
Chaire de  
Physique de la Matière Condensée 

Antoine Georges 
Cycle « Thermoélectricité » 

2012 - 2014  

``Enseigner la recherche en train de se faire’’  

PETITS SYSTEMES THERMOELECTRIQUES: 
CONDUCTEURS MESOSCOPIQUES  

ET GAZ D’ATOMES FROIDS 



Séance du 18 décembre 2013 
Cours 6 

SUPERFLUIDS: 
When entropy propagates as a wave 

(« First » and « second » sound  
and their possible coupling) 



Séminaire - 18/12/12013 



SUPERFLUIDS 

•  For a long time, only known example: 
Helium 4 below 2.17 K (1937)  

•  Much later (1970’s) superfluidity of the 
fermionic isotope Helium 3 (~2.5 mK)  

•  The discovery and study of Bose-Einstein 
condensation in ultra-cold atomic gases, 
and of superfluidity in two-component 
Fermi gases, have rejuvenated the field 
since the mid-1990’s  



Helium 4: Some reminders 



The “lambda”-transition 



The Fascinating History of the Discovery of 
Superfluidity 

•  Scientific discovery as a collective process 
•  See: 
•  Sébastien Balibar: 
•  J. Low Temp Phys 146, 441 (2007) 
•  La pomme et l’atome (Odile Jacob, 2005) 
•  Slides on website @ENS  
•  Also: A.Griffin, J.Phys. Cond. Mat. 21, 164220 

(2009) 



Several steps :	


	


1927-32: W.H. Keesom, M. Wolfke and K. 

Clusius (Leiden): liquid He has two 
different states which they call « helium 
I » above 2.2K and « helium II » below 
2.2K. A singularity in the specific heat 
at 2.2 K (the « lambda point »)	



1930: W.H. Keesom and J.N. van der Ende (Leiden):  liquid He flows vey easily 
through narrow slits (superleaks)	



1932: McLennan et al. (Toronto):  liquid He stops boiling below 2.2K	



The experimental discovery of superfluidity ...1927-32���
(slide: courtesy S.Balibar)	





From Khalatnikov, Int.Sci.Tech, 1964 



The experimental discovery of superfluidity ...1935-37���
(slide: courtesy S.Balibar)	



J.O. Wilhem, A.D. Misener and A.R. Clark (Toronto, 1935):	


the viscosity of liquid He drops down below 2.2 K	



B.V. Rollin (Oxford, 1935)	


W.H. Keesom and A. Keesom (Leiden, 1936)	


J.F. Allen R. Peierls and M.Z. Uddin (Cambridge, 1937) :	


the thermal conductivity of liquid He increases below 2.2 K	



December 1937: two articles side by side in Nature 	


(« THE DISCOVERY »)	


P. Kapitza (Moscow)	


J.F. Allen and A.D. Misener (Cambridge, UK)	


	





Pictures from:  
A.Griffin’s article (op. cit.) 



1938: Annus Mirabilis,  
Annus Horribilis 

•  Dec 3, 1937: Letter by Kapitza sent to Nature 
•  Dec 22, 1937: Letter by Allen and Misener sent 

to Nature 
•  Nature 141, 243 (1938): Allen and Jones report 

the fountain effect (see lecture 5, Dec 10) 
•  Nature 141, 643 (1938): Fritz London proposes 

that superfluidity is related to BEC 
•  Nature 141, 913 (1938) and Comptes Rendus 

Académie des Sciences 207; 1035, 1186 (1938):  
   Laszlo Tisza proposes 2-fluid model 



Fritz London and Laszlo Tisza 
find shelter in Paris 

 (Institut Henri Poincaré 
 and Collège de France) 

Paul Langevin, Jean Perrin, Frédéric Joliot, 
Edmond Bauer take action to host scientists 

fleeing nazism, fascism and antisemitism 



Laszlo Tisza, Journal de Physique et Le Radium, 1, 164 et 350 (1939) 
In these two articles as well as Nature 141, 913 (1938), Laszlo Tisza  
sets the basis of the two-fluid description !   



Tisza meets 
London in Paris"

1937 : a group of French intellectuals (Paul 
Langevin, Jean Perrin (Nobel 1926, and 
secretary of Research in the Front 
Populaire), Frederic Joliot-Curie (Nobel 
1935) and Edmond Bauer welcome 
foreign scientists escaping from 
antisemitism in Eastern Europe	



This is where Tisza (Collège de France) 
meets Fritz London (Institut Henri 
Poincaré, 500 m distance) who had 
recommended him to Langevin	



Tisza	



Bauer	


Slide: courtesy S.Balibar 

Perrin	

 Langevin	





5 mars 1938, Institut Henri Poincaré :���
���

Fritz London:���
Bose-Einstein Condensation ���
may explain superfluidity !	



Slide: courtesy S.Balibar 

Landau apparently always rejected this idea… 
But it is now clearly validated  

by the discoveries on cold gases 



Laszlo Tisza 1938 : ���
le « modèle à deux fluides »	



 deux fluides: le condensat et les atomes non-condensés 
 le condensat est à T=0 , ne transporte pas d’entropie et ne peut participer à la 
dissipation (viscosité nulle) 

 les atomes non-condensés constituent un « fluide normal » qui transporte de 
l’entropie et peut échanger de l’énergie (viscosité non-nulle) 

il existe deux champs de vitesse indépendants: vs et vn 

la température détermine le rapport entre les les densités des deux fluides 
 la dissipation dépend de la géométrie de l’expérience 

si le superfluide seul s’écoule (à travers un poreux), T diminue 
 un gradient de T produit un effet thermomécanique inverse, un écoulement 
du superfluide vers la région chaude (effet fontaine) 

Slide:  
courtesy  
S.Balibar 



Walking 
together..."

January 1938. On a Sunday we took a 	


walk in the Bois de Verrières	


The novelty of the effect became 	


strikingly apparent in the Allen-Jones 	


fountain effect that started London and myself on our speculative spree... He jumped on me 

the BEC. I was at once delighted...	


There followed a sleepless night and by morning a rough outline of two fluid idea was in 

place. My idée fixe was that no value of viscosity however small could reconcile the 
capillary flow experiments with those on oscillating disks of Toronto...There had to be two 
fluids and to my mind this became evident in the fountain effect. One of the fluids had to 
be superfluid , the other viscous...	



The next morning, I proudly reported my contribution to Fritz. He was outraged. I assigned 
to the two Bose Einstein components their own velcity field. Here London demurred...	



L. Tisza (ENS-Paris, 
June 14, 2001 + e-mail to 

SB Sept. 4, 2001):	



Slide:  
courtesy  
S.Balibar 



Kapitza rescues Landau out of Stalin’s jails 
(where he spent ~ 1 year from mid-1938 till mid-1939…). 

Landau builds his famous theory of superfluidity (1941) "

Kapitza, Landau, ca. 1938 



Bose-Einstein Condensation:  
Long-Range Order and  

Condensate Wave-Function  
(Bogoliubov 1947à, Penrose and Onsager, 1951,1956) "

One-body density matrix: 

(Off-Diagonal) Long-Range Order: As r and r’ are separated,   
n1 tends to a non-zero value``<ψ>’’ 

Condensed fraction: 



Eigenfunctions of 1-body density matrix: 

Wave-function of the condensate (macroscopic part of field  
operator):   

Amplitude and Phase: 

Evolution in the Heisenberg representationà chemical potential  



The gradient and time-derivative of the phase"
From the Heisenberg equation of motions, one can deduce a  
relation between the condensate wave-function in the frame  
where the fluid is at rest and the laboratory frame where the  
superfluid component has velocity vs: 

First (~Josephson) relation also follows  
                         from superfluid current 

Irrotational  
Flow  
Φ: potential 



The Two Sounds of Superfluids"

Laszlo Tisza, Journal de Physique et Le Radium, 1, 164 et 350 (1939)   





The two-fluid model and its 
hydrodynamics 

(Tisza 1938-39, Landau 1941)"

Assumption: the motion of the fluid can be described as the  
coupled motion of two components: a superfluid component  
with velocity vs and a `normal’ component with velocity vn 

In the following: ρs and ρn designate respectively the mass  
density of the superfluid and normal component (ρs not to be  
confused with the condensed fraction n0) 

Total mass density and mass current (= momentum density) 



Coupled equations for mass density and pressure"

Conservation of particle number 

Equation of motion under pressure force 

Together with equation of state p=p(ρ) this leads to usual  
sound-waves in a conventional fluid 



Coupled equations for entropy and temperature"
All irreversible processes and dissipation are assumed to be negligible here 
(viscosity of normal part = 0). We assume that the hydrodynamic regime applies, 
and linearize all equations. 

Conservation of entropy (sV: per unit volume) 
The superfluid component does not carry  
any entropy ! 

Change variable to entropy per unit mass s=sV/ρ in the following.  
After simple algebra:  

We see here that the RELATIVE velocity between superfluid  
and normal components appears.  



Using the dynamical equations for the phase (above): 

à 

Thermodynamics allows to relate the gradient of chemical potential  
to that of pressure and temperature: 

So that one obtains the second equation of motion as:  

Temperature gradient controls the RELATIVE flow !  



Finally, combining: 

One obtains the second evolution equation linking entropy  
(per unit mass) and temperature: 



In summary: 

A priori,  

These two equations have to be supplemented by the 
thermodynamic equation of state, leading to wave-like solutions 

So that the (pressure,temperature) and (density,entropy)  
variations are coupled: these waves are a priori not pure  
pressure and temperature waves.  
In practice however, this depends on the superfluid  
we consider 



Matrix of thermodynamic coefficients: 

Wave-like solutions: 



More on the thermodynamics of the reservoirs: 
including the non-diagonal terms 

Grand-potential: 



(Almost-) uncoupled case: Helium"

In this case: 
-  `First sound’:  conventional pressure/density wave 
-  Second sound: pure temperature/entropy wave 
Relative motion (vn-vs) of supefluid vs. normal component,  
out of phase 

Contains superfluid fraction ! 



Donnelly, Physics Today, 10/2009 



ß c2
2=c1

2/3 (phonon-dominated regime) 





Dilute Bose Gases  
(dilatation not negligible à coupling)"

From: Pitaevskii and Stringari, Bose-Einstein Condensation (Oxford)  



Second-sound in solids 
(Suggestion: Ward and Wilks, 1951)"

Schematically:  

When all anharmonic phonon coupling and scattering   
can be neglected: wave-like propagation of temperature  
fluctuation (rather than Fourier diffusive law)  

For an early review, see: 
Ackerman and Guyer, Annals of Physics 50, 128 (1968)  
Observation in solid He:  
Ackerman et al. Phys Rev Lett 16, 789 (1966) 
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