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Correlations @ One- and Two-particle level 
Experiment: (AR)PES, InvPES, STM, … 

1P
level

2P
level

Origin of scattering?

2P-vertex Experiment: IR, INS, NMR, 
… 

Theory: prerequisites 

ª Computing (on equal footing) both 𝚺 and F
[DMFT/DCA, parquet schemes (PA,DΓA,QUADRILEX), DiagMC, DQMC, fRG, …]

Self-energy



How to analyse Σ ?

Our starting point: 
parquet 

decomposition
in terms of 

2P-irreducible/reducible
diagrams

O. Gunnarsson ..., & AT, PRB (2016)
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excitations in the different scattering channels while the
parquet equation (8) provides for their mutual renormalization.
Equations (8)–(10) form a closed set of four equations for

F, Γl (l ¼ pp; ph; ph), and Λ, which can be solved self-
consistently, provided one of these five quantities and the one-
particle Green’s function are known (for the case in which Λ is
given, see the left part of Fig. 6). As we usually do not know
the exact vertex, we have to consider approximations. For
instance, the so-called parquet approximation assumes that the
fully irreducible vertex is replaced by the constant bare
interaction, i.e., Λkk0q ¼ U (Bickers, 2004); or in parquet
DΓA, Λkk0q is approximated by its local counterpart (Λνν0ω).
The set of four parquet equations corresponds to loop II in

Fig. 6 and needs to be supplemented by the self-consistent
calculation of the one-particle Green’s function and self-
energy (loop I in Fig. 6). For obtaining these one-particle
functions from the two-particle vertex, we exploit the relation
between Green’s functions of different particle number in the
(Heisenberg) equation of motion. This leads to the Schwinger-
Dyson equation, which connects the vertex F with the self-
energy Σ and reads for a Hubbard-like model with a local
interaction U [cf. Hamiltonian (12)]:

Σkν ¼
Un
2

−U
X

ν0ω
k0q

Fνν0ω
↑↓;kk0qGk0ν0Gðk0þqÞðν0þωÞGðkþqÞðνþωÞ:

ð11Þ

Here n denotes the particle density of the system. For the
generalization to multiple orbitals and nonlocal interactions,
see, for example, Galler, Thunström, Gunacker et al. (2017).
Equation (11) represents an exact relation between the two-
and one-particle correlation functions. Hence for a given Λ we
have altogether five equations and five unknowns which can
be calculated self-consistently as indicated in Fig. 6.
In diagrammatic extensions of DMFT discussed in Sec. III,

the Schwinger-Dyson equation (11) is also often used when
obtaining F via other (e.g., ladder) resummations of Feynman
diagrams. The Schwinger-Dyson equation also provides the
basis for the fluctuation diagnostics method. By performing
partial summations over k0 and ν0 in Eq. (11), the physical

origin of the spectral features in the self-energy can be
identified (Gunnarsson et al., 2015).
The dependence of two-particle Green’s and vertex func-

tions on several indices makes their numerical calculations,
postprocessing, and storage evidently much more challenging
than that of the single-particle Green’s functions. Hence
exploiting all the symmetries of the system is vital to reduce
the numerical and memory storage requirements. Various
symmetry relations are summarized in Table I for Hubbard-
type models. While the symmetry properties reported there are
valid for the vertices F and Λ, they do not hold in general for
the explicitly channel dependent quantities Φl and Γl since
the symmetry relations will mix one channel with the others.
For an exhaustive discussion of the specific symmetry proper-
ties of Φl and Γl, see Rohringer, Valli, and Toschi (2012) and
Rohringer (2013).
Starting with the next section, we also consider local vertex

functions, Green’s functions, and self-energies of an AIM
problem. These quantities are frequency but not momentum
dependent. In the following we distinguish such local vertices
from the lattice vertices by dropping the momentum index,
i.e., we write Fνν0ω

r for the full local vertex instead of Fνν0ω
r;kk0q

for the lattice quantity defined in Eq. (7), and the same holds

FIG. 5. Parquet decomposition of the one-particle irreducible vertex F into its two-particle fully irreducible contribution Λ and
the three contributions Φl reducible in the particle-hole (ph), vertical particle-hole (ph), and particle-particle channels (pp). The latter
can be separated into two parts by cutting two Green’s functions as indicated by the dashed lines. For instance, for the l ¼ ph channel,
the legs 12 and 34 are separated. The subsets of diagrams marked in violet (light gray) are part of the irreducible ph vertex Γl¼ph which
contains all diagrams that cannot be separated in channel l ¼ ph. Note that all diagrams in this figure are meant as so-called skeleton
diagrams, i.e., all lines correspond to fully interacting Green’s functions, except for the external legs that mark only the incoming and
outgoing generalized momenta. The red dots denote the bare Hubbard interaction U.

FIG. 6. Flow diagram for solving the parquet equations. Left: If
the fully irreducible vertex Λ is given, the parquet equation (8)
and the three BSEs (10) for l ¼ ph; ph; pp allow us to calculate
the four unknowns F, Γl. Right: As in the BSE (10) the
interacting Green’s function G also enters, we need to extend
the self-consistency loop by two additional unknowns (G and Σ)
and equations [the equation of motion (11) and the Dyson
equation (3)]. The latter has the noninteracting Green’s function
G0 as input.
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Parquet decomposition: Results 

O. Gunnarsson, ... , & AT,  PRB (2016)

ª Analysis of a DMFT self-energy (similar results also for DCA) 

✔ at weak-coupling (U << bandwidth) reasonable decomposition 



But, it is not that easy …

Our starting point: 
parquet 
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Excluding the trivial situation when all four external lines
enter at the same interaction vertex (which gives just the
constant contribution U), these considerations suggest the
following threefold classification of the diagrams of F:
(i) The first group includes all diagrams where both the

incoming and outgoing particle-hole (or particle-particle)
pairs enter at the respective same bare interaction vertex;
see Fig. 7(a). Such diagrams depend only on the correspond-
ing frequency differences between the particle and hole
entering the diagram at the respective same bare vertex. In
the case of Fig. 7(a) this frequency is ω, which one can
see from the fact that all internal frequency summations in
Fig. 7(a) depend only on ω but not on ν and ν0. Note that the
diagram in Fig. 7(a) is reducible in theph channel; it belongs to
Φph in Fig. 5. The two other possibilities of how two external
legs can be pairwise attached to bare vertices are diagrams

reducible in theph andpp channels. These depend on only one
(bosonic) frequency (combination) ν−ν0 and νþν0þω, respec-
tively. In Fig. 8 (left), these diagrams are responsible for the
constant background (ω ¼ 0), the main (ν − ν0 ¼ 0), and
secondary (νþ ν0 þ ω ¼ 0) diagonals of the DMFT vertex
F. From a physical perspective, diagrams of type (i) correspond
to physical susceptibilities. For example, the contribution to F
originating from the sum of all diagrams of type Fig. 7(a)
corresponds to a ph (charge or spin) susceptibility (Rohringer,
Valli, and Toschi, 2012; Rohringer et al., 2013; Wentzell
et al., 2016).
(ii) The second class includes all diagrams where only

one pair of external lines is attached to the same bare vertex.
Their contribution depends on two (one bosonic and one
fermionic) Matsubara frequencies. For example, Fig. 7(b)
depends on ω and ν0 but not on ν. Such diagrammatic

(a) (b) (c)

FIG. 7. Categorization of diagrams according to their frequency dependence. (a) Diagram where the left and right pairs of external lines
are attached to the same two bare interaction vertices, (b) diagram where only the left external lines are connected to the same bare
vertex, and (c) diagram where all external lines enter at different bare vertices. The external frequencies, on which the diagram depends
explicitly, are marked in red (gray).

FIG. 8. DMFT results for the full local vertex (Fνν0ðω¼0Þ
c − U, left), the 2PI vertex in the ph charge channel (Γνν0ðω¼0Þ

c − U, middle), and
the fully 2PI vertex (Λνν0ðω¼0Þ

c − U, right) at Matsubara frequencies νð0Þ ¼ ð2nð0Þ þ 1Þπ=β. The calculations have been performed for the
Hubbard model on a square lattice with nearest-neighbor hopping t at T ¼ 0.4t, U ¼ 4.8t (lower panel) and U ¼ 5.08t (upper panel).
The intensity (color bar) is given in units of 4t. Adapted from Schäfer et al., 2016.
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Hubbard:  T. Schäfer, …, & AT, PRL, (2013) & O. Gunnarsson ..., & AT, PRB (2016)
AIM: P. Chalupa, …,   & AT,  PRB (2018); Falicov Kimball:  V. Janis, et al., PRB (2014)
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ª Analysis of a DMFT self-energy (similar results also for DCA) 

✗ For U ~ bandwidth:  “chaotic„ decomposition    

✗ parquet decomposition    ✔ Bethe-Salpeter decomposition
(w.r.t. the dominant channel)



Parquet decomposition: Results

O. Gunnarsson, ... , & AT,  PRB (2016)

ª Analysis of a DCA self-energy (out-of-half-filling: n =0.94, U = 7t) 

✗ a “chaotic„ decomposition, but only in pp and 𝛬

O. GUNNARSSON et al. PHYSICAL REVIEW B 93, 245102 (2016)

Ref. [42], that the positive (i.e., non-Fermi-liquid) slope of
Im!(K,iν) in the lowest-frequency region for K = (π,0)
indicates a pseudogap spectral weight suppression at the
antinode. The parquet decomposition of the two self-energies
is, however, very similar: The strong oscillations of the
various channels clearly demonstrate that in the parameter
region where a pseudogap behavior is found in DCA, the
parquet decomposition displays already strong oscillations.
It is also interesting to notice that, similarly as we discussed
in the previous section, also in this case, the spin-channel
contribution of the parquet decomposition is the only one
displaying a well-behaved shape, with values of the order of
the self-energy and no frequency oscillations. Consequently,
also for the DCA self-energy in the pseudogap regime, a
Bethe-Salpeter decomposition in the spin channel of the
self-energy remains valid (see right panel of Fig. 8). As
discussed in the previous section, this might be interpreted as a
hallmark of the predominance of the spin-scattering processes
in a nonperturbative regime, where a well-behaved parquet
decomposition is no longer possible. In this perspective, the
physical interpretation would match very well the conclusions
derived about the origin for the pseudogap self-energy of DCA
by means of the recently introduced fluctuation diagnostics

method [42]. At present, hence, the post processing of a given
numerical self-energy provided by the fluctuation diagnostics
procedure appears the most performant because, differently
from the parquet decomposition, it remains applicable, without
any change, also to nonperturbative cases.

After discussing our parquet decomposition calculations,
their proposed physical interpretation, and their limitation in
applicability, it is natural to wonder where such limitations
arise from. This analysis is, in fact, very important also beyond
the calculations presented in this work because the parquet
equations represent the base-camp of several novel quantum
many-body schemes aiming at the description of strongly
correlated electron beyond the perturbative regime.

As we anticipated before, the reason for the occurrence
of strong low-frequency oscillations in the parquet decom-
position can be traced to the divergence of the 2PI vertex
functions observed by increasing U [48] or, equivalently,
to the occurrence of singularities in the generalized ph
charge (χch) and pp (↑↓ and/or singlet) (χpp) susceptibilities.
The investigation of the exact relation between the peculiar
behavior of the parquet decomposition by increasing U and the
singularities of the corresponding generalized susceptibility
matrix will be explicitly addressed below.
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FIG. 8. Parquet decomposition of the DCA self-energy ![K,iν] with Nc = 8 for the low-T , underdoped case n = 0.94 with U = 1.75 eV
and β = 60 eV−1 (see text). Left upper panel: parquet decomposition for the antinodal DCA self-energy [K = (π,0)]; right upper panel:
Bethe-Salpeter decomposition of the antinodal DCA self-energy. Left lower panel: parquet decomposition of the nodal [K = ( π

2 , π
2 )] DCA

self-energy. Right lower panel: Bethe-Salpeter decomposition of the nodal DCA self-energy.
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FIG. 1. For all panels, the temperature is T/D = 0.125. (a) Color plot of |δG| ≡ |Gcdmft
00 (iω0) − Grev

00 (iω0)|/|Gcdmft
00 (iω0)|; black crosses are

data points, red crosses are points where the reverse impurity solver does not converge. (Left inset) Slices for fixed doping, showing discontinuity
vs U for δ = 7% and 9%. (Right inset) Hybridization (local) of Gcdmft (top, green) and Grev (bottom, red), for U = 2 and δ = 0 showing its
causality violation. (b) Vertex divergences, where the real part of an eigenvalue εi of χ̃%=0

c crosses zero for single-site DMFT (dashed line)
and 2 × 2 CDMFT (colored circles). Color encodes Im εi at the given point; colored stripes are guides for the eyes. (Inset) Im εi vs doping
for the bottom two groups of circles for 2 × 2 CDMFT. (c) Color plot of |δ&| ≡ |Im&cdmft

00 (iω0) − Im&nested
00 (iω0)|/|Im&cdmft

00 (iω0)|, i.e., the
difference between the imaginary part of the local self-energy for 2 × 2 NCS and the 2 × 2 CDMFT (the latter is close to the exact solution,
see Appendix A 1 and Fig. 3).

We consider the Hubbard model on a square lattice:

H = −t
∑

⟨ij⟩σ
c
†
iσ cjσ − µ

∑

iσ

niσ + U
∑

i

ni↑ni↓, (1)

where c
†
iσ creates a fermion with spin σ at site i. The density

operator is niσ = c
†
iσ ciσ . The nearest-neighbor hopping ampli-

tude is t , the on-site interaction U and the chemical potential
µ. D = 4t is the unit of energy. We use the CT-INT algorithm
to solve the quantum impurity model [78,79].

Let us first address the representability issue of the Green
function G by a Weiss field G in a cluster impurity model.
We consider a 2 × 2 CDMFT calculation for T/D = 0.125
and various U and dopings δ, where it yields a quantitatively
good solution as compared to converged large cluster DCA
benchmarks (see Fig. 3). The CDMFT self-consistency equa-
tion reads [9] Gimp[G] = Gloc[G] with

Gloc[G](iωn) ≡
∑

k∈RBZ

(iωn + µ − ϵ̂k − &imp[G](iωn))−1,

where ϵ̂k is the dispersion over the superlattice of clusters,
RBZ is the reduced Brillouin zone and &imp (resp. Gimp) is
the impurity cluster self-energy (respectively, Green function).
The CDMFT equations are solved with the usual iterative
technique for DMFT; given G(i) at iteration i, the impurity
model yields &imp[G(i)] and the next iteration G(i+1) is given
by

G(i+1) = (Gloc[G(i)]−1 + &imp[G(i)])−1. (2)

Starting from the converged CDMFT solution Gcdmft we
then implement a reverse quantum impurity solver [60]: we
seek a bare propagator Grev of the cluster model such that
Gimp[Grev] = Gcdmft, with a similar iterative method as in

Eq. (2) but with Gloc[G(i)] replaced by Gcdmft, which remains
fixed in the calculation.

In Fig. 1(a), we present the relative difference between
the local component of the converged CDMFT Weiss field
Gcdmft and the result of the reverse impurity solver Grev. We
observe three regions. At weak coupling, the reverse impurity
solver yields Gcdmft as naively expected. At strong coupling
and high doping, the reverse solver does not converge. At
strong coupling and low doping, Grev progressively deviates
from Gcdmft, even though they both yield the exact same Green
function Gcdmft. As soon as Grev is different from Gcdmft it
acquires a noncausal hybridization function ) [80] as shown
in the inset of Fig. 1(a). Indeed, )(τ ) is not concave over the
full [0,β] interval and therefore has a corresponding spectral
function with negative parts. This calculation demonstrates the
existence of multiple branches of , for the 2 × 2 impurity
problem by exhibiting explicitly two G (and hence &) giving
the same G, see also Refs. [60,61,63–65,77]. We will see below
that a similar phenomenon occurs in NCS.

It is interesting to note that in the reverse impurity calcu-
lation at low doping δ < 5%, one first finds Grev = Gcdmft for
small interactions U < 1.25 and then continuously switches
to an unphysical solution for G as U is increased. This
means that the physical branch of , crosses the unphysical
branch. As has been discussed in the particle-hole sym-
metric case [61], this crossing has to be accompanied by
a divergence of the corresponding two-particle irreducible
vertex function -, since it is the second derivative of ,
with respect to G. We generalize the results of Refs. [63–
65] to the doped case and map these divergences of - in
the 2 × 2 CDMFT case, to obtain a characterization of the
strong-coupling region, which is not linked to the details
of an iterative algorithm. Given the two-particle propagator
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Fig. 1 (d). Now it is possible to transfer q = 0 from
the photon and to pick up nonetheless the strong AFM
or CDW fluctuations at k� k0 ⇡ (⇡,⇡, . . .). The physics
of the associated process is visualized in Fig. 1 (c). First,
the light creates an electron-hole pair. Because of the
strong Coulomb interaction this electron hole-pair cre-
ates a second electron-hole pair at a wave vector displaced
by (⇡,⇡, . . .), and the two interact repeatedly with each
other, before emitting a photon again. Note that if one
assigns times to the electron-photon and Coulomb inter-
actions in Fig. 1 (d) there are, after the first and till the
last Coulomb interaction, always two particle and two
hole Green’s functions. This makes the ⇡-ton distinc-
tively di↵erent from excitons or quasiparticle-quasihole
excitations, including those of a backfolded Brillouin zone
envisaged as the coupling of AFM fluctuations to light in
[6] where the importance of AFM fluctuations was real-
ized.

This excitation resembles to some extent [7] the pairing
of electrons in superconductors through magnetic fluctu-
ations. Since AFM or CDW fluctuations are typically at
or close to a wave vector (⇡,⇡, . . .), we suggest to call
this polariton a ⇡-ton. But of course if a strongly corre-
lated system happens to have its dominant fluctuations
at another wave vector k � k0 6= 0, the same processes
described in this paper allow for the coupling to light,
creating polaritons.

In hindsight it appears rather obvious that AFM or
CDW fluctuations couple this way to light. Why has
this not been realized before? This is because numeri-
cal methods such as quantum Monte Carlo [6] or exact
diagonalization [8] su↵er from the di�culty to analyze
the underlying physical processes, and analytical meth-
ods as e.g. RPA or FLEX [9] have been mostly biased
with respect to certain channels such as the particle-hole
(ph) channel in Fig. 1 (b) for excitons. Similar Feyn-
man diagrams but with maximally crossed interaction
lines, i.e., the particle-particle (pp) channel, have been
made responsible for weak localization [10] and strong
localization [11] in disordered systems. But the third
(rotated) transversal particle-hole (ph) channel of Fig. 1
(d) has, to the best of our knowledge, not been consid-
ered hitherto, except for the second order diagram, the
Aslamazov-Larkin correction [12–14] which for half-filling
compensates the second-order diagram of the pp-channel.
Let us emphasize that it is however the whole ladder
which is responsible for strong AFM or CDW fluctua-
tions.

Our insight has only been possible because of recent
methodological advances which allow us to study all three
aforementioned channels unbiasedly, using the parquet
equations [16–18] within the dynamical vertex approxi-
mation (D�A) [19–21], the dual fermion approach (DF)
[22] and the parquet approximation (PA) [16]. For a re-
view of these and related methods [23–26], see [27].

Models and methods. Let us now turn to the actual

calculations, starting with introducing the models, which
all can be summarized in the Hamiltonian

H = �t
X

hiji �

c†i�cj�+U
X

i

ni"ni#+
1

2

X

i 6=j,��0

Vijni�nj�0 (1)

where c(†)i� represents annihilation (creation) operator for

an electron with spin � at site i; ni� = c†i�ci�; hiji sums
over each nearest neighbor pair i, j once. For the Hub-
bard model (HM) we have a local interaction U only, i.e.,
Vij = 0, and t denotes the hopping. We also study the ex-
tended Hubbard model (ExtHM), with nearest-neighbor
interaction Vij = V . The Pariser-Parr-Pople model
(PPP) [28, 29] describes conjugated ⇡-bonds in carbon-
based organic molecules and is here employed for a ben-
zene ring, i.e., a one-dimensional chain with six sites, pe-
riodic boundary conditions and interactions between all
sites. Finally, the Falicov-Kimball model (FKM) [30, 31]
has the same form as the HM but the hopping is only
for one spin species. All models are solved for the square
lattice (except PPP) at half-filling in the paramagnetic
phase; t ⌘ 1 and Planck constant h̄ ⌘ 1 set our unit
of energies and frequencies; for the optical conductivity
lattice constant a ⌘ 1, elementary charge e ⌘ 1.
We employ the method which we consider most appro-

priate for the four models, i.e., the parquet D�A for the
HM [32], the PA for the ExtHM and PPP (which is here
more precise than a non-self-consistent D�A [33, 34]),
and a parquet variant of the DF, extending earlier DF
approaches [35–37], [38]. We solve the parquet equations
on a 6⇥ 6 momentum grid, except for the PPP for ben-
zene which has 6 sites or momenta. For the HM, Ex-
tHM and PPP we use the victory code [18] to solve the
parquet equations, and w2dynamics [39] to calculate the
fully irreducible vertex in case of the HM; for the FKM
we employ a reduced frequency structure of the vertex
[37] implemented in a special-purpose parquet code.

The optical conductivity �(!)=< �q=0
jj (!+i�)��q=0

jj (i�)

i(!+i�) ,
for �!0, is calculated from the current-current correla-
tion function �q=0

jj at Matsubara frequency !n and mo-
mentum q = 0 , which can be separated into a bubble
term consisting of two Green’s functions Gk only and

vertex corrections F kk0q
d in the following way:

�jj,q =
2

�N

X

k

[�q
k ]

2
Gq+kGk

+
2

(�N)2

X

k,k0

�q
k�

q
k0Gk0Gq+kF

kk0q
d Gq+k0Gk .(2)

Here and in the following, we use a four-vector notation
k = (k, ⌫n) with q = (q = 0,!n); �q=0

k = @✏k/@k de-
notes the dipole matrix elements given by the derivative
of the energy-momentum relation in the Peierls approxi-
mation [40].
In the parquet-based approaches employed, the vertex

F contains contributions from the fully irreducible ver-
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FIG. 2. (Color online) Top: Optical conductivity for real frequency (main panel) and the corresponding current-current
correlation function in Matsubara frequencies (insets) of the five cases studied, showing the bare bubble (�0) and the full
conductivity (�) including vertex corrections (in the insets �0

jj and �jj , respectively). Bottom: Corresponding vertex correction

to the current-current correlation function �jj separated into ph, ph, pp and ⇤ contributions. For the PPP also the contribution
of a RPA-like pp-ladder is shown. Parameters from left to right: U = 4t, T = 0.1t (HM); U = 4t, T = 0.17t, V = t (ExtHM);
T = 0.1t, U = 3.962t, V01 = 2.832t, V02 = 2.014t, V03 = 1.803t (PPP; interactions translated into units of t are fitted to
experiment [15] ); U = 6t, T = 0.28t (FKM insulator); U = 2t, T = 0.28t (FKM metal).

tex ⇤ as well as contributions that are reducible in the
three channels (ph, ph, pp): F = ⇤ + �ph + �ph + �pp

[41]. The density component Fd that enters the optical
conductivity denotes the even spin combination [17, 27].

Inserting in Eq. 2 instead of F one of the summands ⇤,
�ph/ph/pp we obtain the contributions from the respec-

tive channels: �⇤, �ph, �ph, and �pp. The most simple

contributions to �ph and �ph are just the ladder diagrams
of Fig. 1 (b) and (d), respectively. For the analytic con-
tinuation of the optical conductivity to real frequencies
we employ the maximum entropy method [42]; for the
PPP we used Padé interpolation.

Results: Optical Conductivity. Let us now turn to the
results, starting with the optical conductivity in Fig. 2
(top). Within the four models, we studied five physically
di↵erent examples: HM (metal), ExtHM (metal), PPP
(insulator), FKM (insulator), and FKM (metal) [see Sup-
plemental Material (SM) for results at di↵erent parame-
ters]. In all five cases we see noticeable vertex corrections.
For the two insulators, especially for the PPP, there is a
strong reduction of the optical gap compared to the one-
particle gap (bare bubble contribution �0). Usually one
would associate such a reduction to the exciton binding
energy. However, when inspecting the contribution of
the individual channels in Fig. 2 (bottom), we see that it
is not the ph-channel of the exciton but the ph-channel
which is dominating and responsible for the reduction of
the optical gap. Note that a ph-ladder built from a local
interaction (RPA) or a local vertex (as e.g. in dynami-
cal mean field theory [43]) has zero contribution to the
optical conductivity [44]. This is why we included in our
study also the PPP and ExtHM where through non-local

interaction one obtains simple ladder contributions in the
ph-channel [45].
For two of the metallic cases (HM and FKM) the vertex

corrections reduce the conductivity at small frequencies.
One might be tempted to associate this with weak lo-
calization corrections, i.e., the pp-channel. But again by
inspecting the vertex contributions in Fig. 2 (bottom) we
see that it is the ph-channel that is dominating; the pp
contribution is small. The third metallic case (ExtHM)
is di↵erent in the sense that, besides the ph-channel, the
bare vertex ⇤ contributes to a similar amount. This is
because the non-local interaction provides an additional
way to polarize the system and hence to couple to light.
In all cases except for the ExtHM, the pp-channel pro-

vides the second largest contribution. One might suspect
that this stems from simple RPA-like ladder diagrams as
envisaged in the theory of weak localization. But this is
not the case. In the case where this pp-channel is largest,
i.e., for the PPP, we additionally plot the contribution
from a bare RPA-like pp-ladder. It is negligibly small.
Physical origin of vertex corrections. Why does the ph-

channel give such a big contribution? It is because of the
dominant fluctuations in the system. These are AFM or
CDW fluctuations at a wave vector (⇡,⇡, . . .) (see below).
These fluctuations are already generated by RPA-ladder
diagrams in the ph-channel and in the ph-channel as vi-
sualized in Fig. 1. Let us emphasize however, that the
employed parquet methods take many more Feynman di-
agrams and the mutual coupling of these channels into
account.
The fact that the bare pp-ladder in Fig. 2 (bottom

middle) is small shows us that there is a strong feedback
of the AFM or CDW fluctuations into the pp-channel

A. Kauch, ….  & K. Held
arXiv: 1902..09342 (2019)

⇤2PI+�ph+� ph +�pp
<latexit sha1_base64="rR0zd2ewg2yZND0oSJp/ixmT+2I=">AAACbHicbZHPbtNAEMbXpkAJtIQ/twppoAEhFUV2L+2xggtIHIJE2krZKBpvJs2qa3u1O65aWX63vkYP8Ag8A2unB0g7h9Wn38yn2f02s0Z7TpKbKH6w8fDR480nvafPtraf91+8PPZl5RSNVWlKd5qhJ6MLGrNmQ6fWEeaZoZPs/EvbP7kg53VZ/OQrS9Mczwq90Ao5oFn/cjCQOfIyW9QgvwffHGe1dDnsj741IN/CXnvI0VKvsF02cA+u5SeQZVjU3qMOQ01nDnTdbxtoYDDozfq7yTDpCu6K9FbsHqU4vBZCjGb9X3JeqiqngpVB7ydpYnlao2OtDDU9WXmyqM7xjCZBFpiTn9ZdQg28rzxyCZYcaAMdpH8dNebeX+VZmGzT8Ou9Ft7Xm1S8OJzWurAVU6HaRawNdYu8cjokQjDXjpixvTmBLkChQ2ZyGlCpAKvwF20e6frr74rj/WGaDNMfIZjPYlWbYke8Ex9FKg7EkfgqRmIslPgdbURb0Xb0J34d78RvVqNxdOt5Jf6r+MNfdeW2qQ==</latexit><latexit sha1_base64="uauWAHtBuSwnq8ORimr34+lHcR8="></latexit><latexit sha1_base64="uauWAHtBuSwnq8ORimr34+lHcR8="></latexit><latexit sha1_base64="StjY0yo9xgRVOWC+fkJ6xAzyNFM="></latexit>

Parquet decomposition of response functions
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FIG. 3. (Color online) Reducible contributions � in the ph

and ph-channel to the full vertex F
⌫n⌫0

n!n

d,kk0q=0 correcting the op-
tical conductivity. Top: HM at various temperatures and
U = 4t. Bottom: ExtHM at U = 4t, T = 0.17t and various
V . Shown is the contribution ⌫n = ⌫0

n = ⇡T ; !n = 0 at fixed
k = 0 as a function of k0 � k.

through the parquet equations, which leads to the con-
siderable contributions of the pp-channel. In other words,
these pp contributions arise (only) as a consequence of the
enhanced AFM and CDW fluctuations.[46]

To demonstrate the importance of the (⇡,⇡) contribu-
tion, we plot in Fig. 3 the reducible contributions � to
the full vertex F as a function of k0�k for the ph and ph-
channel, setting q = 0 for the optical conductivity. Note
that the reducible ph and ph vertices are interrelated, i.e.,

�
⌫n⌫

0
n!n

ph,d,kk0q=0
= � 1

2 (�ph,d + 3�ph,m)
⌫n⌫n+!n⌫

0
n�⌫n

kkk0�k with d

(m) denoting the even (odd) spin combination [17, 27],
but the part of the ph-channel that enters the optical

conductivity is a very di↵erent one: �
⌫n⌫

0
n!n

ph,(ph),d,kk0q=0
.

As we see in Fig. 3 this ph-contribution is small and
the ph-contribution is strongly peaked at the wave vec-
tor k0 � k = (⇡,⇡) because of the strong AFM and
CDW fluctuations for the HM and ExtHM, respectively.
Hence we can conclude that it is indeed predominately
the k0 � k = (⇡,⇡) contribution that is responsible for
the vertex corrections in the optical conductivity, and
therefore we call these polaritons ⇡-tons.

A similar peak at k0�k in the ph-channel is also found
for the PPP in Fig. 4, where we only have six momenta
so that we can additionally show the dependence on the
Matsubara frequencies. This confirms the picture of the
⇡-tons feeding upon strong AFM or CDW fluctuations.

Interesting questions which can however not finally be
answered at the moment are: Has the ⇡-ton a peak at a
single frequency ! like an exciton or does the light rather
couple to a continuum of bosonic excitations with di↵er-
ent !’s for di↵erent k’s in Eq. (2)? In the latter case,

do the ⇡-tons rather shift the quasiparticle-quasihole ex-
citation spectrum or result in additional peaks for every
k?

Characteristics of the ⇡-ton. While AFM and CDW
fluctuations are dominant at all parameters and temper-
atures analyzed, they become—as a matter of course—
stronger when we approach a corresponding phase tran-
sition. This e↵ect can be seen in Fig. 3 For the HM
(top panel of Fig. 3), reducing the temperature means
that AFM fluctuations become strongly enhanced, cf.
[21, 35, 47–49]. While there is no finite-temperature
phase transition in two dimensions, the correlation length
becomes exponentially large [50]. For the ExtHM, Fig. 3
(bottom), we instead enhance the non-local interaction
V . This way we approach a phase transition towards
CDW ordering (at 4V = U in the atomic limit and at a
slightly larger V ’s here [34]).

Conclusion and outlook. We have provided compelling
evidence for what appears to be the generic polaritons in
strongly correlated electron systems—at least in one and
two dimensions. These polaritons, coined ⇡-tons, consist
of two particle-hole pairs coupled to the incoming and
outgoing light, respectively, and glued together by AFM
and CDW fluctuations.

Although the optical conductivity has been studied for
a wide range of materials [51–56], it is di�cult to quan-
tify vertex corrections and even more di�cult to rule out
that these stem from excitons or weak localization cor-
rections. If we enhance AFM or CDW fluctuations by
reducing temperature or by approaching a phase transi-
tion the one-particle physics and the one-particle gap will
be modified as well because of the onset of AFM or CDW
order including additional spin polaron peaks [57, 58], by
enhanced life times in a Fermi liquid or by emergent pseu-
dogap physics [59]. Against this background, we feel that
a combination of optical experiments with angular re-
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The interaction of light with solids gives rise to new bosonic quasiparticles, with the exciton
being—undoubtedly—the most famous of these polaritons. While excitons are the generic polaritons
of semiconductors, we show that for strongly correlated systems another polariton is prevalent—
originating from the dominant antiferromagnetic or charge density wave fluctuations in these sys-
tems. As these are usually associated with a wave vector (⇡,⇡, . . .) or close to it, we propose to
call the derived polaritons ⇡-tons. These ⇡-tons yield the leading vertex correction to the opti-
cal conductivity in all correlated models studied: the Hubbard, the extended Hubbard model, the
Falicov-Kimball, and the Pariser-Parr-Pople model, both in the insulating and in the metallic phase.

Since the springtime of modern physics, the interac-
tion of solids with light has been of prime interest. The
arguably simplest kind of interaction is Einstein’s Noble
prize winning photoelectric e↵ect [1], where the photon
excites an electron across the band gap. More involved
processes beyond a mere electron-hole excitation can be
described in general by e↵ective bosonic quasiparticles,
coined polaritons since a polar excitation is needed to
couple the solid to light.

The prime example of a polariton is the exciton [2, 3],
where the excited electron-hole pair is bound due to the
Coulomb attraction between electron and hole. This in-
teraction is visualized in Fig. 1 (a). Since it is an attrac-
tive interaction, an exciton requires the exciton binding
energy less than an unbound electron-hole pair. Other
polaritons describe the coupling of the photon to surface
plasmons, magnons or phonons.

Fig. 1 (b) describes the exciton in terms of Feynman
diagrams: the incoming photon creates the electron-
hole pair (distinguishable by the di↵erent [time] direc-
tion of the arrows) which interact with each other re-
peatedly and finally recombine emitting a photon. Since
the energy-momentum relation of light is very steep com-
pared to the electronic bandstructure of a solid, the trans-
ferred momentum from the photon is negligibly small
q = 0. Thus, electron and hole have the same momen-
tum. For semiconductors this is often the preferable mo-
mentum transfer as well, connecting the bottom of the
conductance with the top of the valence band as in Fig. 1
(a).

In this paper we show that the generic polaritons
for strongly correlated systems are strikingly di↵erent.
While semiconductors are band insulators with a filled
valence and empty conduction band, strongly correlated
systems are typically closer to a half-filled (or in general
integer filled) band which is split into two Hubbard bands
by strong electronic correlations as visualized in Fig. 1 (c)
for a Mott insulator. (In case of a metallic system there
is an additional quasiparticle band). Both metal and
insulator are prone to strong antiferromagnetic (AFM)

FIG. 1. (Color online) Sketch of the physical processes (top)
and Feynman diagrams (bottom) behind an exciton (left) and
a ⇡-ton (right). The yellow wiggled line symbolizes the incom-
ing (and outgoing) photon which creates an electron-hole pair
denoted by open and filled circles, respectively. The Coulomb
interaction between the particles is symbolized by a red wig-
gled line; dashed line indicates the recombination of the par-
ticle and hole; dotted line denotes the creation of a second
particle-hole pair (right); black lines the underlying band-
structure (top panels).

or charge density wave (CDW) fluctuations with a wave
vector close to q = (⇡,⇡, . . .) [4, 5]. Indeed these fluctu-
ations can be described by the central part of the Feyn-
man diagram Fig. 1 (b), where the bare ladder diagrams
correspond to the random phase approximation (RPA).
However the wave vector q = (⇡,⇡, . . .) cannot directly
couple to light, which only transfers q = 0. Hence an
exciton-like polariton as displayed in Fig. 1 (b) is not
possible for AFM or CDW fluctuations.

As we will show in this paper, the (⇡,⇡, . . .) fluctu-
ations nonetheless constitute the dominant vertex cor-
rections beyond a bare (bubble) particle-hole excitation.
This is possible through a process where the central part
of the Feynman diagram Fig. 1 (b), i.e., the (⇡,⇡, . . .)
fluctuations, are rotated (and flipped) as sketched in
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insulator are prone to strong antiferromagnetic (AFM)

FIG. 1. (Color online) Sketch of the physical processes (top)
and Feynman diagrams (bottom) behind an exciton (left) and
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or charge density wave (CDW) fluctuations with a wave
vector close to q = (⇡,⇡, . . .) [4, 5]. Indeed these fluctu-
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man diagram Fig. 1 (b), where the bare ladder diagrams
correspond to the random phase approximation (RPA).
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bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q ̸= Π or ω ̸= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
the charge and in the particle-particle picture, χch

(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by

⟨∆†∆⟩ =
∑

K,K′

f(K)f(K′)⟨c†K↑c
†
−K↓c−K′↓cK′↑⟩

−
∑

K

[f(K)]2⟨c†K↑cK↑⟩⟨c
†
−K↓c−K↓⟩, (13)

To make a connection with the self-energy we rewrite
Eq. (1) of the main text

N

Uβ

∑

ν

[Σ(k)−
Un

2
]g(k) =

∑

K′,Q

⟨c†K↑c
†
Q−K↓c−K′↓cQ+K′↑⟩

−
∑

K′

⟨c†K↑cK↑⟩⟨c
†
K′↓cK′↓⟩, (14)

where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects
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small values of Σ̃Q and Σ̃ω for Q ̸= Π or ω ̸= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
the charge and in the particle-particle picture, χch

(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by
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ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects
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sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
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(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q ̸= Π or ω ̸= 0, respec-
tively, in the spin picture. We note that this situation
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those observed for the DCA calculation of Fig. 1 in the
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At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
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Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
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dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
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(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).
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Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c
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where f(K)= f(−K) =cosKx−cosKy, the corresponding
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tively, in the spin picture. We note that this situation
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At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
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dominate while spin fluctuations are strongly suppressed.
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Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.
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values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
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inates from contributions beyond Eqs. (12).
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only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
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ing the d−wave pairing operator∆†=
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tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
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Hence, one can argue that in the charge and particle-
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only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
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ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
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ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by

⟨∆†∆⟩ =
∑

K,K′

f(K)f(K′)⟨c†K↑c
†
−K↓c−K′↓cK′↑⟩

−
∑

K

[f(K)]2⟨c†K↑cK↑⟩⟨c
†
−K↓c−K↓⟩, (13)

To make a connection with the self-energy we rewrite
Eq. (1) of the main text

N

Uβ
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ν

[Σ(k)−
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2
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†
Q−K↓c−K′↓cQ+K′↑⟩
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⟨c†K↑cK↑⟩⟨c
†
K′↓cK′↓⟩, (14)

where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects
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bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q ̸= Π or ω ̸= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
the charge and in the particle-particle picture, χch

(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by

⟨∆†∆⟩ =
∑

K,K′

f(K)f(K′)⟨c†K↑c
†
−K↓c−K′↓cK′↑⟩

−
∑

K

[f(K)]2⟨c†K↑cK↑⟩⟨c
†
−K↓c−K↓⟩, (13)

To make a connection with the self-energy we rewrite
Eq. (1) of the main text

N

Uβ

∑

ν

[Σ(k)−
Un

2
]g(k) =

∑

K′,Q

⟨c†K↑c
†
Q−K↓c−K′↓cQ+K′↑⟩

−
∑

K′

⟨c†K↑cK↑⟩⟨c
†
K′↓cK′↓⟩, (14)

where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects

4

bution to the k′ summation stems from the single term
proportional to χsp(k′ − k) in Eq. (12b), evaluated for
(K′−K) = Π and ν′−ν = 0. This explains the rather
small values of Σ̃Q and Σ̃ω for Q ̸= Π or ω ̸= 0, respec-
tively, in the spin picture. We note that this situation
corresponds to histograms and pie charts, very similar to
those observed for the DCA calculation of Fig. 1 in the
manuscript.

At the same time, in the charge and particle-
particle representations, χsp appears only as a func-
tion of k′−k (or q−k−k′), see Eqs. (12a) and (12c).
Therefore, when performing the partial summations over
k′ in the EOM, only the single contribution forK′−K=Π

and ν′−ν=0 (Q−Q−K′=Π and ν−ν′−ω=0) is large
in this sum. On the other hand, such a contribution ap-
pears for each value of Q and ω. This explains well the
fact that in the charge and the particle-particle pictures
the contributions Σ̃Q and Σ̃ω, respectively, to the self-
energy are uniformly distributed among all values of Q
and ω as it is observed in the histograms and pie chart
(only particle-particle) in Fig. 2. Let us stress, that χsp

does contribute to Fr in the charge and particle-particle
picture, but only as a function of k′−k rather than q.
Hence, one can argue that in the charge and particle-
particle representation spin fluctuations are seen from a
not “convenient” perspective. From this specific point
of view, a well-defined collective spin-mode will appear
as short-range (or even local) and short-lived charge or
particle-particle fluctuations, as indicated by the demo-
cratic distribution of Σ̃Q and Σ̃ω among all values of Q
and ω.

Obviously the above analysis is applicable also to the
attractive Hubbard model (U < 0): In this situation
charge and particle-particle fluctuations are expected to
dominate while spin fluctuations are strongly suppressed.
Hence, χch(Q = Π,ω = 0) and χpp(Q = 0,ω = 0),
0= (0, 0), are enhanced. In the spin picture these ar-
guments for χch and χpp appear for only one value of k′

when performing the k′ summation. On the contrary, in
the charge and in the particle-particle picture, χch

(or χpp) is a function of Q and ω and the above men-

tioned large contribution to Σ̃Q and Σ̃ω appears for each

value of k′. Hence, Σ̃Q and Σ̃ω get strongly peaked at
Q=Π and ω=0, respectively, in the charge description
and Q=0 and ω=0 in the particle-particle description,
while in the spin picture Σ̃Q is almost independent of Q.

The above discussion based on the vertex decompo-
sition in Eqs. (12) is rigorously justified only for small
values of U where corrections beyond Eqs. (12) are neg-
ligible. This highlights the importance of the fluctuation
diagnostics approach which is applicable for all values of
the interaction. In fact, the fluctuation diagnostics for
the DCA self-energy in the pseudogap regime of the re-
pulsive two-dimensional Hubbard model gives gives his-
tograms/pie charts for Σ̃Q and Σ̃ω dominated by Q=Π

and ω=0 in the spin representation, indicating the domi-
nant role played by a well defined and long-lived (Q=Π,
ω=0) spin collective mode. We note that this hold even
in a regime, where Eqs. (12) break down. Specifically
we note that while the main bosonic structures of F de-
scribed in Eqs. (12) give a significant contribution to the
self-energy even in the non-perturbative regime, the mo-
mentum differentiation observed in the histograms orig-
inates from contributions beyond Eqs. (12).

d-WAVE PAIRING FLUCTUATIONS

Let us finally comment on the role of particle-particle
fluctuations for the self-energy in the repulsive Hubbard
model: In the decomposition of the vertex [Eqs. (12)]
only the s−wave superconducting susceptibility χpp en-
ters, which is always suppressed for U > 0. The corre-
sponding response function for d−wave superconductiv-
ity, however, is absent in the leading structures of the
vertex, and, hence, within Eqs. (12) we do not expect
any significant impact of the d−wave fluctuations on the
self-energy. Obviously in the vicinity to a d−wave su-
perconducting instability, the d−wave superconducting
fluctuation might become relevant for approximating the
vertex function [6]. However, even in this case, the corre-
sponding (d−wave) susceptibility would be strongly en-
hanced and the fluctuations will cancel in the calculation
of the self-energy, as it will be discussed in the next para-
graph.
In the following we show explicitly that d−wave pairing

fluctuation are irrelevant for the self-energy even close to
the corresponding superconducting instability. Consider-
ing the d−wave pairing operator∆†=

∑
K f(K)c†K↑c

†
−K↓,

where f(K)= f(−K) =cosKx−cosKy, the corresponding
pairing fluctuations are given by

⟨∆†∆⟩ =
∑

K,K′

f(K)f(K′)⟨c†K↑c
†
−K↓c−K′↓cK′↑⟩

−
∑

K

[f(K)]2⟨c†K↑cK↑⟩⟨c
†
−K↓c−K↓⟩, (13)

To make a connection with the self-energy we rewrite
Eq. (1) of the main text

N

Uβ

∑

ν

[Σ(k)−
Un

2
]g(k) =

∑

K′,Q

⟨c†K↑c
†
Q−K↓c−K′↓cQ+K′↑⟩

−
∑

K′

⟨c†K↑cK↑⟩⟨c
†
K′↓cK′↓⟩, (14)

where the Q = (0, 0) term corresponds to contributions
from superconductivity fluctuations. For large supercon-
ducting fluctuations, one might then have expected also
a large contribution to Σ due to the similar structure of
Eq. (14) and Eq. (13), which is, however, not observed
in our DCA results. This absence of significant effects

with

✗
✗ ✗



(k,ω)Σ

Mapping the k-space: a Diag-MC study

W. Wu, M. Ferrero,  A. Georges,& E. Kozik,  PRB (2018)  

spin charge particle

AF fluctuations !

(π , π)



3

We then probe the partial summation of the second
term in Eq. (4) for the spin channel. This means we
decompose the self energy into a more general q and ⌦
dependent object

⌃(!̄) =
X

⌦̄,!̄

0

⌃
sp

(!̄, !̄0, ⌦̄). (5)

To assist with notation we drop the spin, ‘sp’, sub-
script and suppress the explicit momentum k argument
in favour of a subscript to represent the self energy at the
so-called nodal (N, k = (⇡/2,⇡/2)) and antinodal (AN,
k = (⇡,⇡)) momenta.

One challenge with this form of decomposition is
the high dimensionality of the fully decomposed object
⌃(!̄, !̄0, ⌦̄). The original work by Gunnarsson et al.7 pri-
marily studied the decomposition of the self energy for
the zeroeth fermionic matsubara frequency Im⌃

k

(i!0)
in q

x

and q
y

for 8 points in momentum space due to the
small DCA cluster employed and made some comment on
the role of positive bosonic matsubara frequencies. We
wish to study the complete set of all deconstructions, and
to assist with this we introduce a shorthand for partial
summations of that object given by

⌃(x)
k

=
X

x,!̄

0

⌃(!̄, !̄0, ⌦̄). (6)

We will present partial summations over: scattering
momenta, x = q ; positive, negative or all bosonic fre-
quencies, x = +⌦,�⌦or⌦ respectively; or over combina-
tions of variables such as x = (+⌦, q) which represents
summation over positive bosonic frequencies and all q-
vectors. Also, we always sum explicitly over the internal
primed fermionic elements !̄0 in order to reduce our de-
constructed dimensionality which is convenient since !̄0

does not appear, for our notation, in either single particle
self energies or two particle susceptibilities.

Throughout we restrict our solutions of the two parti-
cle Green’s function and associated vertex of the impurity
problem to a truncated set of fermionic and bosonic fre-
quencies, ⌦ = �32 ! 32 and !,!0 = �64 ! 63 inclusive.
We have verified that this is a su�ciently large trunca-
tion to accurately reconstruct the DMFT and DF self
energies via Eq. (4). Further, we will examine the metric
for FL/nFL behaviour �⌃

k

= Im⌃
k

(i!0) � Im⌃
k

(i!1)
for each decomposed or partially summed channel, which

we will abbreviate as �⌃(x)
k

as per Eq. (6).

III. RESULTS

A. Doping Dependent Crossover

As an illustrative example, in Fig. 1 we present DF
results at U/t = 5.6, t0/t = �0.3, µ = 0, �t = 5 for
the imaginary part of the self energy. The DMFT result
(dashed-black) shows a tendency towards FL behaviour

Figure 1. Imaginary part of the self energy as a function of
Matsubara index for the DF nodal (N) and antinodal (AN)
results as well as the DMFT result on which DF is based for
parameters U/t = 5.6, �t = 5, t0/t = �0.3 and µ = 0. Inset:
Analytic continuation result for the spectral function, A(!)
for real frequency !.

where the first Matsubara frequency has a higher value
than the second (�⌃ > 0). Shown in red and blue are
results at the nodal and antinodal momenta respectively
from the DF calculation which provides momentum de-
pendence to the self-energy. These results are in agree-
ment with DiagMC and DCA calculations from Ref. 8
for similar parameters. We observe for these parameters
the shift from FL to partial nFL behaviour indicated by
the negative value of �⌃ at the antinodal point, while
the nodal point remains with �⌃ > 0. This behavior is
often referred to as the pseudogap phenomenon.24–27

It is worth noting that since these results for �t = 5 are
at relatively high temperature, finding �⌃ < 0 may not
be indicative of a fully gapped state. To illustrate this,
we perform analytic continuation19 for the local-DMFT
Green’s function, and the Green’s function for the DF
nodal and antinodal results. The normalized spectral
functions, A

k

(!), appear in the inset. Indeed, we find a
non-zero density of states at the Fermi level (! = 0) due
primarily to thermal excitations. We do not observe a
clear ! = 0 FL peak and the value of A(! = 0) for the
antinodal point is ⇡ 15% of the nodal value an indication
of the erosion of states at the Fermi level.

Next we consider the U/t and density, n, dependence
of �⌃ at fixed temperature. Results are shown in Fig. 2
where we plot the value of �⌃ at the nodal and antinodal
points. At this high temperature we see that at U/t = 3,
�⌃ is positive for all densities representing FL states at
all momenta. At U/t = 5.6 we see a region of density near
half-filling where �⌃

AN

< 0 while �⌃
N

is always posi-
tive representing a mixed FL/nFL momentum separation
near half-filling. For U/t = 8, both the nodal and antin-
odal points show nFL behaviour over a range of densities
(wider for the AN point) becoming positive with either
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Figure 6. Color Plots: �⌃(⌦)(q
x

, q
y

) for nodal and anti-
nodal momenta at U/t = 5.6 for n = 0.94 (top row), 1 (mid-
dle) and 1.1 (bottom row) corresponding to chemical poten-
tials of µ/t = �0.8, 0, 1.4 respectively. Right handle column
shows cuts of �⌃(⌦)(q

x

, q
y

) for: (blue) a cut in the antin-
odal result along the path from (0,⇡) ! (2⇡,⇡), (red) a cut
in the antinodal result along the path from (⇡, 0) ! (⇡, 2⇡),
and (black) a cut in the nodal result along the path from
(0, 0) ! (2⇡, 2⇡). Each path is plotted by its length in the
x-axis, normalized by the total length of the cut.

Figure 7. �⌃ vs temperature for U/t=2, t0 = 0, µ = 0 for
nodal and antinodal momenta. Vertical lines are ⌃�DDMC
crossover points identified in Ref. 2. Inset: Correlation length
scale ⇠ as a function of temperature in units of hopping, T/t.

when increasing our k-space grid resolution, frequency
grids or convergence criteria. We extract the correla-
tion length scale from �

sp

(q
x

, q
y

,⌦ = 0), plotted in the
inset over the same temperature range, and note that
on approach to the nodal crossover the spin correlation
length is very large ⇠ ⇡ 15. This is similar to cases at
U/t ⇡ 5 ! 8 at higher temperature where the shape of ⇠

Figure 8. �⌃⌦
N/AN

(q
x

, q
y

) values for U/t = 2, t0 = 0 µ = 0
for temperatures T/t = 0.08 (top row) and T/t = 0.06 (bot-
tom row). Right handle column shows cuts of �⌃(⌦)(q

x

, q
y

)
for q

y

= ⇡ as a function of q
x

.

with doping is similar to that of �⌃ with doping. Over-
all, these results support the conclusions of Ref. 2 that
this nFL crossover is driven by AFM fluctuations.
As was done for doping dependent results, we show

the decomposed quantities in Fig. 8 at T/t = 0.06 and
T/t = 0.08 just above and below the �⌃ = 0 line. In-
terestingly, in both cases the majority of the q-vectors
provide positive contributions and these actually increase
as temperature decreases. We see only a strong, sharp
negative contribution precisely at q = (⇡,⇡). This is
in extreme contrast to the earlier examples where both
doping and finite t0 suppress and broaden the (⇡,⇡) fea-
ture. Indeed, for the particle-hole symmetric case, all of
the negative, nFL, contributions come from (⇡,⇡) AFM
fluctuations. This result unequivocally shows that it is
(⇡,⇡) AF fluctuations that are responsible for the FL to
nFL crossover observed in Ref. 2.

IV. CONCLUDING REMARKS

We examined the doping dependence at high tempera-
ture of �⌃ and of the correlation length scale and found
that �⌃ mimics the antiferromagnetic correlation length
⇠ both with doping at fixed temperature and with tem-
perature at fixed doping. We observe that the tendency
towards nFL behavior is nearly equivalent for both den-
sities above and below half-filling even at high temper-
ature. Such an observation may have important impli-
cations for studies of electron doped high-Tc materials
where pseudogaps have been observed.33,34 To strengthen
this connection we performed a fluctuation diagnostic de-
composition of the self energy �⌃ to show that the neg-
ative (nFL) contributions are primarily near (⇡,⇡) for
doping close to half-filled which suggests they are AFM
in origin. Contributions for q-vectors away from (⇡,⇡)
are expected for doped cases, and within the framework
of fluctuation diagnostics, the observation of sharp fea-
tures suggests that spin excitations remain a good basis
for representing the fundamental excitations responsible
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nodal and antinodal results. The normalized spectral
functions, A

k

(!), appear in the inset. Indeed, we find a
non-zero density of states at the Fermi level (! = 0) due
primarily to thermal excitations. We do not observe a
clear ! = 0 FL peak and the value of A(! = 0) for the
antinodal point is ⇡ 15% of the nodal value an indication
of the erosion of states at the Fermi level.

Next we consider the U/t and density, n, dependence
of �⌃ at fixed temperature. Results are shown in Fig. 2
where we plot the value of �⌃ at the nodal and antinodal
points. At this high temperature we see that at U/t = 3,
�⌃ is positive for all densities representing FL states at
all momenta. At U/t = 5.6 we see a region of density near
half-filling where �⌃

AN

< 0 while �⌃
N

is always posi-
tive representing a mixed FL/nFL momentum separation
near half-filling. For U/t = 8, both the nodal and antin-
odal points show nFL behaviour over a range of densities
(wider for the AN point) becoming positive with either

[ B. Arzang, A. Antipov & J. Le Blanc,
arXiv 1905.075462 (2019) ]
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω
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χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
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∑
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]
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where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]
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where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

=
U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= −
U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= −
U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = −
U

Ncg(k)

∑

K′Q

∫ β

0
dτ e

iντ

×⟨cK+Q↑(τ )c
†
K′+Q↓(τ )cK′↓(τ )c

†
K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= −
U

Nc

∫ β

0
dτ e

iντ
⟨cK+Qσ (τ )c

†
K′+Qσ ′(τ )cK′σ ′(τ )c

†
Kσ ⟩

=
U

Nc

∫ β

0
dτ e−iντ

⟨c
†
Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

=
1

g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) +

Ncn

2
g(k)δQ0

]

=
1

g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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Alternatively, we can view A as the vertex function F multi-
plied by the four “legs” and summed over the internal fermion
(ν ′) and boson (ω) frequencies (see Fig. 1).

Since all internal frequency summations have already been
performed in Eq. (21), this expression is much easier to
calculate than the corresponding terms appearing in Eq. (16).
We stress that this represents a significant advantage for the
analysis, which makes it possible to study much larger clusters
(Nc = 32) than before (Nc = 8).

Note that in Eq. (16) a Hartree term was separated out, while
it is kept in the definition of A↑↓ in Eq. (20), making A↑↓/g
slightly different from F↑↓ggg. Similarly, A↑↑/g differs by a
constant term from F↑↑ggg. However, in this work we consider
a half-filled system and K at the Fermi surface. For this case
g(k) is imaginary, and the difference in definition shows up in
the imaginary part only. Hence, since we are mostly interested
in the imaginary part of # at the Fermi level, we can focus
on ReAσσ ′ only, for which the difference between A↑↓/g and
F↑↓ggg is of no particular interest.

To address the different, complementary treatments of the
EOM discussed in this work, we introduce the correlation
functions

Bσσ ′(K,K′; ν) =
∑

Q

Aσσ ′(K,K′,Q; ν),

Cσσ ′(K,Q; ν) =
∑

K′

Aσσ ′(K,K′,Q; ν),

(22)
Dσσ ′(K; ν) + n0Ug(k) =

∑

K′

Bσσ ′(K,K′; ν)

=
∑

Q

Cσσ ′(K,Q; ν),

which correspond to different ways of realizing the fluctuation
diagnostics. C is the quantity defined in the original fluctuation
diagnostics algorithm, where all internal variables have been
summed over, except for the transfer momentum Q. B corre-
sponds to an equivalent scheme, where all internal variables are
summed over, except the electron momentum K′. This latter
procedure can thus be viewed as a “fermionic” reformulation of
the fluctuation diagnostics. Finally, the quantity D is obtained
by performing an additional summation in B or C, and it
depends only on the external momentum K. These functions
are shown schematically in Fig. 1.

We can rewrite Eq. (21) in several equivalent ways:

#(k) + n0U

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν) = 1
g(k)

∑

K′

B↑↓(K,K′; ν)

= 1
g(k)

∑

Q

C↑↓(K,Q; ν) = 1
g(k)

D↑↓(K; ν) + n0U. (23)

The Green’s function given in Eq. (1) can be written as

g(k) = [iν − % − εK − #(k)]−1. (24)

Then, we have

#(k) = [iν − % − εK]
D↑↓(K; ν)

1 + D↑↓(K; ν)
. (25)

From this expression, we see immediately that D → −1 leads
to a singularity. For D ≈ −1 the system may become a non-
Fermi liquid or a Mott insulator [see discussion around Eq. (48)
below]. The quantities B, C, and D are plotted in Figs. 5, 7,
and 10.

D. Large-U limit: Real-space correlation

The formulas can be substantially simplified in the large-U
limit, relating spectra to real-space correlation functions. Be-
low, we show that this approximation provides useful insights.
The accuracy of the approximation is discussed in Appendix B.

Performing the τ integration in Eq. (20), and exploiting the
Lehmann representation, we obtain

Aσσ ′(K,K′,Q; ν) = U

NcZ

∑

mnN

e−βẼm(N+1) + e−βẼn(N)

iν + Ẽn(N ) − Ẽm(N + 1)

×⟨n|cK+Qσ c
†
K′+Qσ ′cK′σ ′ |m⟩⟨m|c†Kσ |n⟩,

(26)

where Ẽn(N ) = En(N ) − µN . To simplify this expression, we
now assume that β is very large and that

β[Ẽ1(Nel) − Ẽ0(Nel)] ≫ 1,

β[Ẽ1(Nel ± 1) − Ẽ0(Nel ± 1)] ≫ 1, (27)

β[Ẽ0(Nel ± 1) − Ẽ0(Nel)] ≫ 1.

Here, Nel is the number of electrons which minimizes Ẽ0(N ).
For a very large positive value of U at half-filling, we
have approximately that En(Nel − 1) = O(U 0), En(Nel) =
O(U 0), En(Nel + 1) = U + O(U 0), and µ = U/2. Similarly,
for a very large negative U at half-filling, we have ap-
proximately that En(Nel − 1) = (Nel/2 − 1)U , En(Nel) =
(Nel/2)U, En(Nel + 1) = (Nel/2)U , and µ = U/2.

In both cases, we obtain

Ẽn(Nel ± 1) − Ẽ0(Nel) = |U |
2

+ O(U 0). (28)

Within the assumptions in Eq. (27) we have that

Z = e−βẼ0(Nel) (29)

because all other contributions to Z can be neglected and we
can also neglect the corresponding exponents in Eq. (20). We
then have two types of contributions: (i) |n⟩ is the lowest (Nel)
state and |m⟩ is any (Nel + 1) state or (ii) |m⟩ is the lowest (Nel)
state and |n⟩ is any (Nel − 1) state. We now and in the rest of
this section consider the lowest Matsubara frequency only. We
assume that π/β ≪ |U |/2, so that ν can be neglected. Inserting
Eq. (28) in Eq. (26), we obtain

Aσσ ′(K,K′,Q; ν)

= 4
Nc

U

|U |
⟨E0(Nel)|c†Kσ cK+Qσ c

†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

− 2
Nc

U

|U |
⟨E0(Nel)|c†K′σ ′cK′σ ′ |E0(Nel)⟩δQ=(0,0)

− 2
Nc

U

|U |
⟨E0(Nel)|cK+Qσ c

†
K+Qσ |E0(Nel)⟩δKK′δσσ ′ .

(30)
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Alternatively, we can view A as the vertex function F multi-
plied by the four “legs” and summed over the internal fermion
(ν ′) and boson (ω) frequencies (see Fig. 1).

Since all internal frequency summations have already been
performed in Eq. (21), this expression is much easier to
calculate than the corresponding terms appearing in Eq. (16).
We stress that this represents a significant advantage for the
analysis, which makes it possible to study much larger clusters
(Nc = 32) than before (Nc = 8).

Note that in Eq. (16) a Hartree term was separated out, while
it is kept in the definition of A↑↓ in Eq. (20), making A↑↓/g
slightly different from F↑↓ggg. Similarly, A↑↑/g differs by a
constant term from F↑↑ggg. However, in this work we consider
a half-filled system and K at the Fermi surface. For this case
g(k) is imaginary, and the difference in definition shows up in
the imaginary part only. Hence, since we are mostly interested
in the imaginary part of # at the Fermi level, we can focus
on ReAσσ ′ only, for which the difference between A↑↓/g and
F↑↓ggg is of no particular interest.

To address the different, complementary treatments of the
EOM discussed in this work, we introduce the correlation
functions

Bσσ ′(K,K′; ν) =
∑

Q

Aσσ ′(K,K′,Q; ν),

Cσσ ′(K,Q; ν) =
∑

K′

Aσσ ′(K,K′,Q; ν),

(22)
Dσσ ′(K; ν) + n0Ug(k) =

∑

K′

Bσσ ′(K,K′; ν)

=
∑

Q

Cσσ ′(K,Q; ν),

which correspond to different ways of realizing the fluctuation
diagnostics. C is the quantity defined in the original fluctuation
diagnostics algorithm, where all internal variables have been
summed over, except for the transfer momentum Q. B corre-
sponds to an equivalent scheme, where all internal variables are
summed over, except the electron momentum K′. This latter
procedure can thus be viewed as a “fermionic” reformulation of
the fluctuation diagnostics. Finally, the quantity D is obtained
by performing an additional summation in B or C, and it
depends only on the external momentum K. These functions
are shown schematically in Fig. 1.

We can rewrite Eq. (21) in several equivalent ways:

#(k) + n0U

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν) = 1
g(k)

∑

K′

B↑↓(K,K′; ν)

= 1
g(k)

∑

Q

C↑↓(K,Q; ν) = 1
g(k)

D↑↓(K; ν) + n0U. (23)

The Green’s function given in Eq. (1) can be written as

g(k) = [iν − % − εK − #(k)]−1. (24)

Then, we have

#(k) = [iν − % − εK]
D↑↓(K; ν)

1 + D↑↓(K; ν)
. (25)

From this expression, we see immediately that D → −1 leads
to a singularity. For D ≈ −1 the system may become a non-
Fermi liquid or a Mott insulator [see discussion around Eq. (48)
below]. The quantities B, C, and D are plotted in Figs. 5, 7,
and 10.

D. Large-U limit: Real-space correlation

The formulas can be substantially simplified in the large-U
limit, relating spectra to real-space correlation functions. Be-
low, we show that this approximation provides useful insights.
The accuracy of the approximation is discussed in Appendix B.

Performing the τ integration in Eq. (20), and exploiting the
Lehmann representation, we obtain

Aσσ ′(K,K′,Q; ν) = U

NcZ

∑

mnN

e−βẼm(N+1) + e−βẼn(N)

iν + Ẽn(N ) − Ẽm(N + 1)

×⟨n|cK+Qσ c
†
K′+Qσ ′cK′σ ′ |m⟩⟨m|c†Kσ |n⟩,

(26)

where Ẽn(N ) = En(N ) − µN . To simplify this expression, we
now assume that β is very large and that

β[Ẽ1(Nel) − Ẽ0(Nel)] ≫ 1,

β[Ẽ1(Nel ± 1) − Ẽ0(Nel ± 1)] ≫ 1, (27)

β[Ẽ0(Nel ± 1) − Ẽ0(Nel)] ≫ 1.

Here, Nel is the number of electrons which minimizes Ẽ0(N ).
For a very large positive value of U at half-filling, we
have approximately that En(Nel − 1) = O(U 0), En(Nel) =
O(U 0), En(Nel + 1) = U + O(U 0), and µ = U/2. Similarly,
for a very large negative U at half-filling, we have ap-
proximately that En(Nel − 1) = (Nel/2 − 1)U , En(Nel) =
(Nel/2)U, En(Nel + 1) = (Nel/2)U , and µ = U/2.

In both cases, we obtain

Ẽn(Nel ± 1) − Ẽ0(Nel) = |U |
2

+ O(U 0). (28)

Within the assumptions in Eq. (27) we have that

Z = e−βẼ0(Nel) (29)

because all other contributions to Z can be neglected and we
can also neglect the corresponding exponents in Eq. (20). We
then have two types of contributions: (i) |n⟩ is the lowest (Nel)
state and |m⟩ is any (Nel + 1) state or (ii) |m⟩ is the lowest (Nel)
state and |n⟩ is any (Nel − 1) state. We now and in the rest of
this section consider the lowest Matsubara frequency only. We
assume that π/β ≪ |U |/2, so that ν can be neglected. Inserting
Eq. (28) in Eq. (26), we obtain

Aσσ ′(K,K′,Q; ν)

= 4
Nc

U

|U |
⟨E0(Nel)|c†Kσ cK+Qσ c

†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

− 2
Nc

U

|U |
⟨E0(Nel)|c†K′σ ′cK′σ ′ |E0(Nel)⟩δQ=(0,0)

− 2
Nc

U

|U |
⟨E0(Nel)|cK+Qσ c

†
K+Qσ |E0(Nel)⟩δKK′δσσ ′ .

(30)
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.

−

FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
N2

c

∑

R1 ̸=R2

ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.

125134-7

COMPLEMENTARY VIEWS ON ELECTRON SPECTRA: FROM … PHYSICAL REVIEW B 97, 125134 (2018)

For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.
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FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
N2

c

∑

R1 ̸=R2

ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
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D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)
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−

FIG. 2. Schematic picture of an RVB state.
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(33)

Here, we have introduced similar approximations as in
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(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)
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sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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TABLE IV. ReA↑↓(K,K′,Q; ν) for an Nc = 4 isolated cluster and
K = (π,0). Exact results [Eq. (26)] and results obtained using the
approximate formula in Eq. (33) are shown for U = 1.6 eV. For U =
∞, Eq. (33) becomes exact, and therefore only exact results are shown.
The parameters are t = −0.50 and β = ∞. Csp has been computed
for the case U = 1.6 eV, β = 60 eV−1, and ν = π/β.

K′ = K + (π,π ) K′ = K

U = 1.6 eV U=∞ U = 1.6 eV U=∞
Q Ex. Approx. Ex. Ex. Approx. Ex. Csp(Q)

(π,π ) −0.67 −0.45 −0.38 −0.02 −0.01 −0.04 −1.35
(0,0) −0.35 −0.23 −0.21 0.31 0.20 0.12 0.37
(π,0) −0.17 −0.13 −0.25 0.03 0.03 0.08 0.01
(0,π ) −0.17 −0.13 −0.25 0.03 0.03 0.08 0.01
B(K,K′)↑↓ −1.36 −0.95 −1.09 0.35 0.25 0.25

Eq. (46). We refer to this as an RVB-like state. It is then natural
that the results are fairly similar to the ones for the four-level
model. This can be seen by comparing Tables II and Table IV
for U = 1.6.

For U = ∞, all levels are equally occupied, and Eq. (46)
is a less good approximation. We therefore now turn to the
large-U limit, where the RVB state fully develops:

ψ = 1√
3

[
c
†
R1↑c

†
R2↓c

†
R3↑c

†
R4↓ + c

†
R1↓c

†
R2↑c

†
R3↓c

†
R4↑

]
|vac⟩

− 1

2
√

3

[
c
†
R1↑c

†
R2↓c

†
R3↓c

†
R4↑ + c

†
R1↓c

†
R2↑c

†
R3↑c

†
R4↓

+ c
†
R1↑c

†
R2↑c

†
R3↓c

†
R4↓ + c

†
R1↓c

†
R2↓c

†
R3↑c

†
R4↑

]
|vac⟩, (47)

where labels 1 and 3 as well as 2 and 4 refer to corners that are
diagonally opposite, as indicated in Fig. 3.

We focus on the most relevant case, where K = (π,0)
and K′ = (π,0) or (0,π ). Applying the operator (33) leads to
couplings involving NN bonds and connecting terms between
the first row and the second or third rows. These NN couplings
contribute B↑↓(K,K′; ν) = −0.92 for K′ = K + (π,π ) and
+0.42 for K′ = K. This was anticipated in Sec. III E for an
RVB state.

However, there are also couplings between the terms in
the second and third rows, involving second-nearest-neighbor
couplings, although the wave function (47) has no second-
nearest-neighbor RVB. The function B↑↓[K,K + (π,π ); ν] is
therefore not a perfect measure of the RVB nature. These terms,
however, are rather small (−0.17), and the total contributions
to B↑↓[K,K′; ν] change from −0.92 to −1.09 and from +0.42
to +0.25, respectively (cf. Table V).

Table IV also compares results with and without the large-
U assumption (33). The results agree rather well, the main
reason for the discrepancy being that Eq. (28) underestimates
the eigenvalue difference by about a factor of 0.6. Table IV also
shows results for Csp, which demonstrate that this quantity also
becomes large (and negative) for Q = (π,π ), consistent with
its equivalence to B↑↓[K,K + (π,π ); ν] in SU(2)-symmetric
calculations.

TABLE V. ReB↑↓(K,K′; ν) at T = 0 and ν = π/β for an isolated
cluster with Nc sites in the large-U limit according to Eq. (33). Results
are also shown for the four-level model in Appendix A.

Model K′ = K + (π,π ) K′ = K

Four level (Nc = 2) −1.5 0.50
Nc = 4 −1.09 0.25
Nc = 8 −0.88 0.13
Nc = 16 −0.51 0.06

C. Larger isolated clusters

The dependencies of the isolated cluster results on the
cluster size Nc are summarized in Table V. The calculations
have been performed using Eq. (33), which becomes exact in
the large-U limit considered here. For Nc = 4 and 8, the exact
ground state is a NN-RVB state. For Nc = 16 also more distant
bonds play a role, but have been neglected here. We can see
that the RVB character of the states is signaled by the large
negative value of B(K,K′) for K − K′ = (π,π ) and a smaller
positive value for K = K′.

V. RELATION TO SPECTRA

In this section, we discuss one of the central topics of this
work: the relation between real-space correlations and spectral
functions. Our purpose is to illustrate how changes in these
correlation functions are reflected in the spectral function, often
in a dramatic way. In particular, we will focus here on RVB-like
correlations.

In Sec. III, we have already established relations between
real-space correlation functions and the behavior of the self-
energy % for small ν. Thus, we established relations between
RVB correlations and the quantity B in Sec. III E and between
charge, spin, and superconductivity correlations and Cch, Csp,
and Cpp, respectively, in Sec. III F. Large negative values of
these quantities were shown to be reflected in large negative
values for Im%.

The behavior of % controls, in turn, the behavior of the
spectrum. We have that

Img(k,ν) = Im
1

iν − & − εK − %(k)
= −ν

∫
ρ(k,ε)
ε2 + ν2

dε,

(48)

i.e., Img(k,ν) measures the spectral weight over a range ν
around ε = 0. It is then clear that the presence of large negative
value of Im% for small ν will be reflected in a small or
vanishing ρ(ε) for small ε, i.e., the system behaves as a
non-Fermi liquid or a Mott-Hubbard insulator. Here, we show
results for the four-level model as well as DCA calculations for
Nc = 4, 8, and 32. In Appendix A we also present analytical
results for the four-level model.

In parallel, we also show results for L(K) [Eq. (18)], which
measures the double occupancy of a given K state, and which
played a key role in the analysis in Ref. [50] along the lines of
quantum chemistry and Eq. (2).
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TABLE IV. ReA↑↓(K,K′,Q; ν) for an Nc = 4 isolated cluster and
K = (π,0). Exact results [Eq. (26)] and results obtained using the
approximate formula in Eq. (33) are shown for U = 1.6 eV. For U =
∞, Eq. (33) becomes exact, and therefore only exact results are shown.
The parameters are t = −0.50 and β = ∞. Csp has been computed
for the case U = 1.6 eV, β = 60 eV−1, and ν = π/β.

K′ = K + (π,π ) K′ = K

U = 1.6 eV U=∞ U = 1.6 eV U=∞
Q Ex. Approx. Ex. Ex. Approx. Ex. Csp(Q)

(π,π ) −0.67 −0.45 −0.38 −0.02 −0.01 −0.04 −1.35
(0,0) −0.35 −0.23 −0.21 0.31 0.20 0.12 0.37
(π,0) −0.17 −0.13 −0.25 0.03 0.03 0.08 0.01
(0,π ) −0.17 −0.13 −0.25 0.03 0.03 0.08 0.01
B(K,K′)↑↓ −1.36 −0.95 −1.09 0.35 0.25 0.25

Eq. (46). We refer to this as an RVB-like state. It is then natural
that the results are fairly similar to the ones for the four-level
model. This can be seen by comparing Tables II and Table IV
for U = 1.6.

For U = ∞, all levels are equally occupied, and Eq. (46)
is a less good approximation. We therefore now turn to the
large-U limit, where the RVB state fully develops:

ψ = 1√
3

[
c
†
R1↑c

†
R2↓c

†
R3↑c

†
R4↓ + c

†
R1↓c

†
R2↑c

†
R3↓c

†
R4↑

]
|vac⟩

− 1

2
√

3

[
c
†
R1↑c

†
R2↓c

†
R3↓c

†
R4↑ + c

†
R1↓c

†
R2↑c

†
R3↑c

†
R4↓

+ c
†
R1↑c

†
R2↑c

†
R3↓c

†
R4↓ + c

†
R1↓c

†
R2↓c

†
R3↑c

†
R4↑

]
|vac⟩, (47)

where labels 1 and 3 as well as 2 and 4 refer to corners that are
diagonally opposite, as indicated in Fig. 3.

We focus on the most relevant case, where K = (π,0)
and K′ = (π,0) or (0,π ). Applying the operator (33) leads to
couplings involving NN bonds and connecting terms between
the first row and the second or third rows. These NN couplings
contribute B↑↓(K,K′; ν) = −0.92 for K′ = K + (π,π ) and
+0.42 for K′ = K. This was anticipated in Sec. III E for an
RVB state.

However, there are also couplings between the terms in
the second and third rows, involving second-nearest-neighbor
couplings, although the wave function (47) has no second-
nearest-neighbor RVB. The function B↑↓[K,K + (π,π ); ν] is
therefore not a perfect measure of the RVB nature. These terms,
however, are rather small (−0.17), and the total contributions
to B↑↓[K,K′; ν] change from −0.92 to −1.09 and from +0.42
to +0.25, respectively (cf. Table V).

Table IV also compares results with and without the large-
U assumption (33). The results agree rather well, the main
reason for the discrepancy being that Eq. (28) underestimates
the eigenvalue difference by about a factor of 0.6. Table IV also
shows results for Csp, which demonstrate that this quantity also
becomes large (and negative) for Q = (π,π ), consistent with
its equivalence to B↑↓[K,K + (π,π ); ν] in SU(2)-symmetric
calculations.

TABLE V. ReB↑↓(K,K′; ν) at T = 0 and ν = π/β for an isolated
cluster with Nc sites in the large-U limit according to Eq. (33). Results
are also shown for the four-level model in Appendix A.

Model K′ = K + (π,π ) K′ = K

Four level (Nc = 2) −1.5 0.50
Nc = 4 −1.09 0.25
Nc = 8 −0.88 0.13
Nc = 16 −0.51 0.06

C. Larger isolated clusters

The dependencies of the isolated cluster results on the
cluster size Nc are summarized in Table V. The calculations
have been performed using Eq. (33), which becomes exact in
the large-U limit considered here. For Nc = 4 and 8, the exact
ground state is a NN-RVB state. For Nc = 16 also more distant
bonds play a role, but have been neglected here. We can see
that the RVB character of the states is signaled by the large
negative value of B(K,K′) for K − K′ = (π,π ) and a smaller
positive value for K = K′.

V. RELATION TO SPECTRA

In this section, we discuss one of the central topics of this
work: the relation between real-space correlations and spectral
functions. Our purpose is to illustrate how changes in these
correlation functions are reflected in the spectral function, often
in a dramatic way. In particular, we will focus here on RVB-like
correlations.

In Sec. III, we have already established relations between
real-space correlation functions and the behavior of the self-
energy % for small ν. Thus, we established relations between
RVB correlations and the quantity B in Sec. III E and between
charge, spin, and superconductivity correlations and Cch, Csp,
and Cpp, respectively, in Sec. III F. Large negative values of
these quantities were shown to be reflected in large negative
values for Im%.

The behavior of % controls, in turn, the behavior of the
spectrum. We have that

Img(k,ν) = Im
1

iν − & − εK − %(k)
= −ν

∫
ρ(k,ε)
ε2 + ν2

dε,

(48)

i.e., Img(k,ν) measures the spectral weight over a range ν
around ε = 0. It is then clear that the presence of large negative
value of Im% for small ν will be reflected in a small or
vanishing ρ(ε) for small ε, i.e., the system behaves as a
non-Fermi liquid or a Mott-Hubbard insulator. Here, we show
results for the four-level model as well as DCA calculations for
Nc = 4, 8, and 32. In Appendix A we also present analytical
results for the four-level model.

In parallel, we also show results for L(K) [Eq. (18)], which
measures the double occupancy of a given K state, and which
played a key role in the analysis in Ref. [50] along the lines of
quantum chemistry and Eq. (2).
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Alternatively, we can view A as the vertex function F multi-
plied by the four “legs” and summed over the internal fermion
(ν ′) and boson (ω) frequencies (see Fig. 1).

Since all internal frequency summations have already been
performed in Eq. (21), this expression is much easier to
calculate than the corresponding terms appearing in Eq. (16).
We stress that this represents a significant advantage for the
analysis, which makes it possible to study much larger clusters
(Nc = 32) than before (Nc = 8).

Note that in Eq. (16) a Hartree term was separated out, while
it is kept in the definition of A↑↓ in Eq. (20), making A↑↓/g
slightly different from F↑↓ggg. Similarly, A↑↑/g differs by a
constant term from F↑↑ggg. However, in this work we consider
a half-filled system and K at the Fermi surface. For this case
g(k) is imaginary, and the difference in definition shows up in
the imaginary part only. Hence, since we are mostly interested
in the imaginary part of # at the Fermi level, we can focus
on ReAσσ ′ only, for which the difference between A↑↓/g and
F↑↓ggg is of no particular interest.

To address the different, complementary treatments of the
EOM discussed in this work, we introduce the correlation
functions

Bσσ ′(K,K′; ν) =
∑

Q

Aσσ ′(K,K′,Q; ν),

Cσσ ′(K,Q; ν) =
∑

K′

Aσσ ′(K,K′,Q; ν),

(22)
Dσσ ′(K; ν) + n0Ug(k) =

∑

K′

Bσσ ′(K,K′; ν)

=
∑

Q

Cσσ ′(K,Q; ν),

which correspond to different ways of realizing the fluctuation
diagnostics. C is the quantity defined in the original fluctuation
diagnostics algorithm, where all internal variables have been
summed over, except for the transfer momentum Q. B corre-
sponds to an equivalent scheme, where all internal variables are
summed over, except the electron momentum K′. This latter
procedure can thus be viewed as a “fermionic” reformulation of
the fluctuation diagnostics. Finally, the quantity D is obtained
by performing an additional summation in B or C, and it
depends only on the external momentum K. These functions
are shown schematically in Fig. 1.

We can rewrite Eq. (21) in several equivalent ways:

#(k) + n0U

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν) = 1
g(k)

∑

K′

B↑↓(K,K′; ν)

= 1
g(k)

∑

Q

C↑↓(K,Q; ν) = 1
g(k)

D↑↓(K; ν) + n0U. (23)

The Green’s function given in Eq. (1) can be written as

g(k) = [iν − % − εK − #(k)]−1. (24)

Then, we have

#(k) = [iν − % − εK]
D↑↓(K; ν)

1 + D↑↓(K; ν)
. (25)

From this expression, we see immediately that D → −1 leads
to a singularity. For D ≈ −1 the system may become a non-
Fermi liquid or a Mott insulator [see discussion around Eq. (48)
below]. The quantities B, C, and D are plotted in Figs. 5, 7,
and 10.

D. Large-U limit: Real-space correlation

The formulas can be substantially simplified in the large-U
limit, relating spectra to real-space correlation functions. Be-
low, we show that this approximation provides useful insights.
The accuracy of the approximation is discussed in Appendix B.

Performing the τ integration in Eq. (20), and exploiting the
Lehmann representation, we obtain

Aσσ ′(K,K′,Q; ν) = U

NcZ

∑

mnN

e−βẼm(N+1) + e−βẼn(N)

iν + Ẽn(N ) − Ẽm(N + 1)

×⟨n|cK+Qσ c
†
K′+Qσ ′cK′σ ′ |m⟩⟨m|c†Kσ |n⟩,

(26)

where Ẽn(N ) = En(N ) − µN . To simplify this expression, we
now assume that β is very large and that

β[Ẽ1(Nel) − Ẽ0(Nel)] ≫ 1,

β[Ẽ1(Nel ± 1) − Ẽ0(Nel ± 1)] ≫ 1, (27)

β[Ẽ0(Nel ± 1) − Ẽ0(Nel)] ≫ 1.

Here, Nel is the number of electrons which minimizes Ẽ0(N ).
For a very large positive value of U at half-filling, we
have approximately that En(Nel − 1) = O(U 0), En(Nel) =
O(U 0), En(Nel + 1) = U + O(U 0), and µ = U/2. Similarly,
for a very large negative U at half-filling, we have ap-
proximately that En(Nel − 1) = (Nel/2 − 1)U , En(Nel) =
(Nel/2)U, En(Nel + 1) = (Nel/2)U , and µ = U/2.

In both cases, we obtain

Ẽn(Nel ± 1) − Ẽ0(Nel) = |U |
2

+ O(U 0). (28)

Within the assumptions in Eq. (27) we have that

Z = e−βẼ0(Nel) (29)

because all other contributions to Z can be neglected and we
can also neglect the corresponding exponents in Eq. (20). We
then have two types of contributions: (i) |n⟩ is the lowest (Nel)
state and |m⟩ is any (Nel + 1) state or (ii) |m⟩ is the lowest (Nel)
state and |n⟩ is any (Nel − 1) state. We now and in the rest of
this section consider the lowest Matsubara frequency only. We
assume that π/β ≪ |U |/2, so that ν can be neglected. Inserting
Eq. (28) in Eq. (26), we obtain

Aσσ ′(K,K′,Q; ν)

= 4
Nc

U

|U |
⟨E0(Nel)|c†Kσ cK+Qσ c

†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

− 2
Nc

U

|U |
⟨E0(Nel)|c†K′σ ′cK′σ ′ |E0(Nel)⟩δQ=(0,0)

− 2
Nc

U

|U |
⟨E0(Nel)|cK+Qσ c

†
K+Qσ |E0(Nel)⟩δKK′δσσ ′ .

(30)
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.

−

FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
N2

c

∑

R1 ̸=R2

ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.

−

FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
N2

c

∑

R1 ̸=R2

ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.

−

FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
N2

c

∑

R1 ̸=R2

ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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For the following discussion, it is useful to sum the first
expectation value in Eq. (30) over K′ and to transform to real
space, expressing cKσ in the quantities cRσ :

∑

K′

⟨E0(Nel)|c†Kσ cK+Qσ c
†
K′+Qσ ′cK′σ ′ |E0(Nel)⟩

= 1
Nc

∑

R1R2R3

ei[K·(R1−R2)+Q·(R3−R2)]

×⟨E0(Nel)|c†R1σ
cR2σ

c
†
R3σ ′cR3σ ′ |E0(Nel)⟩

≃ 1
Nc

∑

R1R2

eiQ·(R2−R1)

×⟨E0(Nel)|nR1σnR2σ ′ |E0(Nel)⟩. (31)

The last equation is obtained by neglecting the double occu-
pied/empty (singly occupied) states, consistent with the large
positive (negative) interaction regime considered here. These
large-U approximations, the assumption in Eq. (28), and the
neglect of double occupancy are discussed in Appendix B.

We now perform the K′ and Q summations over A↑↓, again
considering ν = π/β ≪ |U |/2:

D↑↓(K; ν) + n0Ug(k)

=
∑

K′Q

A↑↓(K,K′,Q; ν)

= U

|U |
4
Nc

∑

R1

⟨E0(Nel)|nR1↑nR1↓|E0(Nel)⟩

− U

|U |
2
Nc

∑

K′

⟨E0(Nel)|nK′↓|E0(Nel)⟩. (32)

For a half-filled system and a large positive U , the first term on
the right-hand side contributes nothing, while the second terms
contributes −1. For a large negative U , the first term instead
contributes −2 and the second term +1. In both cases, the total
contribution to D↑↓(K) = −1. In the same limit, the sum rule
for A↑↑ is zero. For the half-filled case and for K at the Fermi
surface, the term n0Ug is zero to leading order in 1/U , so that
D↑↓ → −1 and D↑↑ → 0.

While the derivations of this section have been performed
exploiting specific assumptions, we will show later that for
large values of U they agree with numerical results calculated
without these assumptions (see also Appendix B). Thus, they
provide a reasonable theoretical framework for the physical
interpretation of our numerical data.

E. RVB correlations

In Ref. [50] it has been argued that there is a progressive
localization of some, and eventually of all, electrons on the
embedded DCA cluster as U is increased. It was found that this
plays an important role for the formation of the pseudogap. In
particular, for large U , it was found that the electrons on the
cluster localize into an RVB state. Below, we discuss how the
formulas [Eqs. (19), (20), (23), and (30)] for the self-energy
expressed in terms of the susceptibilities can be related to
such a localization, using the fermionic formulation fluctuation
diagnostics.

−

FIG. 2. Schematic picture of an RVB state.

To this aim, we now work in real space. In this section we
also assume that U > 0. Performing the summation over Q in
Eq. (30) we obtain (ν = π/β ≪ |U |/2)

B↑↓(K,K′; ν) =
∑

Q

A↑↓(K,K′,Q; ν)

= − 2
Nc

⟨nK′↓⟩ − 4
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ei(K−K′)·(R1−R2)

×⟨E0(Nel)|c†R2↓cR2↑c
†
R1↑cR1↓|E0(Nel)⟩.

(33)

Here, we have introduced similar approximations as in
Eq. (31), assuming half-filling and a large U .

The expectation value of the operator in Eq. (33) is large
for a state containing a valence bond

(12) = 1√
2

(
c
†
R1↑c

†
R2↓ − c

†
R1↓c

†
R2↑

)
|vac⟩ (34)

between the sites R1 and R2. Here, |vac⟩ is the vacuum state.
The state in Eq. (34) is shown schematically in Fig. 2. The
operator c

†
R2↓cR2↑c

†
R1↑cR1↓ in Eq. (33) flips the spins in the

second term of Eq. (34) (right side of Fig. 2), which then
couples to the first term in Eq. (33) (left side of Fig. 2), with
the expectation value − 1

2 . For a nearest-neighbor (NN) bond
on a square lattice and K − K′ = (π,π ), we then obtain a
negative contribution due to the sign of the exponential, while
for K − K′ = (0,0) the contribution is positive.

For a square lattice, we can divide the lattice in two
sublattices A and B, where the nearest neighbor of a site in
one sublattice belongs to the other sublattice. The NN-RVB is
a superposition of singlets of the type of Eq. (34) between
neighboring sites taken from A to B sublattice with equal
positive bond amplitudes:

|%0⟩ =
∑

iα ,jβ

(i1j1)(i2j2) . . . (injn), (35)

where iα (jβ) denote neighbor sites in the A sublattice (B
sublattice) and (iα jβ) denotes a singlet. First, we only consider
contributions where the operator in Eq. (33) acts within a given
bond. For a NN-RVB state these contributions together with
the term −2⟨nK′↓⟩/Nc give a substantial negative result for
K − K′ = (π,π ), while there tends to be a net positive con-
tribution for K = K′. In addition, there are also contributions
where the operator in Eq. (33) acts on a product of two bonds
(i1j1)(i2j2), i.e., the two-site operator acts on one site of each
bond. Then, we can get a contribution also from second-nearest
neighbor, even for a NN-RVB state. In this case, the exponent
in Eq. (33) takes the same value for both K − K′ = (π,π ) and
K − K′ = (0,0), reducing the difference between these two
cases. As we will show in the following, B↑↓(K,K′; ν) encodes,
nevertheless, very clear signals of the RVB state formation.
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By considering strong singlet-correlation on the bonds (precursors of an RVB state):
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− Jc
†
1c↓c2c↓c2c↑ + Jc

†
2c↑c2c↑c1c↑

+ Jc
†
2c↓c2c↑c1c↓]|m⟩⟨m|c†1c↑|n⟩. (A3)

We now consider a large U/V and $U > 0, so that we can
consider the isolated cluster. For a small T we obtain

%1c1c(ν) = 1
2g1c1c(ν)

[
Uxy

iν − U/2 − 3$U/2 − J/2

+ Uxx

iν + U/2 + 3$U/2 + J/2

− J

{
1

iν + U/2 + 3$U/2 + J/2

− 1
iν − U/2 − 3$U/2 − J/2

}]
. (A4)

Here, a term proportional to Uxy − J has been neglected. The
term

J
∑

k ̸=k′

c
†
k↑c

†
k↓ck′↓ck′↑ (A5)

in the Hamiltonian couples the two terms in the simplified
ground state [Eq. (42)] particularly efficient. This leads to
the large contribution proportional to J in Eq. (A4), which
corresponds to Q = (π,π ) and K1 = (0,π ).

These results can be directly compared with Fig. 4(a). For
small values of ν, the first two terms approximately cancel.
These two terms correspond to the processes K1 = (π,0) and
(0,π ) for Q = (0,0), which are seen to cancel in Fig. 4(a).
The term proportional to J corresponds to Q = (π,π ) and
K1 = (0,π ). This term contains two contributions, which
approximately add up for small ν. The absolute value of this
term is then approximately twice as large as the previous two
terms, as is also found in Fig. 4(a).

Above, we have expressed the self-energy in terms of χ↑↓,
We can instead express it in terms of χsp, as is done in the
fluctuation diagnostics:

%1c1c(ν) = 1
2g(ν)

[
− Uxx

1
iν − U/2 − 3$U/2 − J/2

+ J
1

iν − U/2 − 3$U/2 − J/2

− J

{
1

iν + U/2 + 3$U/2 + J/2

− 1
iν − U/2 − 3$U/2 − J/2

}]
. (A6)

The first term corresponds to Q = (0,0) and K = K′ =
(π,0), the second term to Q = (π,π ) and K = K′ = (π,0),
and the third term to Q = (π,π ), K = (π,0) and K′ = (0,π ).
This is the largest term, showing the importance of Q = (π,π )
in the fluctuation diagnostics. The first two terms largely cancel
each other.

APPENDIX B: ACCURACY OF LARGE-U
APPROXIMATION

Throughout our work, we have extensively used the large-U
approximation (28) in Eqs. (32), (33), and (38)–(40) to obtain
a relation between spectra and real-space correlation functions
for a half-filled system. The accuracy of these approximations
is therefore crucial. The approximations were of two types.
First, we made an approximation for the eigenenergies in
Eq. (28) and in the following equations we also assumed that
double occupancy (single occupancy) can be neglected for
U > 0 (U < 0).

We can now discuss the accuracy of these approximations
by comparing general results of the approximations with
results in Figs. 3, 5, 7, and 10, which did not use large-U ap-
proximations. We recall that the smallest Matsubara frequency
ν = π/β ≪ |U |/2 is considered. The large -U approximations
predict that D↑↓ → −1 and that B↑↓[K,K + (π,π ); ν] are
independent of K. We first discuss this for K points at the
Fermi surface. The large-U results for B and D then show
up in the Figs. 5, 7, and 10 for values of U where the
(pseudo)gap has developed. This happens for U ∼ 1.2 eV
(Nc = 4), 1.8 eV (Nc = 8), and 1.1–1.2 eV (Nc = 32), in
all cases for t = −0.25 eV and β = 60 eV−1. For somewhat
smaller values of U, B↑↓[K,K + (π,π ); ν] has an important
dependence on K, also for K at the Fermi surface.

For the K points away from the Fermi surface, the large-U
approximation becomes valid only for substantially larger
values of U than above. We have performed calculations for an
isolated cluster since for large U the coupling to the bath plays
a small role. For Nc = 8 we find that B↑↓[K,K + (π,π ); ν]
becomes independent of K for all values of K for U ≃10
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(π,0), (3π/4,π/4), and (π/2,π/2) [see inset of Fig. 9(a)],
which makes it possible to study in more detail how the
pseudogap evolves along the Fermi surface as U is increased.

Figure 9 shows the spectra. For U = 0.9 eV, only K = (π,0)
shows signs of a pseudogap, while there are still metallic peaks
at EF for K = (3π/4,π/4) and (π/2,π/2). Increasing U to
1.0 eV, there is also a pseudogap for K = (3π/4,π/4) and for
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U = 1.1 eV also K = (π/2,π/2) shows an evident non-Fermi-
liquid behavior.

The observed progression can be understood by studying
the couplings [Eq. (10)] to the baths for these three K points,
as shown in Table I. As found before, the coupling for K =
(π,0) is much weaker than for (π/2,π/2). Table I shows
that the point in-between, K = (3π/4,π/4), indeed has an
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U = 1.1 eV also K = (π/2,π/2) shows an evident non-Fermi-
liquid behavior.

The observed progression can be understood by studying
the couplings [Eq. (10)] to the baths for these three K points,
as shown in Table I. As found before, the coupling for K =
(π,0) is much weaker than for (π/2,π/2). Table I shows
that the point in-between, K = (3π/4,π/4), indeed has an
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intermediate coupling. The switch from a Kondo type of states
to a localized state then happens successively for the three K
points as U is increased.

This is illustrated in Fig. 10 showing
D↑↓(K; ν), B↑↓[K,K + (π,π ); ν], and L(K). As for smaller
Nc, the spectrum for K obtains a pseudogap shortly after L(K)
turns positive. At the same time, B↑↓[K,K + (π,π ); ν] and
D↑↓(K; ν) become strongly negative.

As U is increased, correlation functions involving K =
(π,0) and (0,π ) first approach values corresponding to an
RVB state. At a somewhat later point, this also applies for
K = (±3π/4,±π/4) and (±π/4,±3π/4) and for yet larger
values of U for (±π/2,±π/2). Thus, the gradual development
of an RVB state leads the gradual development of a pseudogap
for K points along the Fermi surface.

VI. CONCLUSIONS

In this paper, we have studied the relations between electron
spectral functions and real-space correlation functions. We
used the Schwinger-Dyson equation to establish the con-
nections between the electron self-energy and two-particle
vertex functions F (k,k′,q), involving summations over k′ and
q to obtain #(k). In fact, while F contains a wealth of
information about the scattering of the interacting particles,
it is a challenging task to disentangle all the effects of these
scattering processes on #, due to the intrinsic complexity of F .

In this work, we have shown that this goal can be achieved
through different, but physically equivalent, paths: either one
performs a sum over k′ in the equation of motion for #, making
explicit the contributions as a function of the transferred
energy/momentum q (“bosonic fluctuation diagnostics”) or
one sums over q and study the contributions to #(k) as a
function of k′ (“fermionic fluctuation diagnostics”). While the
correlation functions of the two formulations are related by
exact expressions, at least for the SU(2)-symmetric case, the
latter allows for a more natural interpretation in terms of real
space RVB fluctuations.

To improve our physical understanding, we exploited a
large-U approximation, which allows us to establish more
direct, semianalytical relations between the spectral function
and real-space correlations. Comparison with numerical cal-
culations for small clusters shows that this approximation is
sufficiently accurate for values of U where a spectral gap has
developed over the whole Fermi surface in our DCA results
for the two-dimensional Hubbard model. In this way, we could
relate the spectra to real space charge, spin, superconductivity,
and RVB correlations. The approach has been applied to the
pseudogap regime of the 2d Hubbard model, as observed in
DCA. It was demonstrated that the development of the pseu-
dogap can be related, in a complementary description, to the
formation of strong RVB or of antiferromagnetic correlations,
but not to superconductivity or charge fluctuations.

In particular, we have performed DCA calculations up
to a 32-site cluster, which has three inequivalent K points
on the Fermi surface. It is crucial that different K orbitals
on the cluster have rather different couplings to their baths.
Therefore, we find that as U is increased, correlation functions
first obtain values appropriate for an RVB state for K = (π,0)
and (0,π ), which have the weakest coupling to their baths.

At the same time, pseudogaps form for these K vectors. The
strong interaction between the (π,0) and (0,π ) for larger
values of U is crucial for this result. The same happens for
K = (±3π/4,±π/4) and (±π/4,3π/4) for a somewhat larger
U , due to the stronger coupling to the corresponding baths.
Finally, this also happens for K = (±π/2,±π/2) for a still
larger U , where the coupling to the baths is the strongest.

From a purely algorithmic viewpoint, the systematic deriva-
tions presented in this paper demonstrate how it is possible to
gain a considerable reduction of the numerical effort for the
fluctuation diagnostic calculations [see Eq. (21) and the related
discussion].

In summary, we clarify the relation between the evolution
of spectra and different correlation functions in the most
interesting correlated regime of the 2d Hubbard model, where
pseudogap features are clearly visible. In doing this, we have
made contact to two earlier approaches in Refs. [4,50], using
the conceptual framework of Eqs. (1) and (2), respectively.
From our analysis, it becomes clear how the two approaches
indeed capture complementary aspects of the same physics.
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APPENDIX A: FOUR-LEVEL MODEL:
LARGE U AND !U > 0

To understand the $U > 0 better, we consider the large-U
limit. Then, two electrons localize on the cluster, and we can
obtain a good description of # by considering the isolated
cluster. We furthermore assume a small T so that only the
lowest state is occupied. For $U < 0, the system forms a
Kondo-type state with the bath, and even for a large U we
cannot simplify the problem by just considering the isolated
cluster.

Generally, we can write the Green’s function for the cluster
level 1 as

[g1c1c(ν)]−1 =
[
g0

1c1c(ν)
]−1 − #1c1cσ (ν), (A1)

where

g0
1c1c(ν) = 1

iν − εc − V 2

iν−εb+µ
+ µ

(A2)

and

#1c1c(ν) = −[Zg1c1c(ν)]−1
∑

mn

e−βEm + e−βEn

iν + En − Em

×⟨n|[−Uxxc1c↑n1c↓ − Uxyc1c↑n2c↓
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We now consider a large U/V and $U > 0, so that we can
consider the isolated cluster. For a small T we obtain

%1c1c(ν) = 1
2g1c1c(ν)

[
Uxy

iν − U/2 − 3$U/2 − J/2
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Here, a term proportional to Uxy − J has been neglected. The
term

J
∑

k ̸=k′

c
†
k↑c

†
k↓ck′↓ck′↑ (A5)

in the Hamiltonian couples the two terms in the simplified
ground state [Eq. (42)] particularly efficient. This leads to
the large contribution proportional to J in Eq. (A4), which
corresponds to Q = (π,π ) and K1 = (0,π ).

These results can be directly compared with Fig. 4(a). For
small values of ν, the first two terms approximately cancel.
These two terms correspond to the processes K1 = (π,0) and
(0,π ) for Q = (0,0), which are seen to cancel in Fig. 4(a).
The term proportional to J corresponds to Q = (π,π ) and
K1 = (0,π ). This term contains two contributions, which
approximately add up for small ν. The absolute value of this
term is then approximately twice as large as the previous two
terms, as is also found in Fig. 4(a).

Above, we have expressed the self-energy in terms of χ↑↓,
We can instead express it in terms of χsp, as is done in the
fluctuation diagnostics:

%1c1c(ν) = 1
2g(ν)

[
− Uxx
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iν − U/2 − 3$U/2 − J/2
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}]
. (A6)

The first term corresponds to Q = (0,0) and K = K′ =
(π,0), the second term to Q = (π,π ) and K = K′ = (π,0),
and the third term to Q = (π,π ), K = (π,0) and K′ = (0,π ).
This is the largest term, showing the importance of Q = (π,π )
in the fluctuation diagnostics. The first two terms largely cancel
each other.

APPENDIX B: ACCURACY OF LARGE-U
APPROXIMATION

Throughout our work, we have extensively used the large-U
approximation (28) in Eqs. (32), (33), and (38)–(40) to obtain
a relation between spectra and real-space correlation functions
for a half-filled system. The accuracy of these approximations
is therefore crucial. The approximations were of two types.
First, we made an approximation for the eigenenergies in
Eq. (28) and in the following equations we also assumed that
double occupancy (single occupancy) can be neglected for
U > 0 (U < 0).

We can now discuss the accuracy of these approximations
by comparing general results of the approximations with
results in Figs. 3, 5, 7, and 10, which did not use large-U ap-
proximations. We recall that the smallest Matsubara frequency
ν = π/β ≪ |U |/2 is considered. The large -U approximations
predict that D↑↓ → −1 and that B↑↓[K,K + (π,π ); ν] are
independent of K. We first discuss this for K points at the
Fermi surface. The large-U results for B and D then show
up in the Figs. 5, 7, and 10 for values of U where the
(pseudo)gap has developed. This happens for U ∼ 1.2 eV
(Nc = 4), 1.8 eV (Nc = 8), and 1.1–1.2 eV (Nc = 32), in
all cases for t = −0.25 eV and β = 60 eV−1. For somewhat
smaller values of U, B↑↓[K,K + (π,π ); ν] has an important
dependence on K, also for K at the Fermi surface.

For the K points away from the Fermi surface, the large-U
approximation becomes valid only for substantially larger
values of U than above. We have performed calculations for an
isolated cluster since for large U the coupling to the bath plays
a small role. For Nc = 8 we find that B↑↓[K,K + (π,π ); ν]
becomes independent of K for all values of K for U ≃10
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(π,0), (3π/4,π/4), and (π/2,π/2) [see inset of Fig. 9(a)],
which makes it possible to study in more detail how the
pseudogap evolves along the Fermi surface as U is increased.

Figure 9 shows the spectra. For U = 0.9 eV, only K = (π,0)
shows signs of a pseudogap, while there are still metallic peaks
at EF for K = (3π/4,π/4) and (π/2,π/2). Increasing U to
1.0 eV, there is also a pseudogap for K = (3π/4,π/4) and for
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U = 1.1 eV also K = (π/2,π/2) shows an evident non-Fermi-
liquid behavior.

The observed progression can be understood by studying
the couplings [Eq. (10)] to the baths for these three K points,
as shown in Table I. As found before, the coupling for K =
(π,0) is much weaker than for (π/2,π/2). Table I shows
that the point in-between, K = (3π/4,π/4), indeed has an
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as shown in Table I. As found before, the coupling for K =
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that the point in-between, K = (3π/4,π/4), indeed has an
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SU(2) symmetry of the Hubbard model for the paramagnetic
state [58] and “crossing relations” [58], due to the electrons
being identical particles, specific identities between different
vertex functions can be derived. By means of these relations
Eq. (15) can be rewritten as [4]

!(k) −
(n

2
− n0

)
U

= U

β2Nc

∑

k′,q

Fsp(k,k′; q) g(k′)g(k′+q)g(k+q)

= − U

β2Nc

∑

k′,q

Fch(k,k′; q) g(k′)g(k′ + q)g(k + q)

= − U

β2Nc

∑

k′,q

Fpp(k,k′; q) g(k′)g(q − k′)g(q − k),

(16)

where

Fch(k; k′; q) = F↑↑(k; k′; q) + F↑↓(k; k′; q),

Fsp(k; k′; q) = F↑↑(k; k′; q) − F↑↓(k; k′; q), (17)

Fpp(k; k′; q) = F↑↓(k; k′; q − k − k′).

The three equations in Eq. (16) are all exact and give identical
results. Using “fluctuation diagnostics” [4], the partial contri-
bution to these sums was studied as a function of q [4,59].
In particular, if there are low-lying spin fluctuations for some
Q = Q0 [e.g., Q0 = (π,π )], these give large contributions in
the top formula in Eq. (16) for Q = Q0 and small ω. In the
other two formulas, on the other hand, the contributions are
spread out over many Q and ω. In a similar way, one can
detect well-defined charge and superconductivity fluctuations
from the second and third formulas, respectively. This makes
it possible to identify which fluctuations are important in
determining a given numerical result for the self-energy.

From the algorithmic point of view, it is important to recall
that the advantage of this procedure with respect to a more
direct decomposition [60] of the self-energy in terms of the
parquet equations [61] is to avoid, at any step of the algorithm,
the calculations of possibly divergent [4,62–71] two-particle-
irreducible vertex functions.

Complementarily to the fluctuation diagnostics, in Ref. [50]
the correlation function

L(K) = ⟨nK↑nK↓⟩ − ⟨nK↑⟩⟨nK↓⟩ (18)

was introduced to relate the spectral function to the underlying
ground-state properties. This correlation function describes the
transition from a Kondo-type state to localized state on the
cluster.

For small U , the Kondo screening of the different K states
is important. We then obtained L < 0, showing the beginning
of the formation of a spin- 1

2 state in the orbital K, due to the
suppression of double occupancy. This spin state was found to
couple antiferromagnetically to the bath, leading to a Kondo-
type state.

For larger values of U , it was found that localized states
form on the cluster, e.g., for Nc = 4 as in Eq. (46) below.
This leads to L > 0. We notice that this corresponds to an
increased double occupancy of certain K states, while the

double occupancy in real space is reduced as U is increased.
We use this correlation function to clarify the relation between
the results obtained from the fluctuation diagnostics and the
complementary approach of Ref. [50].

C. Coupling to fermionic modes

In this section, we reformulate the fluctuation diagnostic
approach of Ref. [4] in terms of fermionic modes. This
reformulation is, from a physical point of view, rigorously
equivalent to the bosonic one of Ref. [4] for the case of
SU(2)-symmetric models mostly considered in this work.
It allows, however, to establish in a more immediate way
the connection between the predominant fluctuations and the
underlying correlations in real space.

We introduce an extended set of correlation functions de-
signed to capture the complementary aspects of the underlying
physics. In particular, going beyond the derivations of Ref. [4],
we also study the K′ dependence of the two-particle correlation
function after a summation over the transfer momentum Q has
been performed since the connection to RVB-like correlations
is then more visible.

We reformulate the equations of Ref. [4] by following an
alternative route in treating the equation of motion. This allows
us to perform two frequency summations in Eqs. (15) and
(16) analytically. Numerically, this is a drastic simplification
of formulas used in fluctuation diagnostics.

From Eq. (13), we can see that the susceptibility is the
vertex function F↑↓ times four Green’s functions, while the
contribution to the self-energy is F↑↓ times three Green’s
functions. The derivation below essentially replaces the vertex
function by the susceptibility divided by a Green’s function
and with two frequency summations performed.

We insert the expression of the Hubbard interaction [Eq. (5)]
in the commutator in Eq. (14), obtaining

!(k) + n0U = − U

Ncg(k)

∑

K′Q

∫ β

0
dτ eiντ

×⟨cK+Q↑(τ )c†K′+Q↓(τ )cK′↓(τ )c†K↑⟩. (19)

We introduce a specific two-particle correlation function

Aσσ ′(K,K′,Q; ν)

= − U

Nc

∫ β

0
dτ eiντ ⟨cK+Qσ (τ )c†K′+Qσ ′(τ )cK′σ ′(τ )c†Kσ ⟩

= U

Nc

∫ β

0
dτ e−iντ ⟨c†Kσ (τ )cK+Qσ c

†
K′+Qσ ′cK′σ ′ ⟩, (20)

and express Eq. (19) in terms of A↑↓(K,K′,Q,ν). The function
A is shown schematically in Fig. 1. Comparing with Eqs. (13)
and (15), we can see that the integral in Eqs. (19) and (20)
corresponds, to a large extent, to the susceptibility χ↑↓(k,k′,q)
summed over the frequencies ν ′ and ω:

!(k) + n0U

= 1
g(k)

∑

K′Q

U

β2Nc

∑

ν ′ω

[
χ↑↓(k,k′,q) + Ncn

2
g(k)δQ0

]

= 1
g(k)

∑

K′Q

A↑↓(K,K′,Q; ν). (21)
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− Jc
†
1c↓c2c↓c2c↑ + Jc

†
2c↑c2c↑c1c↑

+ Jc
†
2c↓c2c↑c1c↓]|m⟩⟨m|c†1c↑|n⟩. (A3)

We now consider a large U/V and $U > 0, so that we can
consider the isolated cluster. For a small T we obtain

%1c1c(ν) = 1
2g1c1c(ν)

[
Uxy

iν − U/2 − 3$U/2 − J/2

+ Uxx

iν + U/2 + 3$U/2 + J/2

− J

{
1

iν + U/2 + 3$U/2 + J/2

− 1
iν − U/2 − 3$U/2 − J/2

}]
. (A4)

Here, a term proportional to Uxy − J has been neglected. The
term

J
∑

k ̸=k′

c
†
k↑c

†
k↓ck′↓ck′↑ (A5)

in the Hamiltonian couples the two terms in the simplified
ground state [Eq. (42)] particularly efficient. This leads to
the large contribution proportional to J in Eq. (A4), which
corresponds to Q = (π,π ) and K1 = (0,π ).

These results can be directly compared with Fig. 4(a). For
small values of ν, the first two terms approximately cancel.
These two terms correspond to the processes K1 = (π,0) and
(0,π ) for Q = (0,0), which are seen to cancel in Fig. 4(a).
The term proportional to J corresponds to Q = (π,π ) and
K1 = (0,π ). This term contains two contributions, which
approximately add up for small ν. The absolute value of this
term is then approximately twice as large as the previous two
terms, as is also found in Fig. 4(a).

Above, we have expressed the self-energy in terms of χ↑↓,
We can instead express it in terms of χsp, as is done in the
fluctuation diagnostics:

%1c1c(ν) = 1
2g(ν)

[
− Uxx

1
iν − U/2 − 3$U/2 − J/2

+ J
1

iν − U/2 − 3$U/2 − J/2

− J

{
1

iν + U/2 + 3$U/2 + J/2

− 1
iν − U/2 − 3$U/2 − J/2

}]
. (A6)

The first term corresponds to Q = (0,0) and K = K′ =
(π,0), the second term to Q = (π,π ) and K = K′ = (π,0),
and the third term to Q = (π,π ), K = (π,0) and K′ = (0,π ).
This is the largest term, showing the importance of Q = (π,π )
in the fluctuation diagnostics. The first two terms largely cancel
each other.

APPENDIX B: ACCURACY OF LARGE-U
APPROXIMATION

Throughout our work, we have extensively used the large-U
approximation (28) in Eqs. (32), (33), and (38)–(40) to obtain
a relation between spectra and real-space correlation functions
for a half-filled system. The accuracy of these approximations
is therefore crucial. The approximations were of two types.
First, we made an approximation for the eigenenergies in
Eq. (28) and in the following equations we also assumed that
double occupancy (single occupancy) can be neglected for
U > 0 (U < 0).

We can now discuss the accuracy of these approximations
by comparing general results of the approximations with
results in Figs. 3, 5, 7, and 10, which did not use large-U ap-
proximations. We recall that the smallest Matsubara frequency
ν = π/β ≪ |U |/2 is considered. The large -U approximations
predict that D↑↓ → −1 and that B↑↓[K,K + (π,π ); ν] are
independent of K. We first discuss this for K points at the
Fermi surface. The large-U results for B and D then show
up in the Figs. 5, 7, and 10 for values of U where the
(pseudo)gap has developed. This happens for U ∼ 1.2 eV
(Nc = 4), 1.8 eV (Nc = 8), and 1.1–1.2 eV (Nc = 32), in
all cases for t = −0.25 eV and β = 60 eV−1. For somewhat
smaller values of U, B↑↓[K,K + (π,π ); ν] has an important
dependence on K, also for K at the Fermi surface.

For the K points away from the Fermi surface, the large-U
approximation becomes valid only for substantially larger
values of U than above. We have performed calculations for an
isolated cluster since for large U the coupling to the bath plays
a small role. For Nc = 8 we find that B↑↓[K,K + (π,π ); ν]
becomes independent of K for all values of K for U ≃10
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intermediate coupling. The switch from a Kondo type of states
to a localized state then happens successively for the three K
points as U is increased.

This is illustrated in Fig. 10 showing
D↑↓(K; ν), B↑↓[K,K + (π,π ); ν], and L(K). As for smaller
Nc, the spectrum for K obtains a pseudogap shortly after L(K)
turns positive. At the same time, B↑↓[K,K + (π,π ); ν] and
D↑↓(K; ν) become strongly negative.

As U is increased, correlation functions involving K =
(π,0) and (0,π ) first approach values corresponding to an
RVB state. At a somewhat later point, this also applies for
K = (±3π/4,±π/4) and (±π/4,±3π/4) and for yet larger
values of U for (±π/2,±π/2). Thus, the gradual development
of an RVB state leads the gradual development of a pseudogap
for K points along the Fermi surface.

VI. CONCLUSIONS

In this paper, we have studied the relations between electron
spectral functions and real-space correlation functions. We
used the Schwinger-Dyson equation to establish the con-
nections between the electron self-energy and two-particle
vertex functions F (k,k′,q), involving summations over k′ and
q to obtain #(k). In fact, while F contains a wealth of
information about the scattering of the interacting particles,
it is a challenging task to disentangle all the effects of these
scattering processes on #, due to the intrinsic complexity of F .

In this work, we have shown that this goal can be achieved
through different, but physically equivalent, paths: either one
performs a sum over k′ in the equation of motion for #, making
explicit the contributions as a function of the transferred
energy/momentum q (“bosonic fluctuation diagnostics”) or
one sums over q and study the contributions to #(k) as a
function of k′ (“fermionic fluctuation diagnostics”). While the
correlation functions of the two formulations are related by
exact expressions, at least for the SU(2)-symmetric case, the
latter allows for a more natural interpretation in terms of real
space RVB fluctuations.

To improve our physical understanding, we exploited a
large-U approximation, which allows us to establish more
direct, semianalytical relations between the spectral function
and real-space correlations. Comparison with numerical cal-
culations for small clusters shows that this approximation is
sufficiently accurate for values of U where a spectral gap has
developed over the whole Fermi surface in our DCA results
for the two-dimensional Hubbard model. In this way, we could
relate the spectra to real space charge, spin, superconductivity,
and RVB correlations. The approach has been applied to the
pseudogap regime of the 2d Hubbard model, as observed in
DCA. It was demonstrated that the development of the pseu-
dogap can be related, in a complementary description, to the
formation of strong RVB or of antiferromagnetic correlations,
but not to superconductivity or charge fluctuations.

In particular, we have performed DCA calculations up
to a 32-site cluster, which has three inequivalent K points
on the Fermi surface. It is crucial that different K orbitals
on the cluster have rather different couplings to their baths.
Therefore, we find that as U is increased, correlation functions
first obtain values appropriate for an RVB state for K = (π,0)
and (0,π ), which have the weakest coupling to their baths.

At the same time, pseudogaps form for these K vectors. The
strong interaction between the (π,0) and (0,π ) for larger
values of U is crucial for this result. The same happens for
K = (±3π/4,±π/4) and (±π/4,3π/4) for a somewhat larger
U , due to the stronger coupling to the corresponding baths.
Finally, this also happens for K = (±π/2,±π/2) for a still
larger U , where the coupling to the baths is the strongest.

From a purely algorithmic viewpoint, the systematic deriva-
tions presented in this paper demonstrate how it is possible to
gain a considerable reduction of the numerical effort for the
fluctuation diagnostic calculations [see Eq. (21) and the related
discussion].

In summary, we clarify the relation between the evolution
of spectra and different correlation functions in the most
interesting correlated regime of the 2d Hubbard model, where
pseudogap features are clearly visible. In doing this, we have
made contact to two earlier approaches in Refs. [4,50], using
the conceptual framework of Eqs. (1) and (2), respectively.
From our analysis, it becomes clear how the two approaches
indeed capture complementary aspects of the same physics.
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APPENDIX A: FOUR-LEVEL MODEL:
LARGE U AND !U > 0

To understand the $U > 0 better, we consider the large-U
limit. Then, two electrons localize on the cluster, and we can
obtain a good description of # by considering the isolated
cluster. We furthermore assume a small T so that only the
lowest state is occupied. For $U < 0, the system forms a
Kondo-type state with the bath, and even for a large U we
cannot simplify the problem by just considering the isolated
cluster.

Generally, we can write the Green’s function for the cluster
level 1 as

[g1c1c(ν)]−1 =
[
g0

1c1c(ν)
]−1 − #1c1cσ (ν), (A1)

where

g0
1c1c(ν) = 1

iν − εc − V 2

iν−εb+µ
+ µ

(A2)

and

#1c1c(ν) = −[Zg1c1c(ν)]−1
∑

mn

e−βEm + e−βEn

iν + En − Em

×⟨n|[−Uxxc1c↑n1c↓ − Uxyc1c↑n2c↓
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Ref. [42], that the positive (i.e., non-Fermi-liquid) slope of
Im!(K,iν) in the lowest-frequency region for K = (π,0)
indicates a pseudogap spectral weight suppression at the
antinode. The parquet decomposition of the two self-energies
is, however, very similar: The strong oscillations of the
various channels clearly demonstrate that in the parameter
region where a pseudogap behavior is found in DCA, the
parquet decomposition displays already strong oscillations.
It is also interesting to notice that, similarly as we discussed
in the previous section, also in this case, the spin-channel
contribution of the parquet decomposition is the only one
displaying a well-behaved shape, with values of the order of
the self-energy and no frequency oscillations. Consequently,
also for the DCA self-energy in the pseudogap regime, a
Bethe-Salpeter decomposition in the spin channel of the
self-energy remains valid (see right panel of Fig. 8). As
discussed in the previous section, this might be interpreted as a
hallmark of the predominance of the spin-scattering processes
in a nonperturbative regime, where a well-behaved parquet
decomposition is no longer possible. In this perspective, the
physical interpretation would match very well the conclusions
derived about the origin for the pseudogap self-energy of DCA
by means of the recently introduced fluctuation diagnostics

method [42]. At present, hence, the post processing of a given
numerical self-energy provided by the fluctuation diagnostics
procedure appears the most performant because, differently
from the parquet decomposition, it remains applicable, without
any change, also to nonperturbative cases.

After discussing our parquet decomposition calculations,
their proposed physical interpretation, and their limitation in
applicability, it is natural to wonder where such limitations
arise from. This analysis is, in fact, very important also beyond
the calculations presented in this work because the parquet
equations represent the base-camp of several novel quantum
many-body schemes aiming at the description of strongly
correlated electron beyond the perturbative regime.

As we anticipated before, the reason for the occurrence
of strong low-frequency oscillations in the parquet decom-
position can be traced to the divergence of the 2PI vertex
functions observed by increasing U [48] or, equivalently,
to the occurrence of singularities in the generalized ph
charge (χch) and pp (↑↓ and/or singlet) (χpp) susceptibilities.
The investigation of the exact relation between the peculiar
behavior of the parquet decomposition by increasing U and the
singularities of the corresponding generalized susceptibility
matrix will be explicitly addressed below.

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2

Im
Σ(

K
,iν

) [
eV

]

ν [eV]

exact
sum

Λ

pp
charge

spin

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Im
Σ(

K
,iν

) [
eV

]

ν [eV]

exact
sum

Λ + charge + pp
spin

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Im
Σ(

K
,iν

) [
eV

]

ν [eV]

exact
sum

Λ

pp
charge

spin

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Im
Σ(

K
,iν

) [
eV

]

ν [eV]

exact
sum

Λ + charge + pp
spin
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Summary, Conclusion & …
ª How to read between the lines of one-particle spectra?

parquet 
decomposition

✗unstable for increasing U

✗numerically heavier (inversions)  

✔generalizable to response functions

✔numerically lighter

? how “generalizable“ ?

✔ eflexible/everywhere applicable

Outlook: 

O. GUNNARSSON et al. PHYSICAL REVIEW B 93, 245102 (2016)

Ref. [42], that the positive (i.e., non-Fermi-liquid) slope of
Im!(K,iν) in the lowest-frequency region for K = (π,0)
indicates a pseudogap spectral weight suppression at the
antinode. The parquet decomposition of the two self-energies
is, however, very similar: The strong oscillations of the
various channels clearly demonstrate that in the parameter
region where a pseudogap behavior is found in DCA, the
parquet decomposition displays already strong oscillations.
It is also interesting to notice that, similarly as we discussed
in the previous section, also in this case, the spin-channel
contribution of the parquet decomposition is the only one
displaying a well-behaved shape, with values of the order of
the self-energy and no frequency oscillations. Consequently,
also for the DCA self-energy in the pseudogap regime, a
Bethe-Salpeter decomposition in the spin channel of the
self-energy remains valid (see right panel of Fig. 8). As
discussed in the previous section, this might be interpreted as a
hallmark of the predominance of the spin-scattering processes
in a nonperturbative regime, where a well-behaved parquet
decomposition is no longer possible. In this perspective, the
physical interpretation would match very well the conclusions
derived about the origin for the pseudogap self-energy of DCA
by means of the recently introduced fluctuation diagnostics

method [42]. At present, hence, the post processing of a given
numerical self-energy provided by the fluctuation diagnostics
procedure appears the most performant because, differently
from the parquet decomposition, it remains applicable, without
any change, also to nonperturbative cases.

After discussing our parquet decomposition calculations,
their proposed physical interpretation, and their limitation in
applicability, it is natural to wonder where such limitations
arise from. This analysis is, in fact, very important also beyond
the calculations presented in this work because the parquet
equations represent the base-camp of several novel quantum
many-body schemes aiming at the description of strongly
correlated electron beyond the perturbative regime.

As we anticipated before, the reason for the occurrence
of strong low-frequency oscillations in the parquet decom-
position can be traced to the divergence of the 2PI vertex
functions observed by increasing U [48] or, equivalently,
to the occurrence of singularities in the generalized ph
charge (χch) and pp (↑↓ and/or singlet) (χpp) susceptibilities.
The investigation of the exact relation between the peculiar
behavior of the parquet decomposition by increasing U and the
singularities of the corresponding generalized susceptibility
matrix will be explicitly addressed below.
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FIG. 8. Parquet decomposition of the DCA self-energy ![K,iν] with Nc = 8 for the low-T , underdoped case n = 0.94 with U = 1.75 eV
and β = 60 eV−1 (see text). Left upper panel: parquet decomposition for the antinodal DCA self-energy [K = (π,0)]; right upper panel:
Bethe-Salpeter decomposition of the antinodal DCA self-energy. Left lower panel: parquet decomposition of the nodal [K = ( π

2 , π
2 )] DCA

self-energy. Right lower panel: Bethe-Salpeter decomposition of the nodal DCA self-energy.

245102-8

𝜒(q,ω) ● Symmetry-broken phases
● Non-local interactions

● Multi-orbital systems (Hund’s metals) 


