifier
- Energy harvesting

UNIVERSITÉ DE GENÈVE

### **Coulomb-coupled conductors**



# **Coulomb-blockade regime**

Sánchez, Büttiker, PRB 2011



- Coulomb-coupled quantum dots
- Exchange energy but no particles
- Conductor dot: two cold reservoirs
- Gate dot: single hot reservoir



# **Coulomb-blockade regime**



- Drive current by temperature bias
- Energy-dependent, asymmetric tunnel barriers
- Optimal heat to charge current conversion
- One energy quantum of the bath transfers one charge quantum



**NANO**POWER

# **Coulomb-blockade regime**



- Power P = IV
- Efficiency  $\eta = P/J_g$
- Device reaches Carnot efficiency  $\eta_C$  at stopping voltage
- Efficiency at maximum power  $\eta_{maxP} = \eta_C/2$



## **Chaotic cavities**

BS, Sánchez, Jordan and Büttiker, PRB 2012



- Capacitively coupled chaotic cavities
- Open quantum dots: Large number N of transport channels
- How do current and power vary with N?
- Asymmetric, energy-dependent transmissions  $T_r = T_r^0 eT_r' \delta U$



**NANO**POWE

# **Chaotic cavities**

• Current 
$$I = \frac{\Lambda}{\tau_{RC}} k_{\mathsf{B}}(\Theta_1 - \Theta_2)$$

- Asymmetry parameter  $\Lambda = \frac{G_L G'_R G_R G'_L}{(G_L + G_R)^2}$  where  $G_r = \frac{e^2}{h} T_r^0$  and  $G'_r = \frac{e^3}{h} T'_r$
- RC time  $\tau_{RC}$  determined by effective conductance and capacitance of double cavity
- Current independent of channel number,  $I \sim 0.1 \,\mathrm{nA}$
- Power scales as 1/N, similar to Coulomb-blockade for a few open channels  $P \sim 1 \, {\rm fW}$
- Efficiency scales as  $1/N^2$ , few percent of  $\eta_C$



### **Power versus conductance**



- Coulomb blockade regime: Power grows linear with conductance
- Open contacts: Power drops as inverse conductance
- Maximal power should be achieved for single channel
- $\Rightarrow$  Consider resonant tunneling through quantum dots



**NANO**POWE

Jordan, BS, Sánchez and Büttiker, PRB 2013



- Central cavity in thermal equilibrium with hot reservoir
- Cavity connected to two cold electronic reservoirs via quantum dots
- Quantum dots host single resonant level with width  $\gamma$  and energy  $E_{L,R}$



**NANO**POWE

Scattering matrix approach

- Charge current  $I_j = \frac{2e}{h} \int dE \ T_j(E) [f_j(E) f_{\mathsf{C}}(E)]$
- Energy current  $J_j = \frac{2}{h} \int dE \ ET_j(E) [f_j(E) f_{\mathsf{C}}(E)]$

• Transmission 
$$T_j(E) = \frac{\gamma^2}{(E-E_j)^2 + \gamma^2}$$

- Heat current *J* from hot reservoir
- Conservation of charge and energy

$$0 = I_{\mathsf{L}} + I_{\mathsf{R}}$$
$$0 = J + J_{\mathsf{L}} + J_{\mathsf{R}}$$



NANOPOV



- Numerically optimize  $\Delta E$ ,  $\gamma$  and V for maximal power
- Optimal values:  $\Delta E \approx 6k_{\rm B}T$ ,  $\gamma \approx k_{\rm B}T$
- Maximal power  $P_{\text{max}} \sim 0.4 (k_{\text{B}} \Delta T)^2 / h$ , about  $0.1 \, \text{pW}$  at  $\Delta T = 1 \, \text{K}$
- Efficiency at maximum power  $\eta_{\text{maxP}} \sim 0.2 \eta_{\text{C}}$



Scaling



- Swiss cheese sandwich with self-assembled quantum dots
- Dot positions do not have to match
- Dot size of  $100 \text{ nm}^2$  yields  $10 \text{ W/cm}^2$  at  $\Delta T = 10 \text{ K}$
- Robust with respect to fluctuations of level positions



### Harvesting bosons



### **Phonons**

Entin-Wohlman et al. PRB 2010, PRB 2012



- Quantum dot coupled to electronic reservoirs and phonon bath
- Linear-response thermoelectrics
- Left-right and particle-hole symmetry broken:  $\Gamma_L(E) \neq \Gamma_R(E)$
- Flux-dependence of response coefficients in Aharonov-Bohm geometry



**NANO**POWE

# Magnons

BS and Büttiker, EPL 2012



- Quantum dot coupled to ferromagnetic electrodes and ferromagnetic insulator
- Bridge between energy harvesting and spin caloritronics
- Drive pure spin current or spin-polarized charge current by magnons



NANOPOWE

## **Microwave photons**

Bergenfeldt, Samuelsson, BS, Flindt and Büttiker, arXiv 2013



- Double quantum dots connected via superconducting cavity
- Combines circuit QED and thermoelectrics
- Separate hot and cold part by macroscopic distance
- Reduce leakage heat currents



# Summary



# Summary

- Three-terminal quantum-dot thermoelectrics
- Coulomb-coupled conductors
  - Coulomb blockade: High efficiency, small power
  - Open dots: Small efficiency, small power
  - Resonant tunneling: Large power, good efficiency
- Boson-driven heat engines
  - Phonons (hard to control)
  - Magnons: spintronics
  - Microwave photons: circuit QED



NANOPC