NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

PHYSIQUE

J. Bobroff

P. Mendels NMR LPS, Orsay

PhD students: H. Casalta, L. Guerrin, S. ouazi

Post-docs: T Ohno, A. Mahajan, A. Mac Farlane

Oriented Crystallite Samples: J. Arabski, N. Blanchard¹, G. Collin 'J.F. Marucco, V. Viallet

F. Rullier Albenque

Transport, SPEC (CEA, Saclay) Toulouse , LNCMP

Single Crystal Samples: P. Lejay and D. Colson

ORSAY

H. Alloul, Introduction to the Physics of Electrons in Solids Editions de l'Ecole polytechnique English edition, Springer (to appear, december 2010)

TRIANGLE PHYSIQUE

NMR studies of cuprates : pseudogap, correlations, phase diagram: past and future?

- Magnetic spin susceptibilities in NMR : Usual metals and superconductors The case of cuprates: Singlet spin pairing Single spin fluid in the normal state
- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations in the phase diagram d- wave SC
- The pseudogap and questions on the phase diagram NMR as a local magnetic probe
- *Pseudogap, MIT and disorder* NMR and high field transport measurements
- SC Fluctuations and pseudogap

Some answers about the phase diagram

Hyperfine Intercations - NMR Frequency Shifts

Interactions between nuclear moments *I* **and electronic moments** *s* et *l*

Dipolar
$$H_{dd} = -\frac{\hbar^2 \gamma_n \gamma_e}{r^3} \left\{ \vec{I} \cdot \vec{s} - 3 \frac{(\vec{I} \cdot \vec{r})(\vec{s} \cdot \vec{r})}{r^2} \right\}$$

Orbital $H_{orb} = -\frac{\hbar^2 \gamma_n \gamma_e}{r^3} \vec{I} \cdot \vec{l}$ • Filled atomic shells :
 $H_{orb} = -\frac{\hbar^2 \gamma_n \gamma_e}{r^3} \vec{I} \cdot \vec{s}$ 0 · Filled atomic shells :
 $H_c = \frac{8\pi}{3} \hbar^2 \gamma_n \gamma_e \vec{I} \cdot \vec{s} \delta(\vec{r})$ $H_{orb} = 0$; $H_{dd} = 0$
• Paramagnetic or diamagnetic compounds:
 $H_T = H_Z + H_{dd} + H_{orb} + H_c = -\hbar \gamma_n \vec{I} \cdot (\vec{B}_0 + \vec{B}_L)$
 $\vec{B}_L = \langle \vec{B}_L \rangle + \left[\vec{B}_L - \langle \vec{B}_L \rangle \right]$ Relaxation time
Mean field $\langle \vec{B}_L \rangle \propto \chi B_0$ Frequency shift Local measurement of the electronic susceptibility metals χ_{Pauli}
Local measurement of the electronic susceptibility metals χ_{Pauli} Knight shift (unpaired electrons)

H. Alloul, Cours A. Georges CDF, 9/11/2010

ORSAY

H. Alloul, Cours A. Georges CDF, 9/11/2010

ORSAY

⁸⁹Y NMR shift in the metallic state

H.A, T. Ohno and P. Mendels, PRL 1989

FIG. 1. The shift ΔK of the ⁸⁹Y line, referenced to YCl₃ plotted vs T, from 77 to 300 K. The lines are guides to the eye.

 $K_{i,\alpha}(T) = K_i^{dia} + A_{i,\alpha}^{orb} \chi_{i,\alpha}^{orb} + A_{i,\alpha}^s \chi_{i,\alpha}^s(T)$ Local magnetic measurement TRIANGLE **But transferred hyperfine couplings** PHYSIQUE ORSAY H. Alloul, Cours A. Georges CDF, 9/11/2010

Sign of ⁸⁹Y NMR shift

Negative sign comes from Y4d orbitals: core polarization

Is there an independent oxygen band at the Fermi level?

H.A., T. Ohno and P. Mendels, PRL 1989

Single spin fluid behaviour

the shift references for all nuclei

H. Alloul, Cours A. Georges CDF, 9/11/2010

ORSAY

Phase Diagram and Band Structure

There is a single spin fluid

Zhang Rice spin singlets Cu3d - O2pσ

NMR studies of cuprates : pseudogap, correlations, phase diagram: past and future?

- Magnetic spin susceptibilities in NMR : Usual metals and superconductors
 - The case of cuprates:
 - The case of cuprates
 - Singlet spin pairing
 - Single spin fluid in the normal state
- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations in the phase diagram d- wave SC
- The pseudogap and questions on the phase diagram NMR as a local magnetic probe
- *Pseudogap, MIT and disorder* NMR and high field transport measurements
- SC Fluctuations and pseudogap

Some answers about the phase diagram

Physical Origin of the Spin Lattice Relaxation

H. Alloul, Cours A. Georges CDF, 9/11/2010

ORSAY

PHYSIOUE

Spin lattice relaxation in a free electron metal

Al metal

For a free electron gas χ "(q, ω_n) is q independent

$$\chi_T(\omega) = \frac{1}{2} \hbar^2 \gamma_e^2 \left\{ n(E_F) + i \pi \hbar \omega n^2(E_F) \right\}$$

 $\frac{1}{T_1} = \frac{\pi}{\hbar} A^2 n^2 (E_F) k_B T$

$$K = \frac{A}{\hbar^2 \gamma_e \gamma_n} \ \chi_P = \frac{A \gamma_e}{2 \gamma_n} \ n(E_F)$$

$$\boldsymbol{T}_{1}\boldsymbol{T}\boldsymbol{K}^{2} = \frac{\hbar}{4\pi\boldsymbol{k}_{B}} \left(\frac{\boldsymbol{\gamma}_{e}}{\boldsymbol{\gamma}_{n}}\right)^{2} = \boldsymbol{S}_{0}$$

TRIANGLE PHYSIQUE Korringa law for a metal

H. Alloul, Cours A. Georges CDF, 9/11/2010

T (K)

Distinct behaviour of $(T_1T)^{-1}$ on the Cu site: AF correlations

In YBCO₇ T_1T is nearly constant on ¹⁷O but increases at low T for ⁶³Cu O and Y are insensitive to AF correlations while Cu probes them fully

Increase of AF correlations at low *T* **Even more for the underdoped case**

PHYSIQUE

T_1 for nuclei coupled to neighbouring sites

Non local hyperfine coupling q dependence of the HF coupling

 $\begin{array}{l} \mathbf{g} \\ \mathbf{ing} \\ \mathbf{h}_{O,\alpha}^{s}(\mathbf{q}) = A_{O,\alpha}^{s} \sum_{\mathbf{r}_{i}} \exp(i \ \mathbf{q.r}_{i}) \\ \mathbf{g}_{Y} \\ \mathbf{h}_{Y,\alpha}^{s}(q) = 8D_{\alpha} \left(\cos q_{x}a / 2 \ \cos q_{y}a / 2 \right) \\ \mathbf{h}_{O,\alpha}^{s}(q) = 2C_{\alpha} \cos q_{x}a / 2 \\ \mathbf{h}_{O,\alpha}^{s}(q) = 2C_{\alpha} \cos q_{x}a / 2 \\ \mathbf{h}_{O,\alpha}^{s}(q) = A_{\alpha} + 2B_{\alpha} \left(\cos q_{x}a + \cos q_{y}a \right) \\ \end{array}$

For Y and O, A(q) vanishes for $q_{AF} = (\pi/a, \pi/a)$ The AF fluctuations are filtered out by A(q)

Zn²⁺ or Li⁺ (no spin) substituted to Cu²⁺ (spin 1/2)

⁸⁹Y NMR shift

TRIANGLE

PHYSIQUE

The spinless character of the impurity dominates the magnetic response

LPS ORSAY

Spatial extent of the staggered moment

S. Ouazi, J. Bobroff, H. A, PRB 2004

 $\xi_{imp}(T)$ varies smoothly with *T* and doping

Review article: H.A, J. Bobroff, P. Hirschfeld and M. Gabay, RMP 2009

H. Alloul, Cours A. Georges CDF, 9/11/2010

ORSAY

NMR studies of cuprates : pseudogap, correlations, phase diagram: past and future?

• Magnetic spin susceptibilities in NMR : Usual metals and superconductors

The case of cuprates:

Singlet spin pairing

Single spin fluid in the normal state

- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations in the phase diagram d- wave SC
- The pseudogap and questions on the phase diagram NMR as a local magnetic probe
- *Pseudogap, MIT and disorder* NMR and high field transport measurements
- SC Fluctuations and pseudogap

Some answers about the phase diagram

Origin for K^s

H.A, T. Ohno and P. Mendels, PRL 1989

tuations on the Cu than on the Y or O, which are symmetric sites for the AF lattice of the O₆ compound.⁷ In the band picture, AF correlations might induce a pseudogap, as suggested by Friedel,²⁴ which could explain the reduction of χ_s at low T. However, it is less clear whether this approach is compatible with the smooth variation of χ_s and K_s from the metal to the insulat

Phase Diagram and Pseudogap

The drop of $\chi(T)$ is generic of underdoped cuprates

¹⁷O NMR Hg1201 : one CuO₂ layer, J. Bobroff, H.A,... PRL 1997

Knight Shift in underdoped YBCO

H. Alloul, Cours A. Georges CDF, 9/11/2010

Superconductivity in Bis₂r₂CaCu₂O_{8+x} T_c=95K

Superconducting fluctations in the normal state of cuprates

H. Alloul, Cours A. Georges CDF, 9/11/2010

Inhomogeneities in BiSCCO viewed by STM

560 A Lang et al,Nature 412, 415 (2002) TRIANGLE DE LA PHYSIQUE

Cren et al, PRL 84,147 (2000); Howald et al PRB 64 10054-1(2001)

DOS depends on the STM tip location :

2D maps of the gap magnitude

Pan et al, Nature 413, 282 (2001)

Local distribution of hole doping

H. Alloul, Cours A. Georges CDF, 9/11/2010

Metal insulator transition

G.S. Boebinger, Y. Ando et al PRL 1996

TRIANGLE PHYSIQUE Insulating behaviour at optimal dpoping

H. Alloul, Cours A. Georges CDF, 9/11/2010

NMR studies of cuprates : pseudogap, correlations, phase diagram: past and future?

- Magnetic spin susceptibilities in NMR : Usual metals and superconductors
 - The case of cuprates:
 - Singlet spin pairing
 - Single spin fluid in the normal state
- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations in the phase diagram d- wave SC
- The pseudogap and questions on the phase diagram NMR as a local magnetic probe
- Pseudogap, MIT and disorder NMR and high field transport measurements
- SC Fluctuations and pseudogap

Some answers about the phase diagram

NMR Spectra: histograms of the hole content

Detailed analysis of the spectra versus *T* The maximum distribution of hole content is

- much narrower than in Bi2212 (STM) or LSCO (RMN)
- seen on large samples (0.5g)
- likely of macroscopic origin

TRIANGLE PHYSIQUE Distribution of oxygen content

J. Bobroff, H.A,... PRL 2002

YBCO is very homogeneous Only weak charge disorder

H. Alloul, Cours A. Georges CDF, 9/11/2010

PHYSIOUE

Correlations between Magnetic and Superconducting Properties of Zn-Substituted YBa₂Cu₃O_{6+x}

H. Alloul,⁽¹⁾ P. Mendels,⁽¹⁾ H. Casalta,⁽¹⁾ J. F. Marucco,⁽²⁾ and J. Arabski⁽¹⁾

⁽¹⁾Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France ⁽²⁾Laboratoire des Composés Non Stoechiométriques, Université Paris-Sud, 91405, Orsay, France (Received 8 August 1991)

 T_c and T_N (Néel) have been measured for a series of YBa₂(Cu_{0.96}Zn_{0.04})₃O_{6+x} samples. The *T* variations of the homogeneous susceptibility χ_s of the CuO₂ planes, given by the shift of the ⁸⁹Y NMR line, are found to be nearly unchanged with respect to pure samples for x > 0.5, which implies that the charge transfer is negligibly modified by Zn, and that the magnetic pseudogap is not associated with superconducting pairing. Detection of an unusual Curie contribution to the ⁸⁹Y NMR width for $x \ge 0.5$ provides evidence that Zn induces magnetic moments in the CuO₂ planes, which play a role in the depression of T_c .

PACS numbers: 74.70.Hk, 75.20.Hr, 75.30.Kz, 76.60.Cq

Pulsed magnetic field facility in Toulouse

The upturns are quantitatively similar

The disorder is not generic MIT is driven by disorder

F. Rullier-Albenque, H. A. et al, EPL 2008.

NMR studies of cuprates : pseudogap, correlations, phase diagram: past and future?

- Magnetic spin susceptibilities in NMR : Usual metals and superconductors
 - The case of cuprates:
 - Singlet spin pairing
 - Single spin fluid in the normal state
- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations in the phase diagram d- wave SC
- The pseudogap and questions on the phase diagram NMR as a local magnetic probe
- *Pseudogap, MIT and disorder* NMR and high field transport measurements
- SC Fluctuations and pseudogap

Some answers about the phase diagram

Superconducting fluctuations and pseudogap

Determination of *T**** and** *T**** conset of SC Fluctuations**

- Magnetic spin susceptibilities in NMR : Singlet spin pairing Single spin fluid in the normal state The pseudogap is generic and robust to disorder
- Dynamic susceptibilities and spin lattice relaxation : Magnetic correlations up to the Optimal doping Metallic like at q=0, AF correlations for q=(π/a, π/a) d- wave SC
- The pseudogap and questions on the phase diagram Importance of disorder in the phase diagram MIT and SG phases governed by disorder
- SC Fluctuations and pseudogap

SC Fluctuations follow Tc versus hole doping , remain with disorder A preformed pair scenario does not apply Pseudogap is intimately linked with magnetism (competing order?) NMR will be helpful to check possible models

