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Séance du 5 novembre 2013

 Rappels: Effets thermoelectriques, etc...

» (Genéralités sur les systemes mesoscopiques:
conductance et transmission

» Coefficients thermoelectriques dans I'approche
de Landauer -Buttiker

Séminaires :

10h45 Jean-Louis Pichard (SPEC — CEA Saclay) — Conversion thermoélectrique a basse
température dans des nano-fils désordonnés et des cavités quantiques chaotiques : I'intérét
des bords de spectres.

11h45 - Bjoérn Sothmann (DPT — Université de Genéve) — Three-terminal quantum-dot
thermoelectrics.




Outline of future lectures:

Nov 12: Thermoelectric effects in mesoscopic
quantum devices ( + 2 seminars by L.Molenkamp)

Nov, 19: Energy Filtering, etc. (2 lectures)

(Seminar by O.Bourgeois on nano-phononics and
thermal transport in small systems)

NO LECTURES on Nov,26 and Dec,3

Dec 10: Cold atomic gases: transport and

thermoelectric effects () (Two seminars by J-P
Brantut and C.Grenier on recent experimental
observations of these effects)

Dec 17: TE transport in cold gases (cont'd)
Seminar by R.Grimm on observation of second-sound.




In memory of:

Oriol Bohigas (1937-2013)

Markus Buttiker (1950-2013)
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Reminders
(see lectures from last year on website)

Basic Thermolectric Effects




TWO KEY THERMOELECTRIC EFFECTS :
1. The Seebeck effect (1821)

A thermal gradient applied at the ends of an open circuit
induces a finite voltage difference

AV = —a AT

a: Seebeck coefficient (thermopower)

Actual observation: junction
between two metals, voltage drop:

V — (OzB — OéA) (T2 —Tl)




Seebeck’s original instrument: deflection of a compass needle
Heated junction of two metals (o,n)




Or, actually, Alessandro Volta in 1794...

Alessandro Volta

Fig. 3. Discovery of thermoelectricity by Volta on February 10, 1794.
ATA)
L'ACCADEMIA INTERNAZIONALE DI TERMOELETTRICETA®
CONFERMA
CHE NELL"ANNO 1794
ALESSANDRO VOLTA

HA SCOPERTO LA TERMOELETTRICITA

APRENDO UNA TMPORTANTE DIREZIONE : Cf' e'g' LI An.atyChUK’
oer 1L LoNLC0-SCIENT Journal of Thermoelectricity, 1994
_— G.Pastorino, ibid., 2009




Qualitative picture:

cf: PM Chaikin, An introduction to thermopower for those who might
want to use it...in "Organic superconductors’, 1990

E =aVT , (a, <0)

Higher density of carriers on the cold side, lower on hot side
—> an electric field is established
“Stopping condition’: balance electric field and thermal gradient to
get zero particle flow.
In this cartoon: carriers are negatively charged,
hence field is opposite to thermal gradient
Electron-like (hole-like) carriers correspond to negative (positive)
Seebeck coefficient > Seebeck useful probe of nature of carriers




TWO KEY THERMOELECTRIC EFFECTS :
2. The Peltier effect (1834)

Heat production at the junction of two conductors
In which a current is circulated.
Reversible: heating or cooling as orientation of current is reversed.

Heating rate: [1: Peltier coefficient

Q) = llap [l

2nd Kelvin relation (Onsager):

Il =1«

Note: thermoelectric coefficients are
actually intrinsic to a single conductor
Cooling (ex: B is a superconductor)




Two basic applications of the Peltier and
Seebeck effects:
Coolers and Generators

Cooling module [Peltier] Power generation module [Seebeck]




Simple intuition about thermoelectric cooling

Electrons move against current
Holes move along current
BOTH electrons and holes leave
cold end to reach hot end

BOTH processes correspond to
lowering of entropy of cold end

Hot 1/kT=5
Cold 1/kT=15

Remove electrons
Remove holes above Fermi level
.below Fermi level

Fermi function




First part of these lectures:
Thermoelectric effects
iIn the context of

“‘Mesoscopic”
Electronic Systems




Images: Courtesy
G.Montambaux

anneau metallique Cu Gaz 2D, semiconducteur (AlGaAs)

Nanotube de carbone

Graphéne




Mesoscopic Systems : Lengthscales

(zeometrical dimension: L

(Size of conductor)
Phase coherence length: 4

(Distance an electron travels before its phase changes by 27)

Inelastic scattering length: £;,, |(~103 nm ~ 1um)

(Distance an electron travels before its energy changes by ~ kgT)
Elastic scattering length: /. (10-103 nm)

(Distance an electron travels between elastic scattering events)

Macroscopic Conductor: £, <K €;p,, Ly <K L

Mesoscopic Conductor: | L < ¥;,, 4,

Ballistic regime: L < ¢, Diffusive regime: /., < L




Cf. Beenakker and van Houten, arXiv:cond-mat 0412664




BALLISTIC TRANSPORT

Courtesy: Tilman Esslinger, ETHZ




What is the conductance of a
perfectly ballistic conductor ?
Is it infinite ?

Classically (Ohm’s law + Drude) :
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Conductance = Transmission

> ot . Rolf Landauer

(1927 Germany - 1999 USA)
IBM fellow

Author in particular of:
- The Landauer principle’ (1961)

(dissipation associated with the
Irreversible manipulation of information)

- The Landauer formula (1957)

Description of quantum transport
as transmission

A wave-like description of transport




The Landauer formula

Conductance as Transmission
- Case of a single conduction channel’ -

pr, — pr = —e(Vp — Vg)

de T (e)|f(e —pr) — fle — puRr)]

. Energy-dependent transmission coefficient




A simple derivation (1-channel)
- On blackboard
[cf. Typed notes on website]




Where does the potential drop ?
The two’ Landauer formulas...

Contact Resistance
(cf. Imry, 1986 )

2-probe vs. 4-probe conductance




Contact reS|stances h / 4@2 .'




Landauer formula

\ 4

h h 1-7T h 1

4e2 | 2e2 T 2e2 T

Contact 1 + CHANNEL + Contact 2 = Total

Original 1957
Landauer formula

Note: Channel conductance - Infinity for perfect transmission




Four-terminal resistance
of a hallistic quantum wire

R. de Picciotto*, H. L. Stormer~+, L. N. Pfeiffer*, K. W. Baldwin*

& K. W. West Nature 411, 51 (2001)

* Bell-Labs, Lucent Technologies, Murray Hill, New Jersey 07974, USA
T Departments of Physics and Applied Physics, Columbia University,
New York 10003, USA

Tungsten

[100]

Slide: courtesy
G.Montambaux




2-terminal
conductance
IS quantized

4-terminal
Conductance
IS infinite

0 0.2 04 06 0.8 1.0 |
Transmission

Resistance (kQ)

s

Gate voltage (V)

Figure 2 Two- and four-terminal resistances of a ballistic quantum wire. The dashed line
shows the two-terminal resistance of the 2-m-long central section of the wire versus the
voltage applied to the associated gate 2. Gates 1 and 3 are not activated. The solid line
shows the four-terminal resistance, (Vx— Vg)//, versus the voltage applied to gate 2. Here




Anticipating on the Dec,10 lecture and seminars:
ballistic transport in cold atomic gases

Left Reservoir

N
o

o

Ballistic
Diffusive

6 3.0
B Position (pm)
Conduction of Ultracold Fermions Through a Mesoscopic Channel
Jean-Philippe Brantut et al.

Science 337, 1069 (2012);
DOI: 10.1126/science.1223175




Multi-Channel Generalization

Transport channel = mode of waveguide
Adiabatic approximation: slow variation of potential along x:

U(z,y, 2) ~ (z)Pn(y, 2)
hQ

2m
| cf. Nazarov&Blanter

h? 0% Cambridge UP, 2009

+ en(z)Y(z)

- 29m Ox2




(a) (d) 12
NED ___/

b cf. Nazarov&Blanter
Cambridge UP, 2009
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Multi-channel Landauer formula

Transmission coefficient for an electron injected in channel m
to go into channel n:

2
Each mode n contributes a current proportional to E ﬁm

m

Total current finally involves transmission coefficient:

T(E) =) Tom = Y tambpy, = Tritf

— Z TA sum of eigenvalues of tt* matrix
A




Notes on Thermoelectricity of Small Systems - College de France - Fall 2013

Antoine Georges

(Dated: Notes complementing lecture 1 - Nov 5, 2013)

Note: These are by no means intended as a self-contained set of notes. Instead, they are merely complements to the
slides, covering the material presented in the blackboard during the lectures.

I. CONDUCTANCE AS TRANSMISSION: THE LANDAUER FORMULA

Useful books: Nazarov and Blanter[2], Montambaux[1].

A. Simple derivation for a single one-dimensional channel

Consider an incident wave coming from the left reservoir, which is partially reflected and partially transmitted, so
that on the left side:
1

wL(«T) — \ﬁ [e-‘rik‘x + re—ikx] (1)

with r the reflection coefficient for the amplitude (a complex number in general). The corresponding particle current
density reads:

h

m

hk

n = e 00| = 1= o) )

We could also have calculated the current from the transmitted wave:

1 e . Bk
Yr(x) = t —=et*" = G, = —|t]? (3)

VL mL
These two expressions are equivalent since the reflection and transmission coefficients for probabilities add up to unity:
R=[, T=f, R+T =1 (4)

The total current is the difference between the current originating from the left reservoir and that originating from
the right reservoir (for a single-channel, the transmission coefficient in both cases is T, see below):

1= Zein (=€) 7 32 2 T(ew) e — ) = f(o — an) )
k>0

We note that (beware of the subtleties with factors of 2: we consider only right-moving modes with &k > 0 !):

1 hk oo dk hk 1
Tt [ g et = [degpe0 ()
So that one finally gets:
1= -2 [d T (e - ) - £~ ur) 7)

This formula is actually valid for an arbitrary dispersion e(k,), since the associated velocity reads vy, = % 83% and

% v — [ %: the density of states does not appear in the final expression !



We recall - see the lectures of spring 2013 - that the (electro-) chemical potential difference is related to the tension
between the left and right reservoirs by:

pHr — pr = —eV (8)
A common chemical potential can be defined such that:
pr = p+0pr , pr = p+0pr , opr —Sur = —eV (9)

The linear-response conductance is thus given by (I = GV):

2¢2 aof 2¢2
G = o de T (¢) <85> , G(T=0) = TT(&p) (10)
Quantum of resistance:
h
Rg = — = 25.812807449(86) k2 (11)

The remarkable point is of course that a perfect 1-channel ballistic conductor does not have infinite conductance, but
rather a conductance 2¢?/h !

B. Where does the potential drop? Contact resistance.

Let us consider a 4-probe geometry as in the slides. We are going to evaluate the electron number at point A in
two possible ways. By assuming local equilibrium at a local chemical potential p4. Or by stating that the electrons
at A are either thos coming from the left reservoir and having undergone a reflexion of those coming from the right
reservoir and having been transmitted. Thus:

Na = 2) [(1+R)f(ex — pr) + T f(ex — pr)] (12)

k>0

2 fler —pa)
B

Beware that the first sum runs over k& > 0 while the second one runs over all k’s ! And )7, =23, . Expanding for
small departures from equilibrium, one obtains:

(R T gte =)+ 10+ Ry + Tou) (<90 ) = 27—+ oua (-2 (13)
Hence (similar reasoning for B):
26pa = (1+R)our +Tour , 20up =Tour + (1 +R)dur (14)
So that the potential drop in the channel is given by:
pa—pp = R(uL — pr) (15)

Using the Landauer formula for the whole system: V;, — Vi = %%I , we obtain the conductance of the channel as
(first Landauer formula, 1957):

2e2 T 2e2 T
Co = TR= W17 18)

Calculating the potential drops at the contact pua — py, we obtain that they are equal on each side, and that the
resistance of each contact is given by:




We check that Re + Rep, + Re = 1/G = .

1 G. Montambaux, Conduction quantique et physique mésoscopique, Cours de I’Ecole Polytechnique, 2013.
2 Yu. V. Nazarov and Blanter Y., Quantum transport - introduction to nanoscience, Cambridge University Press, 2009.




