Nigel Hussey

Compartmentalizing the cuprate strange metal

- 1) Introduction
- 2) 'Boltzmann' transport in the cuprate strange metal (ADMR, Hall)
- 3) 'non-Boltzmann' transport in the cuprate strange metal (in-plane MR)
- 4) MR scaling across p^* and p_{sc}
- 5) Superconductivity within strange metal regime

Thanks

Nigel Hussey

SYK and Beyond 02 Jun 22

LNCMI-T, Toulouse Cyril Proust Siham Benhabib Wojceich Tabis Maxime Leroux Ildar Gilmutdinov M. Massoudzadegan David Vignolles

Cambridge John Cooper

Tokyo/Nagoya Takeshi Kondo Tsuenhiro Takeuchi

Radboud, Nijmegen

Maarten Berben Bence Bernáth Matija Čulo Caitlin Duffy Yu-Te Hsu Salvatore Licciardello

Bristol

Jake Ayres

Tony Carrington Sven Friedemann Stephen Hayden **Roemer Hinlopen** Danny Juskus **Carsten Putzke**

Amsterdam

Mark Golden Erik van Heumen Yingkai Huang

Leiden Milan Allan Jan Zaanen

Engineering and Physical Sciences **Research Council**

Keimer et al., Nature **518** 179 (15)

Varma, RMP 92 031001 (20)

• Hole-doped cuprate phase diagram often depicted as though overdoped regime beyond p* is a Fermi-liquid

Keimer *et al., Nature* **518** 179 (15)

• Hole-doped cuprate phase diagram often depicted as though overdoped regime beyond p* is a Fermi-liquid

Keimer *et al., Nature* **518** 179 (15)

Harada *et al., PRB* **105** 085131 (22) Legros *et al., Nat. Phys.* **15** 142 (19)

Putzke et al., Nat. Phys. 17 826 (21)

Yuan *et al., Nature* **602** 431 (22) Jin *et al., Nature* **476** 73 (11)

Fermiology of overdoped cuprates

NEH et al., Nature 425 813 (03)

Vignolle *et al., Nature* **455** 952 (08)

Platé et al., PRL 95 077001 (05)

• ADMR, QO and ARPES measurements on OD Tl2201 all indicate large FS containing 1 + p holes

TI2201 *T_c* ≈ 30 K

- T-dependent ADMR provided evidence of anisotropy in *T*-linear scattering rate
- ADMR parameterization reproduces
- Same parameterization should also govern field-dependence of $R_{\rm H}(T)$

300

In higher T_c Tl2201 samples, drop in R_H with field also seen implying anisotropic scattering still responsible for H- and T-dependent R_H(T). However, absolute value of R_H(0) is now shifted up, suggesting loss of states at all T.

Putzke et al., Nat. Phys. 17, 826 (21)

• With decreasing hole doping (increasing T_c), $R_H(H)$ <u>does not</u> asymptotically reach the value consistent with $n_H = 1 + p$

- In-plane MR shows crossover to *H*-linearity at highest fields with *T*-independent slope
- $\Delta \rho/T$ scales with H/T

Hayes *et al., Nat. Phys.* **12**, 916 (16)

Sarkar et al., Sci. Adv. 5, eaav6753 (19)

 Δρ/T scales with H/T and follows quadrature form similar to that seen in pnictides, chalcogenides and n-doped cuprates near their respective magnetic and nematic QCPs.

Hayes et al., Nat. Phys. **12**, 916 (16)

Sarkar et al., Sci. Adv. 5, eaav6753 (19)

 Δρ/T scales with H/T and follows quadrature form similar to that seen in pnictides, chalcogenides and n-doped cuprates near their respective magnetic and nematic QCPs.

Giraldo-Gallo et al., Science 361 479 (18)

• Same *H*-linear MR found very far from *p**

• Same behaviour observed across broad doping range

• Same *H*-linear MR found very far from *p**

MR scaling across p^* and p_{SC}

Q1: Does the *H*-linear slope have a dependence on T_c or *p* that can be linked to the *T*-linear component of $\rho_{ab}(T)$?

Q2: What happens to MR scaling below p^* as we enter into pseudogap regime?

Q3: What happens beyond the superconducting dome? Does Kohler's scaling re-appear at high doping?

Q4: What is the link between *H*/*T* quadrature MR and modified Kohler scaling in optimally & under-doped cuprates?

Q1: *H*-linear MR vs. *p*

 At a fixed temperature, there is a clear doping dependence in the magnitude of the MR... even when normalized to ρ(0).

Q1: *H*-linear MR vs. *p*

- Beyond p*, the H-linear MR slope found to show a similar variation with p (or T_c) as the coefficient of the T-linear zero-field resistivity for all three families.
- Below *p**, *H*-linear slope continues to rise with decreasing *p*, which we attribute to a loss of carriers inside the pseudogap regime.
- Suggests that within strange metal regime, *T*-linear resistivity and *H*-linear MR are indeed intrinsically linked.

Q2: MR scaling across *p**

Q2: MR scaling across *p**

Another way to reveal type of scaling behavior observed is to look at *T*-dependence of the slope *B* of the low-field MR

$$\Delta\rho(H,T)=B(T)(\mu_0H)^2$$

(Recall that for Kohler's or modified Kohler's rule, $\Delta \rho(H) = \frac{(\mu_0 H)^2}{\rho(0)}$ or $\Delta \rho(H) = \frac{\rho(0)}{\cot^2 \theta_H} (\mu_0 H)^2$)

Power-law scaling observed in normal state of all SC samples with variable exponent m

Q3: MR scaling across *p*_{SC}

Only with LSCO can we access the non-SC state on the overdoped side (p > 0.27), but the advantage is we can compare directly across the different regimes. Here we plot the *T*-dependence of the inverse of the low-*H* H^2 coefficient within the different regimes:

Recovery of Kohler scaling beyond strange metal regime.

MR scaling across *p** and *p*_{*sc*}

20

2

4) Q4: Power-law scaling and MKR

4) Q4: Power-law scaling and MKR

Modified Kohler scaling

Berben, Ayres et al., 2203.04867

Although $\Delta \rho$ is a pure power law, the relative MR inherits a residual term from $\rho(T)$.

Mesoscopic disorder

Singleton, PRM (20) Boyd & Phillips, *PRB* (19) Patel et al., PRX (18)

Hot spots

Koshelev, PRB (16) Maksmovic *et al., PRX* (20) Grissonnanche *et al., Nature* (21)

Sharp FS corners

Koshelev, PRB (13) Maksmovic *et al.*, PRX(20) Grissonnanche et al., Nature (21)

Zeeman coupling

Banerjee et al., PRB (21) Marino & Arouca, SST (21)

Hot spots

Mesoscopic disorder

Singleton, *PRM* (20) Boyd & Phillips, *PRB* (19) Patel *et al.*, *PRX* (18) Koshelev, PRB (16) Maksmovic *et al., PRX* (20) Grissonnanche *et al., Nature* (21)

Sharp FS corners

Koshelev, *PRB* (13) Maksmovic *et al.*, PRX(20) Grissonnanche *et al.*, Nature (21)

Impeded cyclotron motion

HOH

Hinlopen *et al. 2201.03292*

$$\sigma_{ij} = \frac{e^2}{4\pi^3\hbar} \int_{FS} d^2k \int_0^{bound} dt \frac{v_i(0)}{v_F(0)} v_j(-t) \exp\left(-\frac{t}{\tau_0}\right)$$

$$\sigma_{xx} = \frac{e^2 k_F^2}{2\pi^2 \hbar c} \int_0^{\pi/2} d\phi \int_0^{-\phi/\omega_c} dt \frac{v_x(0)}{v_F(0)} v_x(-t) \exp(-t/\tau_0)$$

Unable to account for absence of $\rho(0)$ in MR scaling

Many origins can be generalized by a modification of BTE incorporating a bound for cyclotron motion somewhere on the Fermi surface.

Superconductivity within SM regime

In higher T_c Tl2201 samples, drop in R_H with field also seen implying anisotropic scattering still responsible for *H*- and *T*-dependent R_H(*T*). However, absolute value of R_H(0) is now shifted up, suggesting loss of states *at all T*.

Putzke et al., Nat. Phys. 17, 826 (21)

• With decreasing hole doping (increasing T_c), $R_H(H)$ <u>does not</u> asymptotically reach the value consistent with $n_H = 1 + p$

Superconductivity within SM regime

Superconductivity within SM regime

- New features in the transport properties of the strange metal of hole-doped cuprates
- (Anti)-correlation between the drop in $n_{\rm H}(0)$ and the growth of the *T*-linear component of $\rho(T)$
- Low-T MR H-linear at high field and shows H/T scaling and signatures of incoherence
- Evidence for two-components in the conductivity one Boltzmann-like, the other non-Boltzmann
- Pseudogap likely gaps out 'Planckian' carriers, leading to crossover to H/T^2 scaling in the MR
- HTS borne out of strange metal phase with dual character but which one is responsible?