Nonequilibrium Physics of Correlated Electron Materials IV:

Nonequilibrium Phase Transitions

A. J. Millis

College de France Oct 12, 2015

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Two classes of nonequilibrium manybody phenomena

- 1. Steady state drive (current-driven) stabilization of metallic phase Maeno et al Ca₂RuO₄
- 2. Transient perturbation Long-lived response to carrier excitation Morrison et al VO₂

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Steady State Drive

SIMONS FOUNDATION Mathematics & Physical Sciences

Y. Maeno

Department of Physics Columbia University

Response to pulse

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

Response lasts >20ps

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

Outline

1. Current driven metal-insulator transition

2. Can a response to a short pulse generate a new phase

Department of Physics

Columbia University

Steady State Drive

SIMONS FOUNDATION Mathematics & Physical Sciences

Y. Maeno

Department of Physics Columbia University

Theory

Nonequilibrium dynamical mean field approx.

Perturbative solvers (IPT, NCA) qualitative behavior seems reaonsable quantitative accuracy is an open question

Department of Physics Columbia University

Some concepts from single-particle physics

Copyright A. J. Millis 2015

Some concepts from single-particle physics

and how they show up in the many-body calculations

Department of Physics Columbia University

Bloch Oscillations

(relevant to cold atom systems; unlikely to be important for actual condensed matter materials)

gauge invariance $\implies \mathbf{k} \rightarrow \mathbf{k} + \frac{\mathbf{eEt}}{\hbar}$ **current** $\propto ea \sin \mathbf{k}(\mathbf{t})\mathbf{a}$ **period** $\mathbf{T} = \frac{\mathbf{h}}{\mathbf{eEa}}$

Only relevant if scatt rate < voltage across a unit cell

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

DMFT calculations: no `thermostat'

=>possibility for energy to increase indefinitely

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Oscillations damped by interactions Long time behavior not quite established

Copyright A. J. Millis 2015

Werner-Eckstein Hubbard mode; IPT solver

Bloch oscillations disappear above critical interaction strength (<**U**_{MIT}**)**

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Werner-Eckstein Bloch oscillations tied to Stark Ladder

long time limit infinite temperature (0 energy) state

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

This transition appears similar to the transition from underdamped to overdamped behavior in the simple harmonic oscillator

Department of Physics Columbia University

Add coupling to heat bath

Amaricci, Kotliar et al. Hubbard model; metallic regime

Phys. Rev. B 86, 085110

Copyright A. J. Millis 2015

Aron et al: additional effect of Joule heating

In single-site DMFT

Raising T=> metal-insulator transition (at a quite low T)

Image from Dobrosavljevic et al PRL 107 026401

Department of Physics Columbia University

Arons et al

SIMONS FOUNDATION Mathematics & Physical Sciences

Joule heating drives system across metalinsulator phase boundary

Clever method of solving DMFT eqns in steady state

Proximity to MIT and weak coupling to reservoir=>small field scale

arXiv:1210.4926

Copyright A. J. Millis 2015

Zener Tunnelling

 $\begin{array}{ll} \mbox{Real transitions allowed} \\ \mbox{if tunnel a distance} \\ \mbox{d such that} & \mbox{Ed} = \Delta_{\rm Mott} \end{array}$

Department of Physics

Columbia University

Tunnelling probability exponentialy small in d

 $\mathbf{j} \sim \mathbf{E} \; \mathbf{e}^{-\frac{\mathbf{E_{th}}}{\mathbf{E}}}$

If Mott gap is_self consistent phenomenon: can a large enough current make it collapse? is there a transition at a critical current

> SIMONS FOUNDATION Mathematics & Physical Sciences

Eckstein and Werner Steady state current

SIMONS FOUNDATION Mathematics & Physical Sciences

qualitative behavior similar

Department of Physics **Columbia University**

Nonequilibrium non-steady state

SIMONS FOUNDATION Mathematics & Physical Sciences Ŵ

Department of Physics Columbia University

Summary

DMFT on Hubbard and related models

Physics: Single particle physics + manybody scattering

Nonequilibrium many-body state with properties that depend on `thermostat'

Field scales: voltage drop over 1 unit cell ~ fraction of Mott gap=>~0.1eV or more over 1 unit cell

Ś

Department of Physics Columbia University

An observation

from Y. Maeno. Cambridge talk 2015

Bulk	Breakdown Field
Materials	(kV/cm)
$La_{2-x}Sr_{x}NiO_{4}$	¹⁾ 1~10
$Sr_2CuO_3^{(2)}$	1~3
SrCuO ₂ ²⁾	0.3~1
(TTeC1TTF)-TC	NQ ³⁾ 0.3~1.2
GaTa ₄ Se ₈ ⁴⁾	0.8~4
$Ca_2 RuO_4^{5)}$	0.04
VO_2 (films in	EDLT)

Voltage drop across one unit cell 0.4 - 0.002 meV

Tiny on electronic scales

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Implication

Current-driven transitions are not explicable in terms of the local physics accessible to DMFT. They are a collective phenomenon and the effect of current on longer length scale physics needs consideration.

Copyright A. J. Millis 2015

Observations (not yet a theory)

- The physics of the DMFT calculations is: voltage drive heats electrons: hot electrons drive physics
- We need: effective temperature for order parameter, even if electrons stay
 ``cold" (equilibrated with reservoir)

Department of Physics Columbia University

2 results from study of nonequilbrium magnetic quantum critical phenomena:

``Thermal" transition: Teff~V although electrons are in equilibrium with lattice

Phys. Rev. Lett. 97 236808 (2006)

SIMONS FOUNDATION Mathematics & Physical Sciences

2 results from study of nonequilbrium magnetic quantum critical phenomena:

``Thermal" transition: Teff~V although electrons are in equilibrium with lattice

Current in-plane

 $T_{eff} = eEl_{sc}$

Phys. Rev. B77, 220404 (2008)

Phys. Rev. Lett. 97 236808 (2006)

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Idea: small gap=>long length scale Small electric field gives high order parameter temperature

 ${f T_{eff}}={f eEv_F}/{\Delta}$

Department of Physics Columbia University

After a pulse

lifetime of conducting state: slow 1 electron kinetics or new metastable electronic phase

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

VO2: Structurally distorted insulator

The metal-insulator transition is accompanied by a structural transition with dimerization of the V atoms and tilting of the pairs out of the z axis. (From V. Eyert, Ann. Phys. (Leipzig) 11, 650-702 (2002))

Department of Physics Columbia University

VO2: Insulating phase

Hartree-Fock band structure Z. He

Insulating phase 2 moving parts

Interaction-enhanced dimerization

Interaction-driven crystal field splitting

Copyright A. J. Millis 2015 SIMONS FOUNDATION Mathematics & Physical Sciences

VO2: Insulating phase

DFt and DFT+DMFT

Insulating phase 2 moving parts

Interaction-enhanced dimerization

Interaction-driven crystal field splitting

Biermann et al 2005

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Experiment: excitation at 1.5eV (chosen for experimental convenience)

Excite carriers from bonding to antibonding orbitals

Department of Physics Columbia University

Interacting model

Photexcitation:

Add energy to system Create doubly occupied and empty sites

 $\delta \mathbf{E} \approx \mathbf{U} \delta \mathbf{N_d}$

?Thermalization?

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Falicov Kimball model

In Falicov-Kimball model, doubly occupied states live forever

Moritz, B., A. F. Kemper, M. Sentef, T. P. Devereaux, and J. K. Freericks, 2013, Phys. Rev. Lett. 111, 077401.

> SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Hubbard model: thermalization

=> if W<U-W, then possible final state

Department of Physics Columbia University

Hubbard model: thermalization

also if W<U-W, then possible final state

SIMONS FOUNDATION Mathematics & Physical Sciences **Department of Physics**

Columbia University

Hubbard model: thermalization

=> if W<U-W, then possible final state

Spin and phonon degrees of freedom can also provide energy to relax dist (mainly within bands)

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

DMFT Werner and Eckstein

SIMONS FOUNDATION Mathematics & Physical Sciences

Exponential relaxation to thermal equilibrium state

But no discernable relaxation for U-5: U-W>W

DMFT Werner and Eckstein

Relaxation of number of `doublon' becomes arbitrarily slow at large gap

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Werner/Eckstein arXiv:1410.3956

Details of relaxation within band depend on other DOF

SIMONS FOUNDATION Mathematics & Physical Sciences

E=3 d=0.002 E=6 d=0.009 E=14 d=0.045

Department of Physics Columbia University

Magnon contribution to relaxation time

SIMONS FOUNDATION Mathematics & Physical Sciences

Copyright A. J. Millis 2015

Summary: kinetics Hubbard model

- General: thermalization on ~10-100fs scale to state with given energy.
- relaxation of doubly occupied sites via recombination
- Very significant kinetic barrier to recombination if Mott gap is larger than bandwidth; otherwise reasonably fast

Department of Physics Columbia University

Hartree-Fock Analysis of VO₂ Z. He

Boltzmann kinetic equation. Hartree-Fock Band Structure Local U, J interactions

Recall Slater-Kanamori Interactions

$$H = U \sum_{a} n_{a\uparrow} n_{a\downarrow} + (U - 2J) \sum_{a > b, \sigma = \uparrow, \downarrow} n_{a\sigma} n_{b\sigma} + (U - 3J) \sum_{a \neq b\sigma} n_{a\sigma} n_{b\bar{\sigma}} - J \sum_{a \neq b} c^{\dagger}_{a\uparrow} c^{\dagger}_{a\downarrow} c_{b\uparrow} c_{b\downarrow} + c^{\dagger}_{a\uparrow} c^{\dagger}_{b\downarrow} c_{b\uparrow} c_{a\downarrow}$$

SIMONS FOUNDATION

Mathematics & Physical Sciences

Orbital number is preserved exc. by pair hopping ~J

Copyright A. J. Millis 2015

States at upper and lower gap edge different orbital character

Department of Physics Columbia University

States at upper and lower gap edge different orbital character

Copyright A. J. Millis 2015

Boltzmann Kinetics Initial thermalization, a few fs

Department of Physics Columbia University

Boltzmann Kinetics: Auger upscattering final thermalization

Slower timescale for final relaxation: J

Department of Physics

Columbia University

SIMONS FOUNDATION Mathematics & Physical Sciences

Key question: how fast does energy go out of system?

Key question: how fast does energy go out of system?

As upper and lower bands emit phonons and cool recombination should happen also on 10-100fs scale

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Kinetic estimate

Relaxation in at most few picoseconds

SIMONS FOUNDATION Mathematics & Physical Sciences

?How does the new metallic state live so long?

Intriguing possibility (not favored by current parameters)

Copyright A. J. Millis 2015

VO2: Insulating phase

Hartree-Fock band structure Z. He

Insulating phase 2 moving parts

Interaction-enhanced dimerization: V

Interaction-driven crystal field splitting on-site U

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Hartree-Fock Hamiltonian

On-site U: Slater-Kanamori

The metal-insulator transition is accompanied by a structural transition with dimerization of the V atoms and tilting of the pairs out of the z axis. (From V. Eyert, Ann. Phys. (Leipzig) 11, 650-702 (2002))

 $Vn_{1,x^2-y^2}n_{2,x^2-y^2}$

$\rightarrow \mathbf{V}\mathbf{c}_{1,\mathbf{x^2}-\mathbf{y^2}}^{\dagger}\mathbf{c}_{2,\mathbf{x^2}-\mathbf{y^2}}\left\langle \mathbf{c}_{2,\mathbf{x^2}-\mathbf{y^2}}^{\dagger}\mathbf{c}_{1,\mathbf{x^2}-\mathbf{y^2}}^{\dagger}\right\rangle$

Similar to J. Phys.: Condens. Matter 19 (2007) 365206

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

At T=0: Two extrema

Department of Physics Columbia University

Higher extremum: metallic

As raise electronic T, higher extremum may be favored

Note: lattice assumed to remain at low T

Copyright A. J. Millis 2015

Our estimates: fluence too low by factor of at least 2

SIMONS FOUNDATION Mathematics & Physical Sciences

Stability of metallic phase

Metal phase metastable in green and red shaded regions

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Stability of metallic phase

Metal phase metastable in green and red shaded regions

SIMONS FOUNDATION Mathematics & Physical Sciences

Department of Physics Columbia University

Suggestion

Experiment has put the system into a metastable phase.

Open question: why would the lattice not relax

Department of Physics

Columbia University

Summary

SIMONS FOUNDATION Mathematics & Physical Sciences

- Current-driven and optical pump experiments imply new (at least metastable) nonequilibrium phases
- Present-day theory provides important insights but is inadequate to describe experiments

Department of Physics Columbia University

Key ideas

- Nonequilibrium phases: effective temperature of order parameter decoupled from electronic and lattice temperature
- Metastable phases may be accessed by optical excitation

Department of Physics Columbia University