Max Planck Institut for the Structure and Dynamics of Matter

Quantum Condensed Matter Dynamics

Lecture 2: Josephson Plasmonics

Quantum Materials are those solids which exhibit macroscopic behavior that cannot be understood, even qualitatively, without quantum mechanics.

A prominent example of a Quantum Material is a High T_c Superconductor

Zero DC resistance

Meissner effect

We study the nonlinear excitation of collective modes of quantum materials – generally using light

Goal 1: reveal and create functionalities that are hidden or not present at equilibrium.

Goal 2: Control high speed phenomena - explore new strategies for device applications.

Cuprate superconductors: complexity at work

Fradkin and Kivelson, Nature Physcs (2012)

Superconducting Plasma Waves

Y. Laplace & A. Cavalleri Advances In Physics X -1, 387 (2016)

Superconducting order in cuprates

What do I see if $E(\omega)$ is polarized the plane

Reminder: Optics in a Superfluid

London superconductor

$$\sigma_1(\omega) = \pi / 2(n_s e^2 / m^*) \delta(0)$$

$$\sigma_2(\omega) = n_s e^2 / m^* \omega$$

Optics in a Superfluid

London superconductor

$$\varepsilon_{1}(\omega) = \varepsilon_{0} - \frac{n_{s}e^{2}}{m^{*}\omega^{2}}$$
$$\varepsilon_{2}(\omega) = \frac{n_{s}e^{2}}{m^{*}\omega}\delta(0)$$

Also, response of quasi-particles

Out of Plane

Ε(ω)

$$ω_P^2 \sim \rho_s$$

 $ω_P \sim 0.1 - 10 \text{ THz}$

$$\omega_{\mathsf{P}}^2 \sim \rho_{\mathsf{nz}}$$

 $\omega_{\mathsf{P}} \sim 0$

Josephson plasmons in cuprates

Resin and Morawitz Phys. nev. D (1900)

van der Marel and A. A. Tsvetkov Czech. J. Phys. (1996)

D.N. Basov et al. Science 283, 49 (1999)

Microscopic physics

First Josephson Equation

$$I_J = I_c \sin \phi$$

Second Josephson Equation

$$\frac{\partial}{\partial t}\phi = \frac{2eV}{\hbar}$$

A nonlinear inductor

First Josephson Equation

$$dI_J = I_c(\cos\phi)d\phi$$

$$dV = \frac{\hbar}{2e} \frac{1}{I_c \cos \phi} \frac{\partial}{\partial t} dI$$

Second Josephson Equation

$$\frac{\partial}{\partial t}\phi = \frac{2eV}{\hbar}$$

La_{1.84}Sr_{0.16}CuO₄ (at 5K): THz reflection

Resistive coupling is no longer shorted

$$L = \frac{\mathsf{h}}{2e} \frac{1}{I_c \cos \phi} >> \frac{\mathsf{h}}{2eI_c} \approx R$$

Phase Differences: $\pi/2$

Second Josephson Equation

$$\frac{\partial}{\partial t}\phi = \frac{2eV}{\mathsf{h}}$$

$$\phi(t) = \int_{-\infty}^{t} \frac{2eV(\tau)d\tau}{\hbar} = \frac{\pi}{2}$$

Inductive coupling is zero

$$L = \frac{\hbar}{2e} \frac{1}{I_c \cos \phi} = \infty$$

Phase Differences: $\pi/2$

Inductive coupling is zero

$$L = \frac{\hbar}{2e} \frac{1}{I_c \cos \phi} = \infty$$

Phase Difference: π

Second Josephson Equation

$$\frac{\partial}{\partial t}\phi = \frac{2eV}{\hbar}$$
$$\phi(t) = \int_{-\infty}^{t} \frac{2eV(\tau)d\tau}{\hbar}$$
$$L = \frac{\hbar}{2e} \frac{1}{I_c \cos\phi} \approx -\frac{\hbar}{2eI_c}$$

Phase Difference: π

Inductive coupling is negative

$$L = \frac{\hbar}{2e} \frac{1}{I_c \cos \phi} \approx -\frac{\hbar}{2eI_c}$$

The AC Josephson effect

I_s

mpso

Voltage to frequency converter

L. Ozyuzer et al. Science 1291, 318 (2007)

Can we flip phase at ultrafast rates ?

$$V = \frac{\pi}{4e} \frac{\hbar}{100 \, fs} \approx mV$$
$$E \approx mV / (1nm) \approx 100 kV / cm$$

Pump probe experiments

Large Conductivity Oscillations

Oscillations in the interlayer coupling mpsd

$$\sigma_1(\omega) = \pi/2(n_s e^2/m^*)\delta(0)$$

$$\sigma_2(\omega) = n_s e^2/m^*\omega$$

$$n_s \propto \lim_{\omega \to 0} \omega \sigma_2(\omega)$$

Quasi-DC field: Conductivity Oscillations

I_S

Expected: Voltage dependent frequency

A. Dienst et al., Nature Photonics 5, 485 (2011)
Response in the Plane does not change mpsd

A. Dienst et al., Nature Photonics 5, 485 (2011)

THz dimensionality oscillations

A. Dienst et al., Nature Photonics 5, 485 (2011)

Tuning the pump wavelength to resonance

 $\omega_{\text{THz}} \sim \omega_{\text{p}}$

Driven Plasma

$$E(t) = E_0 \sin(\omega_{JP0}t)$$

$$\theta_{i,i+1}(t) = \theta_0 \cos(\omega_{JP0}t)$$

Driven Plasma

 $\omega_{\text{THz}} \sim \omega_{\text{p}}$

$$\omega_{P'}^2 = \omega_P^2 \cos[\theta_0 \cos(\omega_{JP0} t)]$$
$$\omega_{P'}^2 = \omega_P^2 \left(1 - \frac{\theta_0^2 + \theta_0^2 \cos(2\omega_{JP0} t)}{4}\right)$$

Strongly Driven Plasma

Superfluid stiffness driven at 2 ω_{THz}

Is this interesting ?

A parametrically driven pendulum

Oscillator strength is driven at 2\omega

Mathieu's equation for parametric amplification is

$$\frac{\partial^2 \varphi}{\partial t^2} + \omega_p^2 \{1 + l_0(\cos(2\omega_p * t))\} \varphi = 0$$

F_{driver} = $l_0(\cos(2\omega_p * t))$

Max Planck Institute for the Structure and Dynamics of Matter

Rajasekaran et al., Nature Physics 12, 1012 (2016)

Loss function

$L(\omega)$ oscillates between positive and negative values

Rajasekaran et al., Nature Physics 12, 1012 (2016)

Rajasekaran et al., Nature Physics 12, 1012 (2016)

Other work: Travelling Vortex-antivortex pairs most

A. Dienst et al. Nature Materials 12, 535 (2013)

Ultrastrong coupling between light and superfluid

Y. Laplace et al., Phys Rev. B (2016)

Parametric cooling

Manipulating Superconducting order in cuprates mpsd

A. Dienst et al., *Nature Photonics* 5, 485 (2011)
A. Dienst et al. *Nature Materials* 12, 535 (2013)
S. Denny, et al. *Phys. Rev. Lett.* 114, 137001 (2015)
J. Okamoto, et al. *Phys. Rev. Lett.* 117, 227001 (2016)
Rajasekaran et al., *Nature Physics 12, 1012* (2016)

Y. Laplace & A. Cavalleri *Advances In Physics X* – 1, 387 (2016)

Theme 3: Understand Nonlinear Propagation

Spectrally pure nonlinear modes

Sine Gordon Equation

$$\frac{\partial^2 \phi_z(x,t)}{\partial x^2} - \frac{\varepsilon_r}{c^2} \frac{\partial^2 \phi_z(x,t)}{\partial t^2} = \frac{1}{\lambda_J^2} \sin \phi_z(x,t)$$

S. Savel'ev et al., Nature Physics 2, 521-525 (2006).

 $\frac{\partial^2 \phi_z(x,t)}{\partial x^2} = \frac{1}{\lambda_I^2} \phi_z(x,t)$

Meissner effect

mps

S. Savel'ev et al., Nature Physics 2, 521-525 (2006).

Small Electromagnetic Fields

Linear Wave equation

$$\frac{\partial^2 \phi_z(x,t)}{\partial x^2} - \frac{\varepsilon_r}{c^2} \frac{\partial^2 \phi_z(x,t)}{\partial t^2} = \frac{1}{\lambda_J^2} \phi_z(x,t)$$

$$\frac{\partial^2 \phi_z(x,t)}{\partial x^2} = \frac{1}{\lambda_J^2} \sin \phi_z(x,t)$$

Sine Gordon Equation

$$\frac{\partial^2 \phi_z(x,t)}{\partial x^2} - \frac{\varepsilon_r}{c^2} \frac{\partial^2 \phi_z(x,t)}{\partial t^2} = \frac{1}{\lambda_J^2} \sin \phi_z(x,t)$$

S. Savel'ev et al., Nature Physics 2, 521-525 (2006).

Simulations: 1.1 ω_{JPR}

Simulations: 1.05 ω_{JPR}

Simulations – below the edge: 0.97 ω_{JPRmpsd}

Simulations – high fields : 0.97 w_{JPR} mpsd

Nonlinear Propagation below the edge

A travelling vortex-antivortex pair

Experimental realization: narrowband pump mpsd

Free Electron Laser - pump

Loss function

Experiments: 1.1 ω_{JPR} and 1.05 ω_{JPR}

A. Dienst et al. Nature Materials 12, 535 (2013)

_

Experimental realization: narrowband pump mpsd

At resonance: Transparency window mpso

A. Dienst et al. *Nature Materials* 12, 535 (2013)

A. Dienst et al. *Nature Materials* 12, 535 (2013)

At resonance: Transparency window

A. Dienst et al. Nature Materials 12, 535 (2013)

Ultrastrong coupling between light and superfluid

Y. Laplace et al., Phys Rev. B (2016)

Parametric cooling

S. Denny, S. Clark. A. Cavalleri, D. Jaksch Phys. Rev. Lett. 114, 137001 (2015)

J. Okamoto, A. Cavalleri, L. Mathey Phys. Rev. Lett. 117, 227001 (2016)

Manipulating Superconducting order in cuprates mpsd

Y. Laplace & A. Cavalleri Advances In Physics X –1, 387 (2016)