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Today’s menu (lectures 4+5)

* Derivation of the DMFT equations: the
cavity method (follow-up from lecture 3)

- On blackboard

* Atom in a bath: introduction to the single-
impurity Anderson model




Reminder: next session

Tuesday June 11
(no session on June 4)

» 9:30-11:00: A.G. (last lecture)
* 11:30-12:30: Seminar by Olivier Parcollet

14.00-18:30 Mini-workshop on "Dynamical
Mean-Field Theory and Beyond — Recent
Developments’ (Salle 2)




Mini-Workshop June, 11

14:00-14:45 Manuel Zingl (CCQ, Flatiron Institute). Recent insights on Sr2RuO4: High-
resolution photoemission and Hall effect

14:45-15:30 Jernej Mravlje (Jozef Stefan Institute, Ljubljana). Hund’s metals: overview, NRG
insights, and the role of spin-orbit coupling

15:30-16:15 Hugo Strand (CCQ, Flatiron Institute). Magnetic response of a Hund's metal
within DMFT: Sr2RuOy

16:15-17:00 Break

17:00-17:45 Alessandro Toschi (IFP — TU Wien). Fluctuation diagnostics of many-electron
systems: how to read between the lines of single-particle spectra

17:45-18:30 Leonid Pourovskii (CPHT, Ecole Polytechnique and Collége de France).
A DMFT insight into the Earth's core: many-electron effects in iron under extreme conditions




Reminder:
Derivation of DMFT equations

Locality of the Luttinger-Ward functional:
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Cavity method (on blackboard)




Classical StatMech Models in which an infinite series of
terms must be summed in d=infty: fully frustrated Ising

J. Phys. A: Math. Gen. 23 (1990) 2165-2171. Printed in the UK

The fully frustrated Ising model in infinite dimensions

Jonathan S Yedidiat and Antoine Georges$

* Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
Z Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 28 Scptember 1989

Abstract. We solve, subject to the validity of some reasonable assumptions, the ‘fully
frustrated’ Ising model in the limit of infinite dimensions using an extension of the TAP
theory for spin glasses. In contrast to the TAP theory of the infinite-range spin glass, an
infinite summation of diagrams is required to recover the Gibbs free energy for this model.
The model undergoes a first-order transition. The method used to solve the model should

have many applications to other physical problems.
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Figure 1. The Gibbs free energy of the ‘fully frustrated’ Ising model on a hypercubic lattice

in the limit of infinite dimensions.




Atom In a bath:
Introduction to the single-impurity
Anderson model
with a DMFT perspective

"Anderson — Friedel- Wolff’ model

J.Friedel, Can.J.Phys 34, 1190 (1956)
P.W.Anderson, Phys Rev 124, 41 (1961)
P.A.Wolff, Phys. Rev. 124, 1030 (1961)

See also lecture in 2009-2010 cycle




The simplest atom’

' T T d 1
Ed E dlds + Unin|

r

Eigenstates:
e 0) , £E=0
° \ 1) and \ | E = ¢4, doubly degenerate { in zero-held }

o |1]), E=24+U

Level crossings:
- Between |n=0> and [n=1>ate =0

- Between |[n=1>and |n=2>ate =- U




Occupancy of the isolated atom :
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repulsive interactions,
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level-crossing
(charge degeneracy)

Plot of ng/2 vs. 4 for U = 2 at 3 = 30 and 3 = 10.




Spectroscopy of the isolated atom

One-particle spectral function, at T=0:
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“Atom In a bath”




Hamiltonian formulation: Anderson impurity model

Hy = cq y dids + Unin|
a

Transfers electrons between bath
and atom — Hybridization, tunneling




Shakespeare’s anticipation of DMFT:
Correlation effects 'in a nutshell’

"O God! I could be bounded in a nutshell,

and count myself king of infinite space,

were it not that I have bad dreams !"
William Shakespeare (in: Hamlet)




Bibliography (some)

« Kondo and Anderson models:

|.Affleck Quantum impurity problems in condensed matter physics
Lecture notes at Les Houches, arXiv:0809.3474

A.Hewson The Kondo problem to heavy fermions, Cambridge UP
G.Gruner and A.Zawadowski Rep Prog Phys 37 (1974) 1497
D. Cox Lectures at Boulder school, 2003

D. Cox and A. Zawadovski Adv. Phys. 47, 599 (1998)
+ Many other references...



http://sexton.ucdavis.edu/CondMatt/cox/

C. R. Physique 17 (2016) 430-446

Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Condensed matter physics in the 21st century: The legacy of Jacques Friedel

The beauty of impurities: Two revivals of Friedel’s virtual
bound-state concept

La beauté des impuretés : nouveaux contextes pour le concept d’'état lié
virtuel

Antoine Georges

Collége de France, 11, place Marcellin-Berthelot, 75005 Paris, France

https://www.sciencedirect.com/journal/com

@ CrossMark

sique/vol/17/issue/3



https://www.sciencedirect.com/journal/comptes-rendus-physique/vol/17/issue/3

Relevance to physical systems

* 1. Magnetic impurities in metals

- Low concentration of magnetic atoms, with quite localized orbitals,
into metallic host

- e.g. 3d transition metals (Mn, Cr, Fe) into Au or Cu or Al
4f dilute rare-earth compounds e.g. Ce,Laq, Cug (x << 1)
In some cases, all range of solid solution can be studied,
from dilute to dense system (Kondo alloy to Heavy-Fermion regime)




PHYSICAL REVIEW VOLUME

124,

NUMBER 1 OCTOBER 1, 1961

Localized Magnetic States in Metals

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received May 31, 1961)

The conditions necessary in metals for the presence or absence
of localized moments on solute ions containing inner shell elec-
trons are analyzed. A self-consistent Hartree-Fock treatment
shows that there is a sharp transition between the magnetic state
and the nonmagnetic state, depending on the density of states
of free electrons, the s-d admixture matrix elements, and the
Coulomb correlation integral in the d shell; that in the magnetic
state the 4 polarization can be reduced rather severely to non-
integral values, without appreciable free electron polarization
because of a compensation effect; and that in the nonmagnetic
state the virtual localized d level tends to lic near the Fermi sur-

PHYSICAL REVIEW VOLUME

124,

face. It is emphasized that the condition for the magnetic state
depends on the Coulomb (i.e., exchange self-energy) integral, and
that the usual type of exchange alone is not large enough in d-shell
ions to allow magnetic moments to be present. We show that the
susceptibility and specific heat due to the inner shell electrons
show strongly contrasting behavior even in the nonmagnetic
state. A calculation including degenerate d orbitals and d-d ex-
change shows that the orbital angular momentum can be quenched,
even when localized spin moments exist, and even on an isolated
magnetic atom, by kinetic energy effects.

NUMBER 4 NOVEMBER 15,

Localized Moments in Metals

P. A. WoLFF
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received July 14, 1961)

A simple model is used to study the occurrence of localized magnetic moments in dilute alloys. The phe-
nomenon is treated as a scattering problem in which conduction electrons scatter from impurity potentials.
Under appropriate circumstances the scattering amplitude may show a resonance—corresponding to a
virtual level of the impurity. It is shown that if such a level is sufficiently sharp and lies close enough to
the Fermi level, the impurity atom will develop an exchange potential that polarizes neighboring electrons.
The potentials for spin-up and spin-down electrons are determined by a pair of coupled equations, whose
solutions are discussed in a number of interesting cases.

1961



Friedel’'s virtual bound-state concept
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Cf. Jacques Friedel Can.J.Phys 34, p. 1190 (1956)
Nuov Cim Supp 7, p.287 (1958)
Varenna school XXXVII, 1966




« 2. Nanostructures: Many-Body effects on the

Coulomb blockade

X Sepember 195

Schematic of a Quantum Dot:
Single-electron transistor

Autop gates

TBO-dimensiona
il — COPRTULIAT
Dounkery By
spacer —# | Semi-insulating GaAs

bo:tomlback—.- Heayily doped metal-lke ntype GaAs substrale
gate

® Negative bias on gold electrodes confines electrons to
narrow channel

e Electrons traveling between source and drain in boundary
layer must tunnel through barrier created by gold “teeth”

® Creates field-effect transistor (FET)

Figure adapted from Meiray, Kastner, and Wind, Phys. Rey. Lett. (1990)

Coulomb repulsion on the
dot increases as the size
(capacitance) decreases




Extremely simplified model: a slight
modification of the Anderson
single-impurity model (w/ 2 baths)
H = Hyotldo, di]1+ > > [Vp dbaps + h.c 4+ Ep a}yapo
p=L,R O
Hybridization to the leads J Leads J

Hyot = €4 ) ngy + Unging

Coulomb blockade on the dot J

Valid for widely separated energy levels on the dot, considering a
single level (NOT correct for a metallic island, OK for 2DEG dots).




Integrate out the bath: Effective action

S =5, + Shyb

at_/ dTZOﬁ <—+5d>d (T )+U/05

Shyb—/ dT/ dTZd+

Qo_l(iwn) = Wy — €4 — A(iwy,)

Effective "bare propagator’.




The non-interacting case (U=0)

- A different point of view, offered by the Anderson model
(not available for Kondo model)

- In contrast to the V-expansion, small U and large U are smoothly
connected.

“Integrating out” c-electrons,
or simple diagrammatics,
or egs of motion




Case of a broad band w/ structureless d.o.s:
(Note: the integrable case, by Bethe ansatz, for arbitrary U)

(D-> infinity)

“Virtual bound-state’ resonance
Width given by Fermi’'s Golden rule

No Coulomb blockade. of course
Goes smoothly from n=0 to n=2




The atomic limit (V=0) is
SINGULAR

(when the bath has states at low-energy, as in a metal)

The ground-state is actually modified as soon as V#0
and becomes a singlet state (S=0) in which the local

moment has been swallowed’ (screened out) by the

conduction electron bath

- Kondo effect




Exact solution for a single site in the bath:

Conserved quantum N = 0: one state [0) (S =57 =0)
numbers: o N
N, S, S? N =1: 4 states, S =1/2,57 = £1/2
1+4+6+4+1=16 states N =2: §S=1 a triplet of states

2: S =0 three singlet states

3: 4 states

4: one states: | T/, T]




Focus on N=2 (ground-state) sector in LM regime:

- The N =2, S = 1 triplet sector has eigenstates: | 1,1), | |, ]) and —=[ 1.1
)+ | |, 1)]. These states are insensitive to the hybridization V' because the
Pauli principle does not allow for hopping an electron through. Hence their
energy 1Is 4

L -

The N =2. 8
Basis .‘:ﬂ:.*t |

() sec fn Or 1S 1more lllfPIP*-wfllD'

1,0), HI 1) —II Hu,
' 2e a+U

The matrix reads:

The ground-state has energy E_. For V' <[

Energy in SINGLET SECTOR is lowered by virtual hops

Double occupancy in intermediate state = energy denominator ~ U




Ground-state wave-function:

with 77 ~ }— <

Key points:

e Because of virtual hopping and the Pauli principle, a spin-singlet ground-
state has been stabilized, in which the impurity spin is screened out by
a conduction electron.

e Virtual hopping has induced a (small) admixture of states with ng =0
and ng = 2 in the wave-function, hence allowing for charge fluctuations
on the atom.

- The atomic limit V=0 is SINGULAR in the LM regime
- Anon-zero V lifts the ground-state degeneracy
- The ground-state becomes a singlet: the impurity moment is
““screened” by binding w/ a conduction electron




E.Lange

Mod Phys Lett B 12, 915 (1998)
arXiv:9810208

See also Appendix in
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The Kondo effect from
the small V
(I'<<U) perspective




Effective Hamiltonian at small V: the Kondo model

1-site: low-energy Hilbert space ={ground-state + triplet S=1}

_ 8V

Hyi = ngCIO_CkO' + JKgd : 56(0) , JK 7

ko

Sd, Sc: spin operators
Can be generalized to a full conduction electron band:

(Schrieffer-Wolff transformation —eliminating states w/ nd=0,2) -1966-




~'No Hamiltonian so incredibly
simple has ever previously done
such violence to the literature and

to national science budgets”

Attributed to Harry Suhl by P.W. Anderson
In his 1978 Nobel lecture
[Rev Mod Phys 50 (1978) 191 p. 195]

[Although the Ising model is surely a serious competitor...]




The Kondo effect
as an history of spin-flips

(on blackboard, time permitting)

FLUCTUATION THEORY OF DILUTE MAGNETIC ALLOYS

D. R. Hamann

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974
(Received 6 May 1969)

A simple explanation of the Kondo effect is shown to follow from a functional integral
form of Anderson’s dilute-alloy model.

D.R. Hamann Phys Rev 23 (1969) 95
PW Anderson and G Yuval Phys Rev Lett 23 (1969) 89

Yuval and Anderson Phys Rev B 1 (1970) 1522
Anderson, Yuval, Hamann Phys Rev B (1970) 4464




From small U/l to large U/T’
- a smooth evolution -

* In contrast to the expansion in the
hybridization (I'), the expansion in U is
perfectly fine and smooth.

» Local Fermi liquid theory naturally
emerges

 Pioneers: Yamada and Yosida




 How does one interpolate from U/['=0 limit
(1 broadened atomic level centered at €,)

to atomic limit ['/U=0 ?

(2 sharp peaks corresponding to atomic transitions,
Doubly degenerate local-moment ground-state)




General many-body theory and (local)
Fermi-liquid considerations

Focus on dynamics of impurity orbital: integrate out conduction electrons
—> Effective action for impurity orbital:

o (1) + U / drnin)
Jo

also reads:

5 = Sat_l_Shyb
at_/ dTZd+ (+6d)d G )+U/05d7n¢(’f)m(7)

Shyb—/ dT/ d72d+ A(T — 7)do (7




Feynman rules associated with this action (involving only time):
- Avertex U (local in time)
- A bare’ propagator (retarded):

(Local) Fermi-liquid form of self-energy, at T=0:

Y (w) = 2(0) + (1 . ,—) Wt

First non-trivial diagram O(U?):




d-level spectral function, wide bandwidth limit, Fermi-liquid considerations:

Hence, at low-frequency:

Ajffw=0) = — ——5—= Y (w) = —Aw? 4 -

., - '.-" 1 "-u.‘
E ':'I o II:' - E l “ | —|— ( J_ _— — )t

Resonance with renormalized level position and width, overall spectral weight Z:

Aglw = 0) = Width, Weight ~ Z

Height unchanged !

E




Numerical Renormalization Group (NRG) calculation
T.Costi and A.Hewson, J. Phys Cond Mat 6 (1994) 2519

......... - TT, =827
----- TT;=86.5
——= T, =1.92
—-=- T/T,=0.85

0.0 -
-10.0 -5.0 0.0 5.0 10.0
~-U/2 WA ~ +U/2

Low energy associated with
the resonance and quasiparticle excitations:




The T-matrix, at T=0 and w=0 (wide bandwidth):

phase shift
at T=w=0

A4(0) pinned at its U=0 value in
symmetric case !

Im T takes maximal value
—> Unitary limit scattering

d.o.s vanishes in symmetric
case = Kondo screening hole’




More complex atoms: Multiplets

... and more complex
Kondo-like

screening processes




Interactions: Kanamori hamiltonian:
[J.Kanamori, Prog. Theor. Phys. 30 (1963) 275]

HI\ — Uznm‘[‘nmi + U’ Z annm’i + (U J) Z 'ﬁ"nza'ﬁ"nz’a -+

m+#m’ m<m’,o

+ + gt
—J Z me mi d, f it + J Z medmi | At

m+#m/’ m+#m’

EXACT for a t,, shell

Useful reference: Sugano, Tanabe & Kamimura,
Multiplets of transition-metal ions in crystals
Academic Press, 1970




Assuming furthermore ~ spherical symmetry of the screened
interaction V., one can show that: U = U-2J

[Deviations in Sr2RuO4 are on the 10% scale — GW/cRPA]
In this case, the hamiltonian can be written:

Total charge, spin and orbital iso-spin operators

U(l)c X SU(Q)S 029 SO(3>O symmetry




Spectrum of atomic t,; hamiltonian with U'=U-2J
(no spin-orbit)
Degeneracy = (25 + 1)(2L + 1) Energy

0
—5J/2.J10UY — 5J/2]

16U —5J]
[6U — 3J]
[6U]

3/2 : 3U — 15J/2
1/2 3U —9J/2
1/2 3U —5J/2

Table 1: Eigenstates and eigenvalues of the t3, Hamiltonian Uf\:’(N —1)/2—-2J §2 — JT2 /2 in
the atomic limit (U4 = U — 3J). The boxed numbers identifies the ground-state multiplet and its

degeneracy, for J > 0.

- Hund’s rule ground-state in each particle-number sector
- Symmetry broken by J from SU(6) to U(1)c X SU(2)s X SO(3)o

- = Degeneracies lifted by J: from 15-fold to 9-fold




Hund’s metals (e.g. Sr,RuQ,) : distinct
crossover scales for orbital and spin
degrees of freedom

~ 1000K

Metal with fluctuating spins
No orbital fluctuations

Now fully understood from a renormalization-group
perspective, cf. work by von Delft, Kotliar, Aron et al.
and Mravlje et al.




Following the flow to low energy...




High energy -

. ‘High temperature
Short time scales
Short distances
Large lattice spag
LOCAL
INCOHERENT

Atomlc conflguratlons

Intra shell |nteract|ons+crystal fields
, | 4

Collective grdund-state | (el |attice spacing
Low-energy excitations . | NON LOCAL f
Effective low-energy theory /COHERE!\IT :

MR-




This is very much how we
think about materials
In DMFT:

Start from local atomic
configurations

and follow the flow down
Into collective behaviour

Initially, spatial correlations
are short-range

At lower energy, spatial
correlations build up

| - Cluster extensions
of DMFT




Impurity Solvers: Brief Overview

» Solvers directly using an action form of the
impurity problem — typically Quantum
Monte Carlo

» Solvers requiring a Hamiltonian form
- e.g. ED, NRG
» Approximation Schemes — e.g. IPT, NCA,...




QMC algorithmic breakthroughs

entering a new age for DMFT approaches
(and extensions) ...

Early days: Hirsch-Fye (1986)

Continuous-time quantum Monte Carlo
(CT-QMC) 2005 -

*Rubtsov 2005 Interaction expansion(CT-INT)
*P. Werner, M. Troyer, A.Millis et al 2006
Hybridization expansion (CT-HYB)
*E.Gull O.Parcollet 2008 Auxiliary field (CT-AUX)

Review: Gull et al. Rev Mod Phys 83, 349 (2011)




REVIEWS OF MODERN PHYSICS, VOLUME 83, APRIL-JUNE 2011
Continuous-time Monte Carlo methods for quantum impurity models

Emanuel Gull and Andrew J. Millis
Department of Physics, Columbia University, New York, New York 10027, USA

Alexander |. Lichtenstein
Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany

Alexey N. Rubtsov
Department of Physics, Moscow State University, 119992 Moscow, Russia

Matthias Troyer and Philipp Werner
Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

(Received 15 April 2010; published 5 May 2011)
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cf. Prokof’'ev
X Hy(T3—1) * + - Hp(7)] Svistunov, 1998




Need for efficient and sutainable open-source
software libraries
TR|QS (@CCQ) (O.Parcollet, M.Ferrero, N.Wentzell, H.Strand et al.)

-
t l" ' q S Install Reference Tutorials

a Toolbox for Research on Interacting Quantum Systems Applcations e ot https : //g Ith u b - CO m/T R I Q S/trl q S

Welcome

TRIQS (Toolbox for Research on Interacting Quantum Systems) is a TRIQS 2.0
scientific project providing a set of C++ and Python libraries to devel-

4 ¢ This is the homepage TRIQS Version 2.0 For the
op new tools for the study of interacting quantum systems.

changes in 2.0, Cf
The goal of this toolkit is to provide high level, efficient and simple to
use libraries in C++ and Python, and to promote the use of modern programming techniques.

TRIQS is free software distributed under the GPL license.
TRIQS applications

Based on the TRIQS toolkit, several full-fledged applications are also available. They allow for example to solve a generic
quantum impurity model or to run a complete LDA+DMFT calculation.

Developed in a collaboration between IPhT Saclay and Ecole Polytechnique since 2005, the TRIQS library and applications
have allowed us to address questions as diverse as:

* Momentum-selective aspects on cuprate superconductors (with various cluster DMFT methods)
® Degree of correlation in iron-based superconductors (within an LDA+DMFT approach)
® Fermionic Mott transition and exploration of Sarma phase in cold-atoms

Python & C++

The libraries exist at two complementary levels: on the one hand, C++ libraries allow to quickly develop high-performance QL”Ck search
low-level codes; on the other hand python libraries implement the most common many-body objects, like Green's func-
tions, that can be manipulated easily in python scripts.

This duality is a real advantage in the development of new many-body tools. Critical parts where performance is essential
can be written in C++ (e.g. a quantum impurity solver) while the data analysis, preparation of the inputs or interface with

other programs can be done at the very user-friendly python level. ALPSCore

alpscore.org ALPSCore

Applications and Libraries for Physics Simulations Core libraries

The ALPS Core libraries aim to provide a set of well tested, robust, and standardized components for numerical simulations of condensed
E G u I I et al matter systems, in particular systems with strongly correlated electrons. They consist of a set of components that are used in state of the art
high performance codes. The ALPSCore libraries are a spinoff of the ALPS libraries available from alps.com

& Install +! Cite & Use # Contribute




Methods using a Hamiltonian
representation of the bath

Exact Diagonalisation
Wilson Numerical RG (NRG)
DMRG/Tensor Network

NB: Many possible representations of
the bath - "Star’, 1D chain/Continous
Fraction [Possibly log-scale as in NRG],

etc...




ADDITIONAL
SLIDES

See also lectures of previous years



Magnetic impurities in metals:
resistivity minimum

De Haas, de Boer

and van den Berg,

Physica 1 (1934) 1115

“"The resistivity of the gold wires
measured (not very pure) has a
minimum.”




The Kondo effect :
contribution of magnetic impurities to resistivity
Increases as T is lowered !

De Haas, de Boer

and van den Berg,

Physica 1 (1934) 1115

“"The resistivity of the gold wires ' AlMn, 6 =530 K
Measured (not very pure) has a

o . PtCr, 6 =200K
Minimum.”

AuV, 6 =280K

Impurity contribution to resistivity of 2Znfe, 6 =80 K
different alloys, plotted against reduced
temperature scale.

YCe, 8 = 40K

[After Rizzuto et al. J. Phys F 3, p.825
(1973) ]

Note wide range of 8, defined from low-T:

p/po = 1~ (T/0)° +

,Cufe, & = 2| K

ZnMn, B =9 K"




An experiment contemporary to Kondo’s paper and
demonstrating that the effect comes from Fe-moments :

PHYSICAL REVIEW VOLUME 135, NUMBER 4A 17 AUGUST 1964

Resistivity of Mo-Nb and Mo-Re Alloys Containing 19, Fe

M. P. SaracHik, E. CorENzWIT, AND L. D. LoNGINOTTI
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 19 March 1964)

The resistivity of a series of Mo-Nb and Mo-Re alloys, with and without 195 Fe, has been measured at
room temperature, and between 1.5 and 77 °K. Large effects are observed near the alloy composition where
the iron acquires a localized magnetic moment. These effects appear both as an excess temperature-inde-
pendent scattering and in the form of large anomalies at low temperatures. Interpreted in the light of current
theories of localized moments, the resistivity results confirm the existence of virtual bound states near the
Fermi level. In addition, the anomalous behavior of the resistivity at low temperatures has been directly re-
lated to the existence of a localized magnetic moment.




w

Nole added in proof. A recent theory by J. Kondo
[ Progr. Theoret. Phys. (Kyoto) (to be published)] pre-
dicts that a minimum exists whenever there is a negative
s—d exchange integral. This theory gives the observed
linear dependence on concentration, and apparently
gives the correct temperature dependence. I would like
to thank Dr. Kondo for sending a preprint of his work
prior to publication.
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MAGNETIC MOMENT PER IRON
ATOM IN BOHR MAGNETONS, u/ig
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Fre. 1. Magnetic moment of an iron atom dissolved in various
Mo-Nb and Mo-Re alloys as a function of alloy composition,
according to Clogston ef al.

Kondo’s
Resistance minimum:

0.94 | I
0 B 12 6 20 24 28 32 38 40 44 a8 52 58 60
TEMPERATURE, *K

Fio. 3. Resistivity vs temperature for various Mo-Nb alloys containing 195 Fe. Resistivities are normalized at 4.2°K.



Expansion in the Kondo coupling (~I'/U):
singularities

Not surprisingly in view of the above, the perturbative
3% expansion in J is plagued w/ singularities
Jun Kondo (when the conduction electron bath is metallic - gapless)

The original calculation by Kondo deals w/ the resistivity,
in which the log’s appear at 3 order:

9 . ~ T
H'il‘ﬂp X ':._ '-’-'{Hfj_,]“ 1 — _‘}I KpP 111 E + ..

- Hints at an explanation of the ‘resistance minimum
(R increases as T is lowered) "
- Perturbation theory FAILS BELOW a characteristic scale : ke Sl K P)

“"Kondo temperature”



NB: In those RG slides J is dimensionless J-2> J pg
Scaling and the Renormalization Group

RG approach: integrate out (recursively) only over high-energy conduction
electron states, and reformulate the result as a new Hamiltonian

with a scale-dependent coupling.

D,

coJ = J 0 — D

Define scale parameter:

Flow to
Lowest order:




RG flow: AF model flows to strong coupling

Coupling becomes large at

D(lg) ~ Tx ~ De Y/ Jrro

J1

AFM Kondo

J
~ 1+ JW[D()/D]
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Low-T physics: fixed point+leading
Irrelevant operator = Fermi liquid

This is best described using a one-dimensional description of fermions,
associated with s-wave (I=0) channel. Cf. Affleck, arXiv:0809.3474

Kondo Hamiltonian: R- and L-movers on r>0 half-axis

KN ) (T ::-
F_*'H)"I‘“F\HL"“'_‘LH“"--
or )

Vr(r) =vL(—=r), (r>20)

P

(T —

— i, + vp At er—f (0)-S.




Nature of the strong-coupling fixed point
and its vicinity:
singlet formation and local Fermi liquid

Anderson, Wilson, Nozieres, ...

- Singlet ground-state formed between impurity spins and conduction electrons
(cf. one conduction orbital calculation)

- Seen from the conduction electron viewpoint:

N sites - N-1 sites (impurity site inaccessible) >

/@ XXX




Hamiltonian close to fixed point:
Impurity degree of freedom is GONE !
Fermions have undergone a n/2 phase-shift, i.e a change of b.c
Operators at fixed point:

- Potential scattering,
forbidden by p-h stry in stric case

2) Two leading irrelevant ones of dimension 2, i.e. <O(0)O(t)> ~ 1/t4

Only second one has a sizeable coeff (~1/Tk, not 1/D)

Effective hamiltonian at s.c. fixed point:

Note: coefficient in front of 2" term specifies a convention for defining Tk




Physical quantities at low-T: | “aracteristio behavior

of Fermi-liquid
2nd term (LIO) is small and can be treated in perturbation theory,
as a weak scattering term:

Wilson ratio:

_ Ximp/XcO L 47T2 Ximp
W ="~ 4.  — "&a
/Yimp/’YCO 3 ’Yimp

=

In which p, is the maximal possible resistivity induced by an impurity
(unitary limit):




Friedel's sum-rule
(valid at T=w=0, wide bandwidth)

Exact relation between
the phase shift and the occupancy of the atomic orbital !

TN
2

5 —

Why is this remarkable ?
- Phase-shift is a low-energy property (Ad(0))
- Occupancy integrates over all energies (integral of Ad overw<0)

Non-perturbative proof : see later — or see bibliography
(in the context of the AIM: Langreth, Phys Rev 150 (1966) 516




Friedel's sum-rule: non-perturbative proof (sloppy about contours...)

Friedel sum-rule

Wide banduidth case. Non-perturbative proot, walid for T = 0.
Note: sloppy about contours and preseription for G.F.
We consider the Green's funetion G5 w) = w — gg + il — E(w)

a . )0 IR -
——InGylw) = [1 — ;—] Crglw) (1.59)

and nse:

1 Co g . .
—— | dwGglw) = 5 (1.60]
T S0 =i

Hence, integrating the above relation:

T ay

= InGilw =0 —InGilw — —ox) + [ dw ™ Crglw) (1.61)

Fr s i

The last term will be shown to vanish, so that we get (remember Im7, < 0,
definition of phase shift, and using a branch-ent of the In on the negative
real axis):

g ; v )
=(d—m)—(—7) (1.62)

s0 that the occupancy of the d-orbital and the phase-shift are related by
2 . :
ng = —ad | 1.63)
T

A manifestation of Friedel’s sum-rule in this context. This derivation for the
ATIM is due to Langreth.




To prove that the last term vanishes, we integrate it by part:

] Mg . .
/ |'_i-'_1_' _1' E |:_ el :| |:_ J. . I:"-j: :l

|:_:_‘.'_.__.'
and observe that the self-energy is obtained from the Luttinger-Ward func-

tional as: -
O |y
iw) = - C] (1.65)

S w)

=0 I:.11:_-'|_.I:. ’r_.11|_': |} HOWE I'r:_::_-'|_.-:jl:-'.j

3G 50|

/ A — — = A (1.66)

.Ej'.'_,_ ! l'j 'f:! | [ :|

This is the change of the LW functional when all frequencies are shifted.




Conductance through dot [y.Mmerr,
N.Wingreen, 1992] .

Leftjunction Kubo formula:

o J_ ,
(TL ~ }'LI }'Ln’ ‘u,_n
h W/

NN
(I'p +Tg)* J_




High-temperature regime T>[ : Coulomb blockade
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Suppression of the Coulomb blockade
by the Kondo effect at low-T:
Wave-function interpretation (qualitative)

Virtual transitions create admixture of components with
0 or 2 electrons on the dot in the wave-function.
- Restoration of charge fluctuations

- Conductance (transmission) takes maximal possible value 2e2/h

\ mmnmgﬁl




Kondo effectina

single-electron transistor

D. Goldhaber-Gordon*f, Hadas Shtrikmanf{, D. Mahalu?,
David Abusch-Magder*, U. Meiravi & M. A. Kastner*

NATURE|VOL 391 |8 JANUARY 1998

See also: D. G-G et al. PRL 81 (1998) 5225

SH-HIES LKMo

Orders of magnitude:
U~1.9meV

[ ~0.3 meV

Range of T:

40mK 2 2,5 K




conductance (e2/h)

gate voltage

(@) The conductance (y-axis) as a function of the gate voltage, which changes
the number of electrons, N, confined in a quantum dot. When an even number
of electrons is trapped, the conductance decreases as the temperature is
lowered from 1 K (orange) to 25 mK (light blue). This behaviour illustrates that
there is no Kondo effect when N is even. The opposite temperature
dependence is observed for an odd number of electrons, i.e. when there is a

Kondo effect.

W G van der Wiel et al. 2000 The Kondo effect in the unitary limit Science 289
2105-2108




2 Spin flips

initial state virtual state final state density of states

(@) The Anderson model of a magnetic impurity assumes that it has just one electron level with energy £, below the Fermi energy of the metal (red). This level is
occupied by one spin-up electron (blue). Adding another electron is prohibited by the Coulomb energy, U, while it would cost at least |¢,| to remove the electron.
Being a quantum particle, the spin-up electron may tunnel out of the impurity site to briefly occupy a classically forbidden “virtual state” outside the impurity, and
then be replaced by an electron from the metal. This can effectively “flip” the spin of the impurity. (b) Many such events combine to produce the Kondo effect,
which leads to the appearance of an extra resonance at the Fermi energy. Since transport properties, such as conductance, are determined by electrons with
energies close to the Fermi level, the extra resonance can dramatically change the conductance.




Conductance (cont'd)...

Specialize to L-R symmetric device, for simplicity:

Notes:
1- Compare to formula for resistivity ! G ~ R quite remarkable !

2- 2 ~ A Landauer formula generalized to tunneling into an interacting system
[[A4(w,T) plays the role of transparency of barrier

3- Generalization to out of equilibrium, e.g. I(V) for finite voltage

Is an outstanding problem. General formula based on Keldysh has been
Derived (Meir and Wingreen, PRL 68 (1992) 2512) but concrete calculations
Difficult ! Numerous recxent works (Saleur et al., Andrei et al.) — an active field !




Scaling of G(T)/G(0) vs. T/Ty

ép=-0.74, T'=280peV
€p = =0.91
€p =-1.08

G /Gy

=
%

€n=-0.98, I'=215peV

= Ep= 0.00

T

0.2

1

10

FIG. 4. The normalized conductance G = G /Gy is a univer-
sal function of 7 = T /Tk. independent of both &, and I'. in
the Kondo regime. but depends on €&, in the mixed-valence
regime. Scaled conductance data for &; == —1 are compared
with NRG calculations [13] for Kondo (solid line) and mixed-
valence (dashed line) regimes. The stronger temperature de-
pendence in the mixed-valence regime is qualitatively similar
to the behavior for €, = —0.48 in Fig. 3(b).
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FIG. 5. (a) Fit values of T for data such as those in Fig. 3
for a range of values of €y [22]. The dependence of Tk on
ey 1s well described by Eq. (1) (solid line). Inset: Expanded
view of the left side of the figure, showing the quality of the fit.
(b) Values of G, extracted from data such as those in Fig. 3 at
a range of €;. Solid line: Gylep) predicted by Wingreen and
Meir [4]. Guae = 0.49¢2 /h for the left peak. and 0.37¢2/h for
the right peak.




week ending

PRL 113, 126601 (2014) PHYSICAL REVIEW LETTERS 19 SEPTEMBER 2014

Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer

S. Takada," C. Biuerle,”* M. Yamamoto,'" K. Watanabe,' S. Hermelin,”” T. Meunier,”” A. Alex.’

A. Weichselbaum,” J. von Delft,’ A. Ludwig,® A.D. Wieck,® and S. Tarucha"""'
]Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
*Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France
’CNRS, Institut NEEL, F-38042 Grenoble, France

See also several early papers by Heiblum, Shtrikman et al.
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The conduction electrons viewpoint:

Total scattering cross-section ~|/Im T ~ V2 Ay(w) - “optical’ theorem

- Need to understand spectral function of impurity orbital

Conduction electron phase-shift defined by:

Tl{ I/ |' U+ 1 D‘l— '| — |TL K | e 10yt ()

Note: at particle-hole symmetry: T (and Gy) is purely imaginary - 0 =Tm/2




LM case (0=11/2): Conduction electron density of states vanishes at the
impurity site
From the above expression:

ZImGkk’(iO+) — — TP [1 — WFAd(O)]
kk’
| = 7TV2,0() Hence: Ad(O)

1 Special case of Friedel’s
— — 1~ | sumrule
wl

Thus, the spectral function of the impurity must grow a resonance
around zero-energy (Fermi level of the electron gas)
= Abrikosov-Suhl resonance

Formation of the resonance as a tunneling process between
spin-up and spin-down states = on board




Magnetic impurities in metallic host: contribution to resistivity :

Kubo formula for c-electrons

ol

— Cilnl)/T ].—‘x‘_'ld(vu./‘. T) ‘OptICal, theorem

Unitary limit resistivity :
R'H

o ' -
_ e T
B{iml} 1-.._ T _..-' /— o0 ( ")u"‘) FF:I d 1'-. W, I} - P 7 -?'EEW.’C} c

T->0 limit: maximal (unitary) scatteringi_g_f _ 5(w) ; WFAd(O) =
W

Contrast to TRANSMISSION: maximal conductance (1/A 2> Al):




Impurity contribution to resistivity :

2m

Ru = Cimp

9
Ne“Tp,.
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_ P .
0) = R, sin“ 0 = R,sin”




