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Particle and entropy currents. Linear response : 

Matrix of Onsager Coefficients 
in the linear response regime 

Reminders from spring 2013 lectures 
- more on website - 

N,S particle number and entropy (n,s: densities per unit volume) 
IN,IS: currents (jn,js: current densities)  

Slight change of definition as compared to spring 2013 lectures: 

Instead of gradients (note sign change !) 



Grand-canonical potential : 

Particle-number and Entropy: 

Conjugate thermodynamic variables: 

In agreement with thermodynamic definition of  
`generalized forces’, etc… cf. spring 2013 notes 



Irreversible entropy production rate : 

[Uses conservation of energy and particle number,  
cf. notes spring 2013] 

IΔV: Usual form of electrical power 



à Key property of the Onsager matrix (1) 

•  Second principle: entropy production rate 
is positive (or zero for an irreversible 
process) 

•  à L is a positive semi-definite matrix 
 
•  Dimensionless coupling constant 

characterizing energy conversion : 



Key property of the Onsager matrix (2): 
Onsager-Casimir reciprocity relations 

When time-reversal symmetry applies (B=0): 

In the presence of a magnetic field: 



Identification of the transport coefficients 
from the Onsager matrix L: 

Using: 

Conductance (ΔT=0): 

Seebeck coefficient (Thermopower) α : 

Open circuit I=0 à `Stopping force’  



Thermal conductance: 
Again, open circuit condition (I=0):  

Lorenz number  
(cf. Wiedemann-Franz law, later): 

Peltier coefficient (heat per unit charge):  

Onsager symmetry à Kelvin’s relation 



Considering a setup in which the current I and thermal 
gradient are imposed, one can rewrite the above  

linear-response equations as:  

R = 1/G: Resistance, Π: Peltier coefficient  

Rate of irreversible heat production: 

The Seebeck/Peltier terms correspond to reversible processes  
and do not contribute ! 



Generalization of the Landauer  
formula to thermoelectric 

transport 
 

Thermal: HL Engquist and PW Anderson Phys Rev B 24, 1151 (1981)   
 

Thermoelectric effects:  
U.Sivan and Y.Imry Phys Rev B 33, 551 (1986) 
P.N. Butcher J. Phys Cond Matt 2, 4869 (1990)  



The Landauer formula 
Conductance as Transmission 
Reminder from lecture 1 



Particle, Energy and Entropy 
Currents 

For a detailed discussion,  
see notes at the end of these slides 



Linear Response  
Regime: 



Conductance, Thermopower and Thermal Conductance: 

Dimensionless integrals: 
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Different coefficients probe different range of energy: 
-  Conductance probes the immediate vicinity of EF,  
in a symmetric way for particles and holes 
-  Thermopower probes a difference between contributions from  
holes (>0) and particles (<0). It vanishes if particles and hole  
have the same transmission.   
- Thermal conductance probes a few kT from EF 



( Dimensionality: L2-d ) 

Note complete FORMAL similarity with expressions from  
Boltzmann equation for a bulk system, see spring 2013  

Key difference: SQUARE  
of velocity enters here 
scattering – not ballistic 
Current-current correlator 



Low Temperature expressions  
(from Sommerfeld’s expansion – see notes 

Warning: assumes no or weak intrinsic T-dependence of transmission 
 – OK for elastic scattering 

Mott-Cutler 

Landauer 

Wiedemann-Franz law 



Quantum Point Contacts (QPC) 
The first evidence of 

conductance quantization 
Van Wees et al. PRL 60, 848 (1988) 

Quantized Conductance of Point Contacts in  
a Two-Dimensional Electron Gas 

cf. also: 
Wharam et al.  

One-dimensional transport and the quantization  
of the ballistic resistance 
J.Phys C 21 L209 (1988)   





Transmission coefficient for an electron injected in channel m  
to go into channel n:   

Each mode n contributes a current proportional to  

Total current finally involves transmission coefficient:  

sum of eigenvalues of tt+ matrix 



cf. Nazarov&Blanter 
Cambridge UP, 2009 

open 

closed 

partial 



Number of transverse  
modes in 2D 
for a width W 
(Slide: G.Montambaux)  



Simplest model: only fully open or fully closed channels 
(`Il faut qu’une porte soit ouverte ou fermée’, Alfred de Musset) 



Thermopower of a QPC 
Theory: P.Streda J.Phys Cond Matt. 1, 1025 (1989), Proetto PRB 44, 9096 (1991)  

First experiment: L.Molenkamp et al. PRL 65, 1052 (1990) 

Use again simplest model (open or close channels only): 



Conductance (units of 2e2/h) 

MINUS the Thermopower  
(units of kB/e) 

Thermopower has a peak each time a new level becomes  
`active’ with ~ constant height  

Recall at low-T: 

Experimental observation: see Laurens Molenkamp’s seminar 

Parabolic well: 



Temperature dependence 
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Saddle-shape potential, van Houten et al arXiv:cond-mat 0512612  



A useful observation 
(to be continued on Nov,19…) 

cf. Mahan and Sofo, PNAS 93, 7436 (1996) 
Think of: 

As a probability density, measuring the contribution to the 
total conductance of states around a given energy (for a 
given gate voltage) 

The thermopower is ~ the first moment of this distribution 
The thermal conductance is ~ the second moment 



NOTES: CURRENTS, ETC… 



Notes on Thermoelectricity of Small Systems - Collège de France - Fall 2013

Antoine Georges

(Dated: Notes complementing lectures 2 and 3 (Nov 12 - Nov 19, 2013))

Note: These are by no means intended as a self-contained set of notes. Instead, they are merely complements to the
slides, covering the material presented on the blackboard during the lectures.

I. CONDUCTANCE AS TRANSMISSION: THE LANDAUER FORMULA

Useful books: Nazarov and Blanter[2], Montambaux[1].

A. Simple derivation for a single one-dimensional channel

Consider an incident wave coming from the left reservoir, which is partially reflected and partially transmitted, so
that on the left side:

ψL(x) =
1√
L

[
e+ikx + r e−ikx

]
(1)

with r the reflection coefficient for the amplitude (a complex number in general). The corresponding particle current
density reads:

jn =
~
m

Re

[
1

i
ψ∗∂xψ

]
=

~k
mL

(1− |r|2) (2)

We could also have calculated the current from the transmitted wave:

ψR(x) = t
1√
L
e+ikx ⇒ jn =

~k
mL
|t|2 (3)

These two expressions are equivalent since the reflection and transmission coefficients for probabilities add up to unity:

R ≡ |r|2 , T ≡ |t|2 , R+ T = 1 (4)

The total current is the difference between the current originating from the left reservoir and that originating from
the right reservoir (for a single-channel, the transmission coefficient in both cases is T , see below):

I = 2spin (−e) 1

L

∑
k>0

~k
m
T (εk) [f(εk − µL)− f(εk − µR)] (5)

We note that (beware of the subtleties with factors of 2: we consider only right-moving modes with k > 0 !):

1

L

∑
k>0

~k
m
φ(εk)→

∫ +∞

0

dk

2π

~k
m
φ(εk) =

∫
dε

1

2π~
φ(ε) (6)

So that one finally gets:

I = −2e

h

∫
dε T (ε) [f(ε− µL)− f(ε− µR)] (7)

This formula is actually valid for an arbitrary dispersion ε(kx), since the associated velocity reads vk = 1
~
∂εk
∂k and∫

dk
2π vk →

∫
dε
h : the density of states does not appear in the final expression !
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We recall - see the lectures of spring 2013 - that the (electro-) chemical potential difference is related to the tension
between the left and right reservoirs by:

µL − µR = −eV (8)

A common chemical potential can be defined such that:

µL = µ+ δµL , µL = µ+ δµR , δµL − δµR = −eV (9)

The linear-response conductance is thus given by (I = GV ):

G =
2e2

h

∫
dε T (ε)

(
−∂f
∂ε

)
, G(T = 0) =

2e2

h
T (εF ) (10)

Quantum of resistance:

RQ ≡
h

e2
= 25.812807449(86) kΩ (11)

The remarkable point is of course that a perfect 1-channel ballistic conductor does not have infinite conductance, but
rather a conductance 2e2/h !

B. Where does the potential drop? Contact resistance.

Let us consider a 4-probe geometry as in the slides. We are going to evaluate the electron number at point A in
two possible ways. By assuming local equilibrium at a local chemical potential µA. Or by stating that the electrons
at A are either thos coming from the left reservoir and having undergone a reflexion of those coming from the right
reservoir and having been transmitted. Thus:

NA = 2
∑
k>0

[(1 +R)f(εk − µL) + T f(εk − µR)] (12)

= 2
∑
k

f(εk − µA)

Beware that the first sum runs over k > 0 while the second one runs over all k’s ! And
∑
k = 2

∑
k>0. Expanding for

small departures from equilibrium, one obtains:

(1 +R+ T )f(ε− µ) + [(1 +R)δµL + T δµR]

(
−∂f
∂µ

)
= 2f(ε− µ) + δµA

(
−∂f
∂µ

)
(13)

Hence (similar reasoning for B):

2δµA = (1 +R)δµL + T δµR , 2δµB = T δµL + (1 +R)δµR (14)

So that the potential drop in the channel is given by:

µA − µB = R (µL − µR) (15)

Using the Landauer formula for the whole system: VL − VR = h
2e2

1
T I, we obtain the conductance of the channel as

(first Landauer formula, 1957):

Gch =
2e2

h

T
R

=
2e2

h

T
1− T

(16)

Calculating the potential drops at the contact µA − µL, we obtain that they are equal on each side, and that the
resistance of each contact is given by:

Rc =
h

4e2
(17)

We check that Rc +Rch +Rc = 1/G = h
2e2 .
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FIG. 1: Transmission and reflection from the scattering region, and probabilities of occupation of a given state.

II. GENERALIZATION OF THE LANDAUER FORMULA TO THERMOELECTRIC TRANSPORT

A. Particle, Energy and Entropy currents

We recall (lectures 2012-2013) that entropy (S) and particle number (N) are conjugate to temperature and chemical
potential (Ω ≡ −kBT lnZgc):

S = −∂Ω

∂T
|µ , N = −∂Ω

∂µ
|T (18)

We consider two reservoirs at local equilibrium characterized by (TL, µL) and (TR, µR). The left reservoir injects
particles with k > 0 to the left of the scattering region, while the right reservoir injects particles with k < 0 to the
right of the scattering region. The conventions for the transmission and reflection coefficients are summarized on
Fig. 1.

Let us calculate first the particle current IN , considering e.g. the region on the left. The probability of occupation
of a right-moving state with k > 0 there is: fL ≡ f(εk − µL), while the probability of occupation of a left-moving
state with k < 0 is (Fig. 1):

(RfL + T ′fR) (19)

In the following, we specialize to the case with time-reversal invariance, so that:

T = T ′ , R = R′ , (20)

and from parity: v−k = −vk, ε(−k) = ε(k). Hence, we have:

vkfL + v−k (RfL + T ′fR) = vk T (fL − fR) (21)

The particle current thus reads:

IN = 2spin

∫ ∞
0

dk

2π
vk T (fL − fR) (22)

As explained above
∫∞

0
dk
2πvk →

∫
dε
h , so that the particle current IN (I ≡ −eIN ) finally reads:

IN =
2

h

∫
dε T (ε) [fL(ε)− fR(ε)] (23)
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We note that the particle number being a conserved quantity, we could equally well have calculated the current from
the right side (ṄN + ṄR = 0), and indeed:

(T fL +RfR)− fR = T (fL − fR) (24)

Similarly, energy is a conserved quantity, and we can calculate the energy current from either region with the result:

IE =
2

h

∫
dε T (ε) ε [fL(ε)− fR(ε)] (25)

The entropy current is a more subtle issue. Indeed, entropy is not a conserved quantity and the entropy currents
to the left and to the right of the scatterer are not equal, in general: dissipation takes place in the scattering region
(except in the ballistic case T = 1, see above). The discussion below follows Sivan and Imry.3 Let us define:

F [X] ≡ −X lnX − (1−X) ln(1−X) (26)

The entropy current on the left side reads (we use R+ T = 1):

ILS = 2
kB
h

∫
dε (F [fL]− F [(1− T )fL + T fR]) (27)

while the entropy current on the right-hand side reads:

IRS = 2
kB
h

∫
dε (F [T fL + (1− T )fR]− F [fR]) (28)

It is easily checked that ILS 6= IRS in general, except in linear response to first order in the gradients (as we shall see
below) and, as expected, in the ballistic case where:

T = 1 : ILS = IRS = 2
kB
h

∫
dε (F [fL]− F [fR]) (29)

B. Linear response

1. Expressions of the currents in linear response

All we have to do if we are interested in the linear response coefficient is to expand these expressions to first order
in the gradients (note that I denote by ∆µ the difference between left and right, not to be confused with the gradient
∇µ = −∆µ) :

∆µ ≡ µL − µR , ∆T ≡ TL − TR , ∆f ≡ fL − fR (30)

The statistical factors entering the left-side entropy current is thus:

F [f + ∆f ]− F [(1− T )(f + ∆f) + T f ] = T F ′[f ] ∆f +
1

2
(∆f)2F ′′[f ] T (2− T ) + · · · (31)

and for the right-side current:

F [f + T ∆f ]− F [f ] = T F ′[f ] ∆f +
1

2
(∆f)2F ′′[f ] T 2 + · · · (32)

Hence, up to first order in ∆f (linear response), the two entropy currents coincide and read:

IS = 2
kB
h

∫
dε T (ε)F ′[f ] ∆f +O(∆f2) (33)
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Using:

F ′[f ] = ln
1− f
f

=
ε− µ
kBT

≡ x (34)

we recover the expected relation (dE = TdS+µdN) between the entropy, energy and particle currents valid in linear
response:

IS =
2

h

∫
dε T (ε)

ε− µ
T

∆f =
1

T
(IE − µIN ) (35)

We also note that, to order ∆f2, the difference between the entropy current on the right- and left- sides (related to
the heat dissipated in the scattering region) read:

IRS − ILS = 2
kB
h

∫
dε
T (1− T )

f(1− f)
(∆f)2 (36)

where we have used F ′′[f ] = −1/f(1− f). Relationship to noise ?

2. Onsager coefficients

Using:

∆f =

[
∆µ

∂

∂µ
+ ∆T

∂

∂T

]
f

(
ε− µ
kBT

)
=

(
−∂f
∂ε

) [
∆µ+

ε− µ
T

∆T

]
(37)

we obtain:

IN =
2

h

∫
dε T (ε)

[
∆µ+

ε− µ
T

∆T

] (
−∂f
∂ε

)
(38)

IS =
2

h

∫
dε T (ε)

[
ε− µ
T

∆µ+

(
ε− µ
T

)2

∆T

] (
−∂f
∂ε

)
From which we immediately identify the Onsager coefficients defined as (cf 2012-2013 lectures):(

IN
IS

)
=

(
L11 L12

L21 L22

) (
∆µ
∆T

)
(39)

L11 =
2

h
I0 , L12 = L21 =

2

h
kBI1 , L22 =

2

h
k2
BI2 (40)

in which the dimensionless integrals read (x ≡ (ε− µ)/kBT ):

In ≡
∫
dε T (ε)

(
ε− µ
kBT

)n (
−∂f
∂ε

)
=

∫
dx

xn

4 cosh2 x
2

T (µ+ x kBT ) (41)

We have also explicitly verified Onsager’s symmetry (no magnetic field is present here, and the system is time-reversal
invariant).

Let us express the corresponding linear-response coefficient in a more physical way. The electrical and heat (δQ =
TdS) currents are given by:

I = −eIN , IQ = TIS (42)

and the tension is given by: ∆V = −∆µ/e, so that we obtain:

I = e2L11∆V − eL12∆T , IQ = −eTL21 ∆V + TL22 ∆T (43)
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The (electrical) conductance is defined by the response I = G∆V in the absence of a thermal gradient, so that:

G = e2L11 =
2e2

h
I0 (44)

The Seebeck coefficient α (or thermopower) is defined by the stopping condition (corresponding to an open circuit),
i.e. I = 0:

α ≡ E

∇T
|I=0 ≡ −

∆V

∆T
|I=0 (45)

so that:

α = − L12

eL11
= −kB

e

I1
I0

(
kB
e

= 86.3µV K−1 ) (46)

The Peltier coefficient is defined by the heat current induced in the absence of a temperature gradient, as:

IQ ≡ Π I|∆T=0 (47)

so that:

Π = −T L21

eL11
= Tα (48)

which satisfies Kelvin-Onsager relation.

Finally, the thermal conductance Gth is also defined under open-circuit conditions, as:

IQ = Gth ∆T |I=0 (49)

so that:

Gth

T
=

[
L22 −

L12L21

L11

]
=

2

h
k2
B

[
I2 −

I2
1

I0

]
(50)

And the Lorenz number reads:

L ≡ Gth

TG
=

(
kB
e

)2
[
I2
I0
−
(
I1
I0

)2
]

(51)

Alternatively, we can consider a setup in which we control the current and the temperature gradient, and are interested
in the resulting tension and heat current. We express ∆V as:

∆V =
1

e2L11
I +

L12

eL11
∆T = RI − α∆T (52)

with the resistance R ≡ 1/G. Substituting into the expression of IQ, one finally obtains:(
∆V
IQ

)
=

(
R −α
Π Gth

) (
I

∆T

)
(53)

3. Irreversible heat dissipation in linear response

Let us finally discuss the total dissipated entropy. We remember (spring 2013 lectures) that the total irreversible
heat production rate is the product of currents and generalized forces:

∂Q

∂t
|irr = T

∂S

∂t
|irr = IN∆µ+ IS∆T = I∆V + IQ

∆T

T
(54)
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This can be rewritten in two ways. In terms of the gradients only:

T
∂S

∂t
|irr = (∆µ,∆T )

(
L11 L21

L21 L22

) (
∆µ
∆T

)
(55)

In this form, we see that Onsager’s matrix must be positive semi-definite to insure Q̇irr ≥ 0.

Alternatively:

∂Q
∂t |irr = (I,∆T/T ) ·

(
R −α
Π Gth

) (
I

∆T

)
(56)

= RI2 + Gth

T ∆T 2 + I∆T
[

Π
T − α

]
= RI2 + Gth

T ∆T 2

We note that the thermoelectric effects (Seebeck and Peltier) do not contribute: they are reversible effects. The total
irreversible heat production rate is the sum of the Joule and Fourier heating.

1 G. Montambaux, Conduction quantique et physique mésoscopique, Cours de l’Ecole Polytechnique, 2013.
2 Yu. V. Nazarov and Blanter Y., Quantum transport - introduction to nanoscience, Cambridge University Press, 2009.
3 U. Sivan and Y. Imry, Multichannel landauer formula for thermoelectric transport with application to thermopower near the

mobility edge, Phys. Rev. B 33 (1986), 551–558.


