Oxides for thermoelectricity

Sylvie Hébert Laboratoire CRISMAT UMR6508 CNRS et ENSICAEN

Collège de France Avril 2013

Oxides for thermoelectricity

Aim of this seminar : Best thermoelectric oxides / Show the specificities of oxides

> Introduction : Oxides specificities / Models for oxides / Best thermoelectric oxides

Increase of the of the carrier Degenerate semi-conductors : the Heikes formula
Ma_xCoO₂ and misfit compounds

Conclusion

Introduction

Why oxides?

Strong interplay between spin/charge/lattice

Property	Materials					
Metals	CrO ₂ , Fe ₃ O ₄ , SrRuO ₃					
Insulators	Cr_2O_3 , CoO, Fe_2O_3 , Al_2O_3					
Metal-Insulator Transition	VO ₂ , V ₂ O ₃					
Superconductors	Ba(Bi,Pb)O ₃ , YBa ₂ Cu ₃ O ₇					
Piezo- and Ferroelectrics	Pb(Zr,Ti)O ₃ , BaTiO ₃					
Catalysts (chemical, photo-)	TiO ₂ , LaCoO ₃ , BiMoO ₄					
Ferro-, Antiferro-, Ferrimagnets	CrO ₂ , MnO, MnFe ₂ O ₄					
Pigments	TiO ₂ , CoAl ₂ O ₄ , Co ₃ (PO ₄) ₂					
Sensors	Ca _x Zr _{1-x} O _{2-x} , SnO ₂					
Negative Thermal Expansion	ZrW ₂ O ₈					
Ionic Conductors (battery, SOFC)	Li _x MnO ₂ , Ca _x Zr _{1-x} O _{2-x}					
Thermoelectrics	Na _x CoO ₂					
Non-Linear Optics	LiNbO ₃					

From M. Subramanian, Large family of compounds, OSU Can be cheap, environment friendly and resistant in air PRB46, 14928 (1992)

Systematics in the thermoelectric power of high- T_c oxides

S. D. Obertelli and J. R. Cooper* Interdisciplinary Research Centre in Superconductivity, Madingley Road, Cambridge CB3 OHE, United Kingdom

> J. L. Tallon New Zealand Institute for Industrial Research and Development, P.O. Box 31310, Lower Hutt, New Zealand (Received 2 September 1992)

High Tc superconductors

Many superconducting cuprates show a parabolic variation of T_c with hole concentration p, there being a minimum and a maximum hole concentration for superconductivity. Thermoelectric power (TEP) measurements reported here as a function of p for a number of oxides reveal several important trends: (1) close similarities in the TEP of several compounds and a change in sign of the room-temperature TEP near the maximum T_c , (2) continuity in the TEP when doping across the two superconducting-nonsuperconducting boundaries, and (3) a universal correspondence of the room-temperature TEP with p over the whole range of doping.

Correlation between Seebeck / doping / Critical temperature

T (K)

FIG. 2. (a) Thermoelectric power vs temperature for underdoped YBa₂Cu₃O_{7- δ} with 0.52 $\leq \delta \leq$ 0.87. For $\delta >$ 0.5 the es-

FIG. 3. Room-temperature thermoelectric power S(290 K) vs hole concentration (and T_c/T_c^{max}) for various high- T_c cuprates in both the underdoped (logarithmic scale) and overdoped (linear scale) regions. $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO) data from Ref. 33.

Introduction

$Zn_{1-x}Al_{x}O(x = 0 - 0.1)$

But κ is too high !!!

In conclusion, this is the first time that an ionic material such as oxide exhibits the thermoelectric performance comparable to those of the conventional thermoelectric materials.

M. Ohtaki et al., JAP79, 1816 (1996)

Introduction

Na_{0.7}CoO₂ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

 $P = 40 \ 10^{-4} \ WK^{-2}m^{-1}$

 $P = 50 \ 10^{-4} \ W K^{-2} m^{-1}$

High T properties of Na_xCoO₂

K. Fujita et al. JJAP40, 4644 (2001)

Crystal and polycrystal measurements

Crystals : 1.5 × 1.5 × 0.03 mm³

ZT ~ 1 (for crystals only) at 800K

Introduction

2 different families for the best thermoelectric oxides

- Type p : oxides related to Na_xCoO₂, metallic <u>and</u> large S
- Type n : 'transparent conducting oxides', degenerate semi-conductors

ZT (type p single crystals) > ZT (type n)

Oxides

Specificities of oxides

Low T limit : Mott's formula

$$S = \frac{\pi^2 k_B^2}{3e} T \left(\frac{\partial \ln \sigma(E)}{\partial E}\right)_{E=E_F}$$
$$S = -\frac{\pi^2}{3} \frac{k_B^2 T}{e} \frac{N(E_F)}{n}$$
$$C_{el} / T = \gamma = \frac{\pi^2}{3} k_B^2 N(E_F)$$

Universal value for the ratio of S / γ Limit T $\rightarrow 0$

$$q = \frac{S}{T} \frac{N_{Av}e}{\gamma} = cste$$
$$0.5 < |q| < 2$$

K. Behnia et al. JPCM 16, 5187 (2004)

The Heikes formula

High T limit

VOLUME 13, NUMBER 2

15 JANUARY 1976

Thermopower in the correlated hopping regime

P. M. Chaikin*

Department of Physics, University of California, Los Angeles, California 90024

G. Beni

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 16 June 1975)

The high-temperature limit for the thermopower of a system of interacting localized carriers is governed entirely by the entropy change per added carrier. The calculation of this quantity reduces to a simple combinatorial problem dependent only on the density of carriers and the interactions stronger than the thermal energy. We have thus been able to generalize the Heikes formula to include several cases of interacting Fermi systems with spin.

'Simple combinatorial problem'

Calculated for organic thermoelectrics

FIG. 1. Possible high-temperature site configuration of (a) spinless fermions; (b) electrons with an infinite onsite repulsion; and (c) electrons with no interactions.

P. M. Chaikin et al. Phys. Rev. B 13, 647 (1976)

The Heikes formula

Limit $T \rightarrow \infty$: S ~ entropy / carrier

P. M. Chaikin et al. Phys. Rev. B 13, 647 (1976)

Spin entropy

Extra term in the Heikes formula due to the spin degeneracy

Mixed valency cation $M^{n+} / M^{(n+1)+}$:

J. P. Doumerc JSSC 110, 419 (1994)

Na_xCoO₂:

Spin and orbital degeneracy Co³⁺ (3d⁶)/Co⁴⁺ (3d⁵)

J. P. Doumerc JSSC 109, 419 (1994) W. Koshibae et al., Phys. Rev. B 62, 6869 (2000)

Large S in Na_xCoO₂ Origin of the metallicity ?

Band structure?

Rhombohedral crystalline field Lifting of the t_{2g} levels degeneracy

D. J. Singh, Phys. Rev. B 61, 13397 (2000)

Metallic and large S

Peak of $N(E_F)$

$$\frac{S}{T} = \frac{\pi^2 k^2}{3e} \left(\frac{d \ln(\sigma)}{dE}\right)_{E=E_{r}}$$

avec
$$\sigma = N(E) < v_F(E)^2 >$$

 $> S = +110 \mu V/K$ at 300K calculated for $NaCo_2O_4$

a_{1g} : localized moments / heavy holes e ' $_{g}$: mobile carriers / light holes

T. Yamamoto et al., Phys. Rev. B 65, 184434 (2002)

'Pudding mold model': K. Kuroki et al., JPSJ76, 083707 (2007)

'Thermoelectric effects

in a strongly correlated model for Na_xCoO₂'

t-J model : t = hopping and J = spin coupling

Kubo formalism

Valid at any T (different from the limit $T \rightarrow \infty$)

Black : Heikes formula Red : S = $S_{transport} + S_{Heikes}$

In a large part of the phase diagram (x, T, t), the Heikes formula gives a good estimate of S

M. R. Peterson et al., PRB76, 165118 (2007) M. R. Peterson et al., PRB82, 195105 (2010)

Semi-conducteurs : The Heikes formula

Change of sign in LaCoO₃

LaCoO₃

Heikes formula : possible change of sign

Small x is |S| very large

Change of sign in $LaCoO_3$

A. Maignan et al., EPJB 39, 145 (2004)

Single crystals measurements

FIG. 1. (Color online) Thermal conductivity of $La_{1-x}Sr_xCoO_3$ a function of temperature for different doping *x*.

FIG. 5. (Color online) Figure of merit of $La_{1-x}Sr_xCoO_3$ as a function of temperature for different doping *x*.

K. Berggold et al., PRB72, 155116 (2005)

*Type p : Pr_{1-x}Ca_xCrO*₃

Orthochromites

Introduction of holes : Activated behavior with a decrease of ρ **Perovskite structure**

 $Pr^{3+}_{1-x}Ca^{2+}_{x}Cr^{3+/4+}O_3: 3d^3/3d^2$

S. Pal et al., Eur. Phys. J. B 53, 5 (2006)

*Type p : Pr*_{1-x}Ca_xCrO₃

Orthochromites

 $Pr^{3+}_{1-x}Ca^{2+}_{x}Cr^{3+/4+}O_3: 3d^3/3d^2$

Decrease of S induced by doping

S constant from 200K to high T

S. Pal et al., Eur. Phys. J. B 53, 5 (2006)

Marsh and Parris, Phys. Rev. B 54, 7720 (1996)

*Type p : Pr*_{1-x}Ca_xCrO₃

Power factor

Fig. 6. ρ vs. T (left scale) and Power Factor ($PF = S^2/\rho$) (right scale) of $Pr_{0.7}Ca_{0.3}CrO_3$ measured up to 700 K.

Semi – conducting oxides

The Heikes formula

 \rightarrow Possibility to get p and n type oxides

 \rightarrow Spin and/or orbital degeneracies have to be taken into account for a quantitative analysis

 \rightarrow Explains the asymmetry between n and p type

But too large resistivity !

Degenerate semi-conductors : Best n type oxides

Type n : ZnO

 $Zn_{1-x}Al_xO(x = 0 - 0.1)$

к too high!

M. Ohtaki et al., JAP79, 1816 (1996)

Broadband model for extrinsic n type semiconductor

 $\sigma = ne\mu$,

 $S = -(k/e)[\ln(N_v/n) + A],$ Large mobility of the carriers : 3 – 7cm²/Vs

Type n : $CaMnO_3$ **Perovskite** $Ca_{1-x}Sm_xMnO_3$ $SrMn_{1-x}Mo_xO_3$

Partially filled 3d levels Mn³⁺ t_{2g}³e_g¹, HS JT

Type n : CaMnO₃

FIG. 7. The temperature dependence of the figures of merit Z and the dimensionless figures of merit ZT for $(Ca_{0.9}Bi_{0.1})MnO_3$.

ZT ~ 0.1 à 900°C

M. Ohtaki et al., JSSC120, 105 (1995)

Type n : CaMnO₃

Polarons transport in CaMnO₃

Carrier concentration ~ 10²⁰ cm⁻³

Charged impurity scattering

Smaller mobility than in ZnO

Phonon scattering

J. L. Cohn et al., PRB72, 024422 (2006)

n type : SrTiO₃

Sr_{1-x}La_xTiO₃

3d⁰ / 3d¹

 $SrTiO_3$ = non magnetic insulator La³⁺ : doping of Ti³⁺ in a matrix of Ti⁴⁺

σ~ n (Constant mobility ~ 1 -10cm²/Vs) Boltzmann model for a parabolic band Degenerate semi-conductor

n ~10²⁰ – 10²¹ cm⁻³

PF = 28 -36 10⁻⁴ WK⁻²m⁻¹ But thermal conductivity too large!! *T. Okuda et al., PRB63, 113104 (2001)* ZT = 0.22 for Sr_{0.9}Dy_{0.1}TiO₃ at 573K H. Muta et al., J. Alloys and Comp.350, 292 (2003)

Sr_{1-x}La_xTiO₃

TABLE I. Various physical quantities derived from measurements of the resistivity, specific heat, Hall, and Seebeck coefficients (S) in $Sr_{1-x}La_xTiO_3$ crystals; *n* is the carrier (electron) density, *A* is the T^2 coefficient of resistivity, γ is the electronic specific heat coefficient, m^* is the carrier effective mass, T_F is the Fermi temperature, Θ_D is the Debye temperature, and μ is the chemical potential. S_r represents the calculated Seebeck coefficient with use of the scattering parameter *r* [see Eq. (1) in the text]. *n*, μ , *S*, and *S_r* are the values at 300 K.

X	<i>n</i> (1/Ti)	$n (10^{20} \text{ cm}^{-3})$	$A \ (\Omega \text{ cm/K}^2)$	γ (mJ/K ² mol)	m^*/m_b	<i>Т_F</i> (К)	Θ _D (K)	μ (eV)	-S (μ V/K)	$\frac{-S_0}{(\mu \text{V/K})}$	$-S_1$ (μ V/K)	$\frac{-S_2}{(\mu \text{V/K})}$
0	0.0052	0.877	3.68×10^{-7}	0.63	1.17	343	402	0.0061	380	190	268	345
0.015	0.014	2.31	2.58×10^{-8}						350			
0.02	0.022	3.73	1.21×10^{-8}	1.04	1.51	697	378	0.0488	260	150	182	247
0.04	0.05	8.41	6.69×10 ⁻⁹						162			
0.05	0.061	10.23	5.14×10^{-9}	1.96	1.62	1273	380	0.102	147	93	118	168
0.1	0.11	19.31	3.08×10 ⁻⁹						88.7			

Carrier concentration 10¹⁹ -10²¹ cm⁻³

γ smaller than for p type oxides Less sensitive to correlation effects?

T. Okuda et al., PRB63, 113104 (2001)
Type p : delafossites

CrO₂ layers : edge shared octahedra

CuRh_{0.9}Mg_{0.1}O₂ : ZT = 0.15 à 1000K H. Kuriyama et al., ICT2006

Transport properties of CuCr_{1-x}Mg_xO₂

Trivalent Cr S=3/2

Doping or microstructure effect?? 0.20 $In_2Ge_2O_7$ fraction In₂O₃ 0.15 0.10 0.05 In₂Ge₂O₇ I (a.u.) 0.00.2 0.3 0.0 0.1 Nominal Ge fraction Sample In_{1.9}Ge_{0.1}O₃ 10 20 30 50 60 80 70 40 90

2θ

In_{2-x}Ge_xO₃

R_{Bragg}= 2.98, Chi2=1.28

D. Bérardan et al., Solid Stat. Comm. 146 (2008) 97.

In_{2-x}Ge_xO₃

ZT = 0.4 à 1273K

D. Bérardan et al., Solid Stat. Comm. 2008

Degenerate semi - conductors

- Classical behavior which can be described by the Boltzmann model Small enhancement of the effective mass
 Polaronic transport
 - Mostly n type (p type in delafossites)

Problem : too large thermal conductivity
 Microstructure modification is necessary to enhance ZT

Doped CaMnO₃: **New preparation techniques**

Soft chemistry techniques

L. Bocher et al., Inorg. Chem. 47, 8077 (2008)

Reduction of κ Possible size effect?

Fig. 1. a) SEM picture and b) low resolution TEM of hollow perovskite spheres

Figure 8. (a) Total thermal conductivity κ_{total} of CaMn_{1-x}Nb_xO₃ (x = 0.02, 0.05, and 0.08) synthesized by both SSR (closed symbols) and SC (half-open symbols) methods and lattice contribution κ_l (open symbols) versus *T* and (b) highlight in the low thermal conductivity range.

Nb doped TiO₂

Polaronic transport Measurements for thin films

J. Jacimovic et al., APL102, 013901 (2013)

Search for other materials in the 'TCO' family Critical role of doping through vacancies Calculations for Cu₂O (D. J. Singh et al.), ...

Na_xCoO₂ and related metallic compounds (p type)

Na_xCoO_2 Misfits

Cobalt bronzes family of Na_xCoO₂

C. Fouassier et al., JSSC6, 532 (1973)

Fig. 1. Layer structure of Na_{0.70}CoO_{2-y}.

J. Molenda, C. Delmas, P. Dordor, A. Stoklosa, Solid Stat. Ionics 12, 473 (1989) Introduction

Na_{0.7}CoO₂ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

Power factor $P=S^2/\rho$ at 300K

Bi₂Te₃

 $P = 40 \ 10^{-4} \ WK^{-2}m^{-1}$

The misfit family

• n = 4 $[Bi_2A'_2O_4]^{RS}[CoO_2]_{b1/b2}$ $A' = Ca^{2+}, Sr^{2+} \text{ or } Ba^{2+}$ • n = 3 $[A'_2CoO_3]^{RS}[CoO2]_{b1/b2}$ $A' = Ca^{2+} \text{ or } Sr^{2+}$ • n = 2 $[Sr_2O_2]^{RS}[CoO2]_{b1/b2}$ $[Ca_2(OH)_2]^{RS}[CoO_2]_{b1/b2}$

$$a_1 = a_2$$
$$c_1 = c_2$$
$$\beta_1 = \beta_2$$

NaCl-like triple layer (RS)

Na_xCoO₂ K_xCoO₂, ...

CoO₂ (type Cdl₂) Heikes formula : doping influence? Band structure influence : peculiarity of CoO₂ layers ? Role of separating block layers?

Leligny et col., C. R. Acad. Sci. Paris, t. 2, Série II c, 409 (1999) Boullay et col., Chem. Mater. 8, 1482 (1996) Masset et col., Phys. Rev. B 62, 166 (2000) Yamauchi et col., Chem. Mater. 18, 155 (2005)

Doping effect in the misfit family

$$\mathbf{v}_{Co} = 4 - \frac{\alpha}{b_1 / b_2}$$

Modification of v_{Co} via α and b_1/b_2 Link between v_{Co} and S?

Misfits

Na_xCoO₂Unique behavior of Cdl₂ type layers: Misfits Comparison with other oxides

Perovskite $Sr_{2/3}Y_{1/3}CoO_{8/3+\delta}$

Corner shared octahedra ≠ edge shared octahedra

A. Maignan et al., JSSC178, 868 (2005)

Influence du taux d'oxygène

M. Karppinen et al., Chem. Mater. 16, 2790 (2004)

<u>Misfits</u> : S le plus élevé pour le taux de 'Co⁴⁺' le plus faible

Metallic behavior down to 5K with $\rho = AT^2$

$^{\textit{Na}_{x}\textit{CoO}_{2}}_{\textit{Misfits}}$ BiSrPbCoO single crystals : modification of α

Generalized Heikes formula : increase of v_{Co} 3.59 for BSCO and 3.65 for BPSCO

$^{\textit{Na}_{x}\textit{CoO}_{2}}_{\textit{Misfits}}$ BiSrPbCoO single crystals : modification of α

At 100K 1.06 \times 10²¹ cm⁻³ for BSCO 1.73 \times 10²¹ cm⁻³ for BPSCO

Increase of v_{Co} 3.11 3.18

t- J model : Linear T dependence of R_H t ~10 – 40K Justifies the Heikes formula?

B. Kumar et al., PRB68, 104508 (2003) Y. Wang et al., cond-mat/0305455 G. Leon et al. , PRB78, 085105 (2008)

W. Kobayashi et al., JPCM21, 235404 (2009)

Na_xCoO₂ Misfits

Influence du b₁/b₂

Si
$$b_1/b_2$$
, concentration en Co⁴⁺
 $v_{Co} = 4 - \frac{\alpha}{b_1/b_2}$

S à 300K dépend du taux de Co⁴⁺ modifié via le b₁/b₂

Taux de porteurs ~ 10²¹ cm⁻³, plus élevé que pour les matériaux conventionnels

S. Hébert et al., PSSA210, 69 (2013)

Heikes formula

 Na_xCoO_2

Misfits

Co valency in BiCaCoO/ BiSrCoO / BiBaCoO?

Heikes (S at 300K)	Hall effect
3.5 -3.7 for $g_4 / g_3 = 6$	3.05 -3.15

Na_xCoO₂ Misfits Carrier concentration changes with misfit ratio b₁/b₂

Co^{3.2+} for BiSrCoO

Co^{3.1+} for BiCaCoO

single hole-like fermi surface (a_{1g} character)

 $k_F = 0.57 \pm 0.05 \text{ Å}^{-1}$ for BiBaCoO

- \longrightarrow similar to $k_{\rm F}$ of Na_xCoO₂ (x=0.7)
- Co^{3.3+} for BiBaCoO
 V. Brouet et al., PRB76, 100403 (2007)

Valence du Co dans la famille BiCaCoO/ BiSrCoO / BiBaCoO

Heikes g ₃ /g ₄ = 1/6 S à 300K	Seebeck avec S(H) g ₃ /g ₄ = 1 BiCaCoO	Effet Hall	ARPES BiBaCoO	RMN	Susceptibilité BiCaCoO
3.5 -3.7	3.33 P. Limelette et al., PRL97, 046601 (2006)	3.05 -3.15 W. Kobayashi et al.	3.3 V. Brouet et al., PRB76, 100403 (2007)	3.1 -3.3 J. Bobroff et al., PRB76, 100407 (2007)	3.24 M. Pollet et al., JAP101, 083708 (2007)

 $g_3 / g_4 = 1/2$ instead of 1/6

Confirms the results in BiCaCoO : $v_{Co} = 3.24$

M. Pollet et al., JAP101, 083708 (2007)

P. Limelette, PRB71, 233108 (2005)

P. Limelette, PRL97, 046601 (2006)

Low T : Spin entropy

BiCaCoO : excess of S at low T A. Maignan et al., JPCM 15, 2711 (2003)

Na_xCoO₂

Misfits

Observed also in Na_xCoO₂ [*Wang et al. Nature 423, 425 (2003)*]

Spin entropy at low T

Na_xCoO_2 Misfits

Misfit oxides

NaCI-like triple layer (RS)

For T > 100K : metallicity + large S

- **High T** : Seebeck depends on Co⁴⁺ Heikes formula with spin / orbital degeneracy
 - Low T : electronic correlations : S ~ γT
 + spin entropy depending on doping
 - **High T limit** : small t from Hall effect. Justifies the Heikes formula?

S. Hébert et al., PRB64, 172101 (2001), P. Limelette et al., PRL97, 046601 (2006), W. Kobayashi et al., JPCM21, 235404 (2009)

Thermoelectric power of misfits

Power factor

In conventional semiconducting thermoelectric material such as Bi_2Te_3 , *n* is an important parameter to tune the properties.

How to modify the electronic properties? Influence of the block layer?

$Na_x CoO_2$ Misfits

Role of the block layer?

• Role of Na⁺ : Curie-Weiss behavior obtained by introducing the electrostatic potential of Na⁺ (Co³⁺ S = 0 / Co⁴⁺ S = 1/2) *C. Marianetti et al., PRL98, 176405 (2007)*

•Kagomé lattice in Na_xCoO_2 with x = 2/3 : strong electronic correlations *F. Lechermann et al., PRL107, 236404 (2011)*

Curie-Weiss

Thermal conductivity

 κ smaller in misfits

 $Na_x CoO_2$

Misfits

Influence of incommensurability?

A. Satake et al., JAP96, 931 (2004)

20

10

0 í٥

axis а

300

b axis

Ca₃Co₄O₉

Temperature (K)

200

100

- Charge transfer between the layers : $S_{\rm 300K}$ mostly depends on the ratio Co^3+/Co^4+

• Low T : electronic correlations influence (S ~ γ T) + S(H) term

• Small κ

Solution of the block layers?
Influence on thermal conductivity?

Conclusion

ZT (n type) < ZT (p type) Thermal conductivity : mostly coming from the lattice

n type oxides : degenerate semi-conductors
 Seebeck described in a first approach by Mott's formula
 Polaronic transport

• p type oxides

Seebeck coefficient : Major role of the spin and orbital term Importance of electronic correlations $S = -\frac{k_B}{|e|} ln(\beta \frac{1-x}{x})$

How to enhance ZT??

Investigation of thermal conductivity
Microstructures to reduce thermal conductivity

Low dimensional structures
Nanostructuration and electronic correlations?

Investigation of new families (pb of stability!)
Anionic subsitutions (oxyselenides)

2DEG SrTiO₃

2D electron gas in SrTiO₃

H. Ohta et al., Nat. Mater. 6, 129 (2007)

Nanostructuration

Na_xCoO₂ nanowires

Same technique as for $Ca_3Co_4O_9$ Lin et al., J. Phys. Chem. C 114, 10061 (2010)

ρ~ Ω.m?
Resistivity
overestimated by 3
orders of
magnitude by the
measurement
technique?

Figure 1. SEM image of NaCo₂O₄ nanofibers before and after annealing, synthesized with two different solvents; (a) and (b) methanolbased nanofibers before (a) and after (b) annealing; (c) and (d) waterbased nanofibers before (c) and after (d) annealing; scale bars in (a) and (c) represent 1 μ m, and in (b) and (d) represent 100 nm.

F. Ma et al., J. Phys. Chem. C 114, 22038 (2010)
Substitution anionique : BiSrCuSeO

via la substitution de Sr²⁺ par Bi³⁺

L. D. Zhao et al., APL97, 092118 (2010)

Influence d'un déficit en Cu

Figure 3. Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, and (c) power factor of $BiCu_{1-x}SeO$ ceramics.

Figure 4. Temperature dependence of (a) thermal conductivity and (b) *ZT* of BiCu_{1-x}SeO samples. The inset in (b) shows the normalized TE properties of BiCu_{1-x}SeO samples at 650 °C as a function of *x*.

Cu deficiency in the $(Cu_2Se_2)^{2-}$ layer

L. Yong et al., JACS133, 20112 (2011)

Collaborators

Laboratoire CRISMAT

Wataru Kobayashi (Tsukuba), Hidefumi Takahashi (Nagoya), Ramzy Daou, Raymond Frésard, Emmanuel Guilmeau, Antoine Maignan, Christine Martin, Denis Pelloquin, Olivier Perez

> Patrice Limelette, GREMAN, Tours Julien Bobroff, Véronique Brouet, LPS, Orsay

APPLIED PHYSICS LETTERS 96, 031910 (2010)

$Sr_xBa_{1-x}Nb_2O_{6-\delta}$ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor

Soonil Lee,^{a)} Rudeger H. T. Wilke, Susan Trolier-McKinstry, Shujun Zhang, and Clive A. Randall *Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA*

(Received 12 November 2009; accepted 14 December 2009; published online 22 January 2010)

+ Low thermal conductivity

Extremely reduced samples to get better conductivity Stability?

Prototypes à base d'oxydes

1^{er} prototype en 2000

n :
$$Ba_{0.4}Sr_{0.6}PbO_3 Z = 2.10^{-4} K^{-1} à 673K (ZT = 0.13)$$

p : $Li_{0.025}Ni_{0.975}O Z = 0.75 10^{-4} K^{-1} à 1273K (ZT = 0.095)$

Pour chaque jambe : $4.8 \times 4.9 \times 17.5 \text{ mm}^3$

Une paire : 7.91mW T_H = 987K ∆T = 552K

W. Shin et al., JJAP39, 1254 (2000)

Prototypes à base d'oxydes

n : $Ca_{0.92}La_{0.08}MnO_3 / p : Ca_{2.75}Gd_{0.25}Co_4O_9$ 8 paires 3 × 5 × 30 mm³

TABLE I. Thermoelectric power S, resistivity ρ , and power factor S^2/ρ of p and n legs used for fin-type device.

		S (700 °C)	$\rho~(700~^\circ\mathrm{C})$	$S^2/\rho~(700~^\circ{\rm C})$
Materials	ρ -T	μ V/K	$m\Omega \; cm$	$10^{-4} W m^{-1} K^{-2}$
$Ca_{2.75}Gd_{0.25}Co_4O_9 (p \text{ leg}) Ca_{0.92}La_{0.08}MnO_3 (n \text{ leg})$	Semiconducting Metallic	185 -120	7.8 6.6	4.8 2.2

TABLE II. Thermal conditions, open circuit voltage V_o , and maximum output power P_{max} for fin-type device with eight p-n couples.

Condition	T_h , °C	ΔT , °C	V_o , mV	$P_{\rm max}$, mW
a	477	235	550	19.8
b	580	290	694	31.8
с	672	335	838	46.5
d	773	390	988	63.5

 T_h : Hot side temperature.

 ΔT : Temperature difference.

 $T_h = 1046K, \Delta T = 390K,$ P=63.5mW

I. Matsubara et al., APL 78, 3627 (2001)

$La_{0.9}Bi_{0.1}NiO_3 / Ca_{2.7}Bi_{0.3}Co_4O_9$

n : $La_{0.9}Bi_{0.1}NiO_3$ / p : $Ca_{2.7}Bi_{0.3}Co_4O_9$ 1 jonction : T_H = 1073K, ΔT = 500K, P = 94mW

140 paires $T_{H} = 1072K, \Delta T = 551K$

FIG. 4. (Color) Comparative photographs of the oxide module and a mobile phone, and a demonstration of charging a lithium-ion battery in the mobile phone. Red LED on the mobile phone indicates charging of the lithium-ion battery is in progress.

Chargeur pour téléphone portable $T_{H} = 1072K!$

R. Funahashi et al., APL 85, 1036 (2004) R. Funahashi et al., JAP99, 066117 (2006)

$Ca_{3}Co_{4}O_{9}/Ca_{0.95}Sm_{0.05}MnO_{3}$

 $4 \times 4 \times 5$ ou 10 mm^3 2 paires

T_{H} = 1025K, ΔT = 925K, P = 31.5mW

E. Sudhakar Reddy et al., J. Phys. D Appl. Phys. 38, 3751 (2005)

Prototype 'unileg' Un seul matériau (ici type n)

Choix du matériau avec le meilleur ZT Diminution des contraintes mécaniques

C. Goupil, S. Lemonnier et al.

Comparaison des modules

Manufacturing factor MF = R_{ideal} / R_{int} ,

Name	Materials	Туре	Nb Couple	Power (W)	MF
Funahashi et al.	Ca _{2.7} Bi _{0.3} Co ₄ O ₉ / La _{0.9} Bi _{0.1} NiO ₃	PN	1	0.03	0.15
Shin et al.	(Li) NiO / (Ba, Sr) PbO ₃	PN	2	0.034	0.3
Matsubara et al.	(Gd) Ca ₃ Co ₄ O ₉ / (La) CaMnO ₃	PN	8	0.089	0.82
Sudhakar et al.	Ca ₃ Co ₄ O ₉ / Ca _{0.95} Sm _{0.05} MnO ₃	PN	2	0.031	0.57
Present work	Ca _{0.95} Sm _{0.05} MnO ₃ / Ca _{0.95} Sm _{0.05} MnO ₃	Ν	2	0.016	0.15

Optimisation des contacts nécessaire!

S. Lemonnier, C. Goupil et al.

Modules et prototypes

JOURNAL OF APPLIED PHYSICS 109, 124509 (2011)

Monolithic oxide-metal composite thermoelectric generators for energy harvesting

Shuichi Funahashi,^{a)} Takanori Nakamura, Keisuke Kageyama, and Hideharu leki Research Center for Next Generation Technology, Murata Manufacturing Co., Ltd., 2288 Ohshinohara, Yasu, Shiga 520-2393, Japan

(Received 7 March 2011; accepted 11 May 2011; published online 27 June 2011)

Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni_{0.9}Mo_{0.1} and La_{0.035}Sr_{0.965}TiO₃ as pand n-type thermoelectric materials, and Y_{0.03}Zr_{0.97}O₂ was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La_{0.035}Sr_{0.965}TiO₃; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm² at $\Delta T = 360$ K. Furthermore, this device generated 100 μ W at $\Delta T = 10$ K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system. © 2011 American Institute of Physics. [doi:10.1063/1.3599890]

FIG. 1. Structure of the monolithic thermoelectric generator (TEG), based on multilayer ceramic capacitor (MLCC) technology. The p- and n-type layer printed insulators were stacked and co-fired.

Type n : SrTiO₃ dopé au La 450mW/cm² pour Δ T = 360K