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Two classes of nonequilibrium many-
body phenomena

1. Steady state drive 
 (current-driven) stabilization of    
 metallic phase 
Maeno et al Ca2RuO4 

!
2. Transient perturbation 
 Long-lived response to carrier       
 excitation 
 Morrison et al VO2    
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Steady State Drive

Mott transition in Ca2-xSrxRuO4 

No anomaly at TN 
 
Clear separation  
between “charge gap”  
and “spin exitation”. 
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Response to pulse

Morrison et al VO2
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Response lasts >20ps

Morrison et al VO2
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Outline

1. Current driven metal-insulator 
transition 

!
!
2. Can a response to a short pulse 

generate a new phase
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Steady State Drive

Mott transition in Ca2-xSrxRuO4 

No anomaly at TN 
 
Clear separation  
between “charge gap”  
and “spin exitation”. 
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Theory

Nonequilibrium dynamical mean field approx. 
!
Perturbative solvers (IPT, NCA) 
qualitative behavior seems reaonsable 
quantitative accuracy is an open question
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Some concepts from single-particle 
physics
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Some concepts from single-particle 
physics

and how they show up in the many-body calculations
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Bloch Oscillations

(relevant to cold atom systems; unlikely to be 
important for actual condensed matter materials)

gauge invariance =) k ! k+ eEt
~

current / ea sin k(t)a
period T = h

eEa

Only relevant if scatt rate < voltage across a unit cell
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DMFT calculations: 
no `thermostat’ 

!

=>possibility for energy to  increase 
indefinitely
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Freericks 2006 
Falicov-Kimball Model

Oscillations damped by interactions 
Long time behavior not quite established

F=eEa=1

D
O

S

Stark Ladder

F=0.5

F=1
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Werner-Eckstein 
Hubbard mode; IPT solver

Bloch oscillations disappear above 
critical interaction strength (<UMIT)
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Werner-Eckstein 
Bloch oscillations tied to Stark Ladder



Department of Physics 
Columbia UniversityCopyright A. J. Millis 2015 

long time limit 
infinite temperature (0 energy) state
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This transition appears similar to the 
transition from underdamped to 

overdamped behavior in the simple 
harmonic oscillator
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Add coupling to heat bath

Amaricci, Kotliar et al. Hubbard model; metallic regime

F=eEa=4.7 /1.9

Properties crucially 
dependent on how 
you take the heat out

Phys. Rev. B 86, 085110 
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Aron et al: 
additional effect of Joule heating

In single-site DMFT

Image from Dobrosavljevic et al PRL 107 026401 

Raising T=> 
metal-insulator  
transition (at a 
quite low T)
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Arons et al

Joule heating 
drives system 
across metal-
insulator phase 
boundary

Clever method of solving DMFT 
eqns in steady state

Proximity to MIT and weak coupling 
to reservoir=>small field scale

arXiv:1210.4926
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Zener Tunnelling

Real transitions allowed

if tunnel a distance

d such that Ed = �

Mott

Tunnelling probability 
exponentialy small in d

j ⇠ E e�
Eth
E

If Mott gap is self consistent phenomenon: can a large 
enough current make it collapse? is there a transition 
at a critical current
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Eckstein and Werner 
Steady state current

j = Fe�
Fth
F

Details dep on approximation 
qualitative behavior similar
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Nonequilibrium non-steady state

Non-thermal state with  
approximately time-
independent current

j = Fe�
Fth
F
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Summary 
DMFT on Hubbard and related models

Physics: Single particle physics + many-
body scattering 
!
Nonequilibrium many-body state with 
properties that depend on `thermostat’ 
!
Field scales: voltage drop over 1 unit cell ~ 
fraction of Mott gap=>~0.1eV or more over 
1 unit cell
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An observation

Bulk    Breakdown Field  
Materials   (kV/cm)  

La2-xSrxNiO4 
1)

           1~10  
Sr2CuO3 

2)          1~3   
SrCuO2 2)               �0.3~1   
(TTeC1TTF)-TCNQ 3)     ��0.3~1.2 
GaTa4Se8 

4)                         0.8�� 
Ca2RuO4 

5)                   0.04  

VO2 (films in EDLT) ���� 

from Y. Maeno.  
Cambridge talk 2015

One unit cell
⇠ 4⇥ 10�8 cm

Voltage drop across

one unit cell

0.4� 0.002 meV

Tiny on 
electronic scales
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Implication
Bulk    Breakdown Field  
Materials   (kV/cm)  

La2-xSrxNiO4 
1)

           1~10  
Sr2CuO3 

2)          1~3   
SrCuO2 2)               �0.3~1   
(TTeC1TTF)-TCNQ 3)     ��0.3~1.2 
GaTa4Se8 

4)                         0.8�� 
Ca2RuO4 

5)                   0.04  

VO2 (films in EDLT) ���� 

Current-driven transitions are not explicable in 
terms of the local physics accessible to DMFT. 
They are a collective phenomenon and the effect 
of current on longer length scale physics needs 
consideration. 
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Observations 
(not yet a theory)

• The physics of the DMFT calculations is: voltage 
drive heats electrons: hot electrons drive physics 

• We need: effective temperature for order 
parameter, even if electrons stay 
``cold’’ (equilibrated with reservoir)
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2 results from study of nonequilbrium 
magnetic quantum critical phenomena:

Phys. Rev. Lett. 97 236808 (2006)

``Thermal’’ transition: Teff~V 
although electrons are in 
equilibrium with lattice
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2 results from study of nonequilbrium 
magnetic quantum critical phenomena:

Phys. Rev. Lett. 97 236808 (2006)

``Thermal’’ transition: Teff~V 
although electrons are in 
equilibrium with lattice

Te↵ = eElsc

Current in-plane

Phys. Rev. B77, 220404 (2008)
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Idea: small gap=>long length scale 
Small electric field gives high order 

parameter temperature

Te↵ = eEvF/�
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After a pulse

lifetime of conducting state: 
slow 1 electron kinetics  
or new metastable electronic phase

VO2
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VO2: Structurally distorted insulator
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VO2: Insulating phase

Hartree-Fock band structure Z. He

Insulating phase 
2 moving parts 
!
Interaction-enhanced 
dimerization 
!
Interaction-driven 
crystal field splitting



Department of Physics 
Columbia UniversityCopyright A. J. Millis 2015 

VO2: Insulating phase

DFt and DFT+DMFT

Insulating phase 
2 moving parts 
!
Interaction-enhanced 
dimerization 
!
Interaction-driven 
crystal field splitting

Biermann et al 2005
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Experiment: excitation at 1.5eV 
(chosen for experimental convenience)

Excite carriers from 
bonding to 
antibonding orbitals
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Interacting model

Photexcitation:  
!
Add energy to system 
Create doubly occupied  
and empty sites

�E ⇡ U�Nd

?Thermalization? 
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Falicov Kimball model

<-
tim

e 
de

la
y

In Falicov-Kimball 
model, doubly 
occupied states live 
forever



Department of Physics 
Columbia UniversityCopyright A. J. Millis 2015 

Hubbard model: thermalization

Recombination: : liberates energy U-W 
!
=> if W<U-W, then possible final state
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Hubbard model: thermalization

Auger: create more doublons 
!
also if W<U-W, then possible final state
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Hubbard model: thermalization

Recombination: : liberates energy U-W 
!
=> if W<U-W, then possible final state

Spin and phonon degrees of freedom can also 
provide energy to relax dist (mainly within bands)
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DMFT 
Werner and Eckstein

Exponential 
relaxation to thermal 
equilibrium state 
!
But no discernable 
relaxation for U-5: 
U-W>W
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DMFT 
Werner and Eckstein

Relaxation of number of `doublon’ becomes 
arbitrarily slow at large gap
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Werner/Eckstein 
arXiv:1410.3956

E=3 d=0.002 
E=6 d=0.009 
E=14 d=0.045

Details of relaxation within band 
depend on other DOF
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Magnon contribution to relaxation time

# appropriate for 
oxides: ~10-100fs
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Summary: kinetics 
Hubbard model

!
• General: thermalization on ~10-100fs 

scale to state with given energy. 
•  relaxation of doubly occupied sites 

via recombination 
• Very significant kinetic barrier to 

recombination if Mott gap is larger 
than bandwidth; otherwise 
reasonably fast
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Hartree-Fock Analysis of VO2 

Z. He

Boltzmann kinetic equation.  
Hartree-Fock Band Structure 
Local U, J interactions

Recall Slater-Kanamori Interactions

Orbital number is preserved exc. by pair hopping ~J
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States at upper and lower gap edge 
different orbital character

?slower kinetics?
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States at upper and lower gap edge 
different orbital character

Initial distribution: 
each band thermalizes quickly 
then Auger up-scattering (slow)=>final thermalization
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Boltzmann Kinetics 
Initial thermalization, a few fs
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Boltzmann Kinetics: 
Auger upscattering final thermalization

Slower timescale for final relaxation: J
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Key question: 
how fast does energy go out of system?

~
⌃00 ⇠

1

!D
. 100fs

Phonon

magnons 
same timescale
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Key question: 
how fast does energy go out of system?

As upper and lower bands 
emit phonons and cool 
recombination should 
happen also on 10-100fs 
scale

~
⌃00 ⇠

1

!D
. 100fsPhonon
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Kinetic estimate

Relaxation in at most few picoseconds

?How does the new metallic state live so long?
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Intriguing possibility 
(not favored by current parameters)
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VO2: Insulating phase

Hartree-Fock band structure Z. He

Insulating phase 
2 moving parts 
!
Interaction-enhanced 
dimerization: V 
!
Interaction-driven 
crystal field splitting 
on-site U
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Hartree-Fock Hamiltonian

Similar to

On-site U: Slater-Kanamori

Vn
1,x2�y

2n
2,x2�y

2

! Vc†
1,x2�y

2c
2,x2�y

2

D
c†
2,x2�y

2c
1,x2�y

2

E
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At T=0: Two extrema
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Higher extremum: metallic
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As raise electronic T, higher extremum 
may be favored

Note: lattice assumed to remain at low T
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Our estimates: 
fluence too low by factor of at least 2
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Stability of metallic phase

Metal phase metastable in green 
and red shaded regions
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Stability of metallic phase

Metal phase metastable in green 
and red shaded regions
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Suggestion

Experiment has put the system into 
a metastable phase. 
!
Open question: why would the lattice not relax
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Summary

• Current-driven and optical 
pump experiments imply 
new (at least metastable) 
nonequilibrium phases 

• Present-day theory provides 
important insights but is 
inadequate to describe 
experiments
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Key ideas

• Nonequilibrium phases: effective 
temperature of order parameter 
decoupled from electronic and lattice 
temperature 

!
• Metastable phases  may be accessed by 

optical excitation


