Phonon thermal Hall conductivity from scattering with collective fluctuations

Lucile Savary

Paris, 2 juin 2022

Collaborators

Léo Mangeolle ENS de Lyon

Leon Balents KITP

arXiv: 2202.10366

++

This presentation is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 853116, acronym TRANSPORT).

Thermal conductivity

• What is thermal conductivity?

$$\boldsymbol{\kappa} = \begin{pmatrix} \boldsymbol{\kappa}^{xx} & \boldsymbol{\kappa}^{xy} & \boldsymbol{\kappa}^{xz} \\ \boldsymbol{\kappa}^{yx} & \boldsymbol{\kappa}^{yy} & \boldsymbol{\kappa}^{yz} \\ \boldsymbol{\kappa}^{zx} & \boldsymbol{\kappa}^{zy} & \boldsymbol{\kappa}^{zz} \end{pmatrix} \qquad \boldsymbol{\kappa}_{L}$$

Iongitudinal conductivity
dissipative

• Thermal *Hall* conductivity: antisymmetric $\kappa_H = (\kappa - \kappa^T)/2$

zero in the presence of time-reversal (Onsager)

• Thermal Hall resistivity: $\boldsymbol{\varrho}_H = \boldsymbol{\kappa}_H^{-1}$

properties of the system

much less dependent on impurity effects than $\kappa_{\!H}$

Phonons thermal Hall conductivity?

Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α -RuCl₃

É. Lefrançois,¹ G. Grissonnanche,¹ J. Baglo,¹ P. Lampen-Kelley,^{2,3} J. Yan,² C. Balz,^{4,*} D. Mandrus,^{2,3} S. E. Nagler,⁴ S. Kim,⁵ Young-June Kim,⁵ N. Doiron-Leyraud,¹ and L. Taillefer^{1,6}

Recent data on cuprates by Taillefer's group

nearly overlapping thermal Hall conductivity curves despite very different phase electronically (insulator v/s bad metal)!

Out-of-plane propagation (Taillefer's group)

Spoiler alert our results

Scattering-induced phonon Hall effect probes non-trivial / beyond Gaussian correlations (OTOCs in fact)

Result is obtained for *any* physical degree of freedom

in other words, give us your physical degree of freedom, we will tell you κ

Provide analytical and numerical results for ordered antiferromagnets, fermions (e.g. spinon FS) in terms of microscopic/phenomenological parameters

Scattering

- know it is often *important* for the longitudinal conductivity
- is it interesting?

- as a theoretical question, ask when it provides non-trivial, non-detail-specific information about the system

Hall effect

- intrinsic many-body Hall effect
- Hall effect of single particles
 - Berry phase

- (left side of Boltzmann's equation)
- Lorentz force
- scattering with impurities
 - depends on type of impurity
 - skew scattering
 - side jump

Hall effect

intrinsic many-body Hall effect

- Hall effect of single particles
 - Berry phase
 - Lorentz force
- scattering with impurities
 - depends on type of impurity
 - skew scattering
 - side jump

study the thermal Hall effect in the context of phonons (experience no Lorentz force) interacting with other degrees of freedom

Phonons

We will do this very generally because we can

- fairly challenging to identify all contributions
- not so much understanding so far
- so better to not be too specific

phonon creation a^{\dagger} and annihilation a operators

microscopic view of coupling to elasticity:

Phonon coupling

expand interaction Hamiltonian in number of phonon operators:

note: the *Q*'s include coupling strengths $\lambda - Q \sim \lambda O$

Phonon coupling

expand interaction Hamiltonian in number of phonon operators:

$$H_{\text{int}} \sim a^{\dagger} Q_{(1)} + a^{\dagger} a Q_{(2),1} + a^{\dagger} a^{\dagger} Q_{(2),2} + \text{h.c.} + \cdots$$

typically the Q represent electronic degrees of freedom (can also be phonons etc. different from the a's)

e.g. spins:
$$Q_{(1)} \sim S^{\mu}S^{\nu}$$

fermions: $Q \sim c^{\dagger}c$
gauge field: $Q \sim E$ etc.

Setup

Boltzmann's equation for phonon density ${\cal N}$

- phonons are always there
- good quasiparticles (typically weak ph-ph interactions, weak anharmonicity)
- always 3d

Construct collision terms

 $D_t N = \mathscr{C}[\{N\}]$

convective derivative collision terms

obtain from Born's approximation (next slide)

- Coupling Hamiltonian

- Full transition rate

- Phonon transition rate

$$\begin{split} \Gamma_{\mathbf{i} \to \mathbf{f}} &= \frac{2\pi}{\hbar} |T_{\mathbf{i} \to \mathbf{f}}|^2 \delta(E_{\mathbf{i}} - E_{\mathbf{f}}) \\ |\mathbf{g}\rangle &= |g_p\rangle \otimes |g_s\rangle \\ phonons \quad \mathbf{Q} \\ \\ \tilde{\Gamma}_{i_p \to f_p} &= \sum \Gamma_{\mathbf{i} \to \mathbf{f}} p_{i_s} \\ \end{split} \qquad p_{i_s} &= \frac{1}{Z_s} e^{-\beta E_{i_s}} \\ Q &= \frac{1}{$$

 $H' = \sum \left(a_{n\boldsymbol{k}}^{\dagger} Q_{n\boldsymbol{k}}^{\dagger} + a_{n\boldsymbol{k}}^{\dagger} Q_{n\boldsymbol{k}} \right)$

Q subsystem in equilibrium

$$\mathcal{C}_{n\mathbf{k}} = \sum_{i_p, i_f} \tilde{\Gamma}_{i_p \to f_p} (N_{n\mathbf{k}}(f_p) - N_{n\mathbf{k}}(i_p)) p_{i_p}$$

collision terms

In this way we can construct $\mathscr{C}_{n\mathbf{k}}$ for any "Q" subsystem

- Master equation

Transition matrix

In *full many-body space* of phonons + Q (electrons, spins etc):

$$\Gamma_{\mathbf{i}\to\mathbf{f}} = \frac{2\pi}{\hbar} |T_{\mathbf{i}\to\mathbf{f}}|^2 \delta(E_{\mathbf{i}} - E_{\mathbf{f}})$$

Born's approximation:

■ No Hall effect at leading order.

Scattering rate:
$$D \sim \mathcal{C}_{\log}[N_{nk}]$$

$$\int D_{nk} = -\frac{1}{h^{2}} \int dt \, e^{-i\omega_{nk}t} \left\langle \left[Q_{nk}(t), Q_{nk}^{\dagger}(0)\right] \right\rangle_{\beta} + \breve{D}_{nk} \right\rangle \qquad O(Q^{2}) \qquad$$

Thermal Hall effect

Anti-symmetric part:

skew-scattering rate

$$\kappa_{H}^{\mu\nu} = \frac{\hbar^{2}}{k_{B}T^{2}} \frac{1}{V} \sum_{n\mathbf{k}n'\mathbf{k}'} J_{n\mathbf{k}}^{\mu} \frac{e^{\beta\hbar\omega_{n\mathbf{k}}/2}}{2\mathbf{D}_{n\mathbf{k}}} \left(\frac{1}{N_{\mathrm{uc}}} \sum_{q=\pm} \frac{\left(e^{\beta\hbar\omega_{n\mathbf{k}}} - e^{q\beta\hbar\omega_{n'\mathbf{k}'}}\right) \mathfrak{W}_{n\mathbf{k},n'\mathbf{k}'}^{\ominus,+,q}}{\sinh(\beta\hbar\omega_{n\mathbf{k}}/2)\sinh(\beta\hbar\omega_{n'\mathbf{k}'}/2)} \right) \frac{e^{\beta\hbar\omega_{n'\mathbf{k}'}/2}}{2\mathbf{D}_{n'\mathbf{k}'}} J_{n'\mathbf{k}'}^{\nu}$$

diagonal rate

 $J_{n\mathbf{k}}^{\mu} = N_{n\mathbf{k}}^{\mathrm{eq}} \,\omega_{n\mathbf{k}} v_{n\mathbf{k}}^{\mu}$

Basic idea: $A \nabla T = -\frac{1}{\tau} \delta n - \frac{1}{\tau_{skew}} \delta n$ Fourier's law $\delta n = -\tau A \nabla T - \frac{\tau}{-\delta n}$

$$au_{\mathrm{skew}} = \tau_{\mathrm{skew}}$$

$$\approx -\tau \ A \ \nabla T - \frac{\tau^2}{\tau_{\rm skew}} \ A \ \nabla T$$

Thermal Hall effect

Conductivity versus resistivity:

 $\varrho = \kappa^-$

matrix inverse

Sensitive to all ordinary scattering mechanisms. Very non-universal.

Only sensitive to skew scattering. A better quantity to study.

 $\varrho_H \sim \mathfrak{W}^{\ominus, \mathrm{eff}}$

Indeed follows from our formulae

Many-body skew scattering

$$\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\ominus,qq'} = \frac{2N_{\mathrm{uc}}}{\hbar^4} \mathfrak{Re} \int_{t,t_1,t_2} e^{i[\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}t + \Delta_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}(t_1+t_2)]} \mathrm{sign}(t_2) \left\langle \left[Q_{n\mathbf{k}}^{-q}(-t-t_2), Q_{n'\mathbf{k}'}^{-q'}(-t+t_2) \right] \left\{ Q_{n'\mathbf{k}'}^{q'}(-t_1), Q_{n\mathbf{k}}^{q}(t_1) \right\} \right\rangle$$

What good is it?

- In principle, this can be applied for any Q, could be e.g. quantum critical field etc.
- Can be used to analyze symmetries, à la Curie and Onsager
- Any bounds on Hall scattering rate?
- That said, it is very hard to calculate such real-time correlation functions...

Any systems where this might be the dominant contribution, i.e. where q_H probes these OTOC directly?

Now calculate these correlation functions for specific systems

Now calculate these correlation functions for specific systems

1st example: magnons

Application to an antiferromagnet

Spin waves

$$H_{\rm NLS} + H_{\rm field} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k},\ell} b_{\mathbf{k},\ell}^{\dagger} b_{\mathbf{k},\ell}$$

 $b_{\mathbf{k},\ell}, b_{\mathbf{k},\ell}^{\dagger}$ diagonalize magnon hamiltonian

Application to an antiferromagnet

Spin waves
$$H_{\rm NLS} + H_{\rm field} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k},\ell} b_{\mathbf{k},\ell}^{\dagger} b_{\mathbf{k},\ell}$$

recall interaction hamiltonian:

$$H' = \sum_{n\mathbf{k}} \left(a_{n\mathbf{k}}^{\dagger} Q_{n\mathbf{k}}^{\dagger} + a_{n\mathbf{k}} Q_{n\mathbf{k}} \right)$$

what is Q in this case?

Collective field

Application to an antiferromagnet

Spin waves
$$H_{\rm NLS} + H_{\rm field} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k},\ell} b_{\mathbf{k},\ell}^{\dagger} b_{\mathbf{k},\ell}$$

recall interaction hamiltonian:

$$H' = \sum_{n\mathbf{k}} \left(a_{n\mathbf{k}}^{\dagger} Q_{n\mathbf{k}}^{\dagger} + a_{n\mathbf{k}} Q_{n\mathbf{k}} \right)$$

what is Q in this case?

Collective field

General analytical result

• Diagonal scattering rate:

$$D_{n\mathbf{k}} = -\frac{1}{\hbar^2} \int dt \, e^{-i\omega_{n\mathbf{k}}t} \left\langle [Q_{n\mathbf{k}}(t), Q_{n\mathbf{k}}^{\dagger}(0)] \right\rangle_{\beta} + \breve{D}_{n\mathbf{k}}$$

• Skew scattering rate:

 $\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\ominus,qq'} = \frac{2N_{\mathrm{uc}}}{\hbar^4} \mathfrak{Re} \int_{t,t_1,t_2} e^{i[\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}t + \Delta_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}(t_1+t_2)]} \mathrm{sign}(t_2) \left\langle \left[Q_{n\mathbf{k}}^{-q}(-t-t_2), Q_{n'\mathbf{k}'}^{-q'}(-t+t_2) \right] \left\{ Q_{n'\mathbf{k}'}^{q'}(-t_1), Q_{n\mathbf{k}}^{q}(t_1) \right\} \right\rangle$

General analytical result

• Diagonal scattering rate:

$$D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{\mathrm{uc}}^{2\mathrm{d}}} \sum_{\mathbf{p}} \sum_{\ell,\ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{n\mathbf{k}})}{\sinh(\frac{\beta}{2}\hbar\Omega_{\ell,\mathbf{p}})\sinh(\frac{\beta}{2}\hbar\Omega_{\ell',\mathbf{p}-\mathbf{k}})} \quad \delta(\omega_{n\mathbf{k}} - \Omega_{\ell,\mathbf{p}} - s\Omega_{\ell',\mathbf{p}-\mathbf{k}}) \left| \mathcal{B}_{\mathbf{k};-\mathbf{p}+\frac{\mathbf{k}}{2}}^{n,\ell,\ell'|+s-} \right|^2$$

• Skew scattering rate:

$$\begin{pmatrix} \mathfrak{W}_{n\mathbf{k},n'\mathbf{k}'}^{\ominus,qq'} = \frac{64\pi^2}{\hbar^4} \frac{1}{N_{\mathrm{uc}}^{2d}} \sum_{\mathbf{p}} \sum_{\{\ell_i,q_i\}} \mathfrak{D}_{q\mathbf{k}q'\mathbf{k}',\mathbf{p}}^{nn'|q_1q_2q_3,\ell_1\ell_2\ell_3} \mathfrak{F}_{q\mathbf{k}q'\mathbf{k}',\mathbf{p}}^{q_1q_2q_4,\ell_1\ell_2\ell_3} \mathfrak{Im} \begin{cases} \mathcal{B}_{\mathbf{k},\mathbf{p}+\frac{1}{2}q\mathbf{k}+q'\mathbf{k}'}^{n\ell_2\ell_3|q_2q_3q} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_3\ell_1|-q_3q_1q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k},\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k},\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+q\mathbf{k}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+q\mathbf{k}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+q\mathbf{k}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|q_4-q_2-q} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|-q_4-q_2-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2|q_4-q_2-q} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_1-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_2|q_4-q_2-q} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_1-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k}+q'\mathbf{k}'}^{n'\ell_4\ell_4|-q_4-q'} \mathcal{B}_{\mathbf{k}',\mathbf{p}+\frac{1}{2}q'\mathbf{k}+q'\mathbf{k$$

$$\begin{split} \mathfrak{D}_{q\mathbf{k}q'\mathbf{k}',\mathbf{p}}^{nn'|q_{1}q_{2}q_{3},\ell_{1}\ell_{2}\ell_{3}} &= \delta \left(\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{qq'} + q_{1}\Omega_{\ell_{1},\mathbf{p}} + q_{2}\Omega_{\ell_{2},\mathbf{p}+q\mathbf{k}+q'\mathbf{k}'} \right) \delta \left(\Delta_{n\mathbf{k}n'\mathbf{k}'}^{qq'} + 2q_{3}\Omega_{\ell_{3},\mathbf{p}+q'\mathbf{k}'} - q_{1}\Omega_{\ell_{1},\mathbf{p}} + q_{2}\Omega_{\ell_{2},\mathbf{p}+q\mathbf{k}+q'\mathbf{k}'} \right), \\ \mathfrak{F}_{q\mathbf{k}q'\mathbf{k}',\mathbf{p}}^{q_{1}q_{2}q_{4},\ell_{1}\ell_{2}\ell_{3}} &= q_{4} \left(2n_{\mathrm{B}}(\Omega_{\ell_{3},\mathbf{p}+q'\mathbf{k}'}) + 1 \right) \left(2n_{\mathrm{B}}(\Omega_{\ell_{1},\mathbf{p}}) + q_{1} + 1 \right) \left(2n_{\mathrm{B}}(\Omega_{\ell_{2},\mathbf{p}+q\mathbf{k}+q'\mathbf{k}'}) + q_{2} + 1 \right). \end{split}$$

Could be applied to any magnet

Continuum magnons

<u>Hamiltonian:</u>

$$\mathcal{H}_{\mathrm{NLS}} = \frac{\rho}{2} \left(|\underline{\nabla} n_y|^2 + |\underline{\nabla} n_z|^2 \right) + \frac{1}{2\chi} (m_y^2 + m_z^2) + \sum_{a,b=y,z} \frac{\Gamma_{ab}}{2} n_a n_b$$

Spin-lattice coupling:

$$\mathcal{H}' = \sum_{\substack{\alpha,\beta\\a,b=x,y,z}} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \left(\Lambda_{ab}^{(n),\alpha\beta} \mathbf{n}_a \mathbf{n}_b + \frac{\Lambda_{ab}^{(m),\alpha\beta}}{n_0^2} \mathbf{m}_a \mathbf{m}_b \right) \Big|_{\mathbf{x},z} \qquad |\mathbf{n}|^2 + \frac{\mathfrak{a}^4}{\mu_0^2} |\mathbf{m}|^2 = 1, \qquad \mathbf{m} \cdot \mathbf{n} = 0.$$

recall:
$$H' = \sum_{nk} \left(a_{nk}^{\dagger} Q_{nk}^{\dagger} + a_{nk} Q_{nk} \right) \qquad Q_{nk} = \frac{1}{\sqrt{N_{uc}}} \sum_{\substack{\mathbf{p}, \ell, \ell' \\ q_1, q_2, z}} \mathcal{B}_{\mathbf{k}; \mathbf{p}}^{n, \ell_1, \ell_2 | q_1 q_2 q} e^{ik_z z} b_{\ell_1, \mathbf{p} + \frac{q}{2}\mathbf{k}, z}^{q_1} b_{\ell_2, -\mathbf{p} + \frac{q}{2}\mathbf{k}, z}^{q_2}$$

Spin-lattice coupling:

$$\mathcal{H}' = \sum_{\substack{\alpha,\beta\\a,b=x,y,z}} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \left(\Lambda_{ab}^{(\mathbf{n}),\alpha\beta} \mathbf{n}_{a} \mathbf{n}_{b} + \frac{\Lambda_{ab}^{(\mathbf{m}),\alpha\beta}}{n_{0}^{2}} \mathbf{m}_{a} \mathbf{m}_{b} \right) \bigg|_{\mathbf{x},z} \qquad |\mathbf{n}|^{2} + \frac{\mathfrak{a}^{4}}{\mu_{0}^{2}} |\mathbf{m}|^{2} = 1, \qquad \mathbf{m} \cdot \mathbf{n} = 0.$$

Solve NLSM constraints, expand around canted state

Scaling: $\Omega \sim \omega \sim v_{\rm ph} k \sim k_B T$

• <u>*B* coefficients:</u>

recall:
$$Q_{n\mathbf{k}} = \frac{1}{\sqrt{N_{uc}}} \sum_{\substack{\mathbf{p},\ell,\ell'\\q_1,q_2,z}} \mathcal{B}_{\mathbf{k};\mathbf{p}}^{n,\ell_1,\ell_2|q_1q_2q} e^{ik_z z} b_{\ell_1,\mathbf{p}+\frac{q}{2}\mathbf{k},z}^{q_1} b_{\ell_2,-\mathbf{p}+\frac{q}{2}\mathbf{k},z}^{q_2}$$

$$\mathcal{B} \sim \left(\frac{k_B T}{M v_{\rm ph}^2}\right)^{\frac{1}{2}} n_0^{-1} \left(\lambda_{mm} \frac{\chi k_B T}{n_0} + \lambda_{mn} + \lambda_{nn} \frac{n_0}{\chi k_B T}\right) \sim T^{1/2 + x}$$

smallness: ions are heavy.

Antiferromagnet: order-parameter (n) has strongest correlations

• Diagonal scattering rate: $D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{uc}^{2d}} \sum_{\mathbf{p}} \sum_{\ell,\ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{\ell,\mathbf{p}})}{\sinh(\frac{\beta}{2}\hbar\omega_{\ell',\mathbf{p}-\mathbf{k}})} \delta(\omega_{n\mathbf{k}} - \Omega_{\ell,\mathbf{p}} - s\Omega_{\ell',\mathbf{p}-\mathbf{k}}) \left| \mathcal{B}_{\mathbf{k};-\mathbf{p}+\frac{\mathbf{k}}{2}}^{n,\ell,\ell'|+s-|^2} \right|^{2}$ $\frac{1}{\tau} \sim T^{d-1} |\mathcal{B}|^2 \sim T^{d+2x}$ $\sim \mathsf{T}^{d+2}, \mathsf{T}^{d}, \mathsf{T}^{d-2}$ $k_L \sim T^{3-d-2x}$ d: dimensionality of Q correlations

Scaling: $\Omega \sim \omega \sim v_{\rm ph} k \sim k_B T$

• <u>*B* coefficients:</u>

recall:
$$Q_{n\mathbf{k}} = \frac{1}{\sqrt{N_{uc}}} \sum_{\substack{\mathbf{p},\ell,\ell'\\q_1,q_2,z}} \mathcal{B}_{\mathbf{k};\mathbf{p}}^{n,\ell_1,\ell_2|q_1q_2q} e^{ik_z z} b_{\ell_1,\mathbf{p}+\frac{q}{2}\mathbf{k},z}^{q_1} b_{\ell_2,-\mathbf{p}+\frac{q}{2}\mathbf{k},z}^{q_2}$$

$$\mathcal{B} \sim \left(\frac{k_B T}{M v_{\rm ph}^2}\right)^{\frac{1}{2}} n_0^{-1} \left(\lambda_{mm} \frac{\chi k_B T}{n_0} + \lambda_{mn} + \lambda_{nn} \frac{n_0}{\chi k_B T}\right) \sim T^{1/2 + x}$$

smallness: ions are heavy.

Antiferromagnet: order-parameter (n) has strongest correlations

• Diagonal scattering rate: $D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{uc}^{2d}} \sum_{\mathbf{p}} \sum_{\ell,\ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{n\mathbf{k}})}{\sinh(\frac{\beta}{2}\hbar\Omega_{\ell,\mathbf{p}})\sinh(\frac{\beta}{2}\hbar\Omega_{\ell',\mathbf{p-k}})} \delta(\omega_{n\mathbf{k}} - \Omega_{\ell,\mathbf{p}} - s\Omega_{\ell',\mathbf{p-k}}) \left| \mathcal{B}_{\mathbf{k};-\mathbf{p+\frac{k}{2}}}^{n,\ell,\ell'|+s-} \right|^2$

$$\frac{1}{\tau} \sim T^{d-1} |\mathcal{B}|^2 \sim T^{d+2x}$$
$$\sim \mathsf{T}^{d+2}, \mathsf{T}^{d}, \mathsf{T}^{d-2}$$

Spin–phonon interactions in a Heisenberg antiferromagnet: II. The phonon spectrum and spin–lattice relaxation rate

M G Cottam

d=3

Department of Physics, University of Essex, Colchester CO4 3SQ, England

Received 11 March 1974

$$\frac{1}{\tau_{\rm SL}} \simeq \frac{b_1 S^2 (r^2 - 1)}{D^{10}} \left(\frac{5T_{\rm D}^3}{12\pi^4} + \frac{\pi^2 D^3}{24V} \right) Q_0^2 T^5$$

Scaling: Hall

From the formula:

 $\mathfrak{W}^{\ominus} \sim T^{d-3} \mathcal{B}^4$

Effective-TRS breaking: one factor of m-n coupling:

$$\mathfrak{W}^{\ominus} \sim T^{d-1} \lambda_{mn} \left(\frac{\lambda_{mm}T + \lambda_{nn}T^{-1}}{} \right)^3 \sim T^{d-1+3x}$$

This gives Hall resistivity:

 $\varrho_H \sim \mathfrak{W}^{\ominus, \mathrm{eff}} \sim T^{d-1+3x}$

Check: numerical calculation

Many parameters: loosely inspired by Copper Deuteroformate Tetradeuterate (CFTD)

VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JULY 2001

Spin Dynamics of the 2D Spin ¹/₂ Quantum Antiferromagnet Copper Deuteroformate Tetradeuterate (CFTD)

H. M. Rønnow,^{1,2} D. F. McMorrow,¹ R. Coldea,^{3,4} A. Harrison,⁵ I. D. Youngson,⁵ T. G. Perring,⁴ G. Aeppli,⁶ O. Syljuåsen,⁷ K. Lefmann,¹ and C. Rischel⁸

Good match of magnon and phonon phase space

$rac{v_{ m m}}{v_{ m ph}}$	$\chi\epsilon_0\mathfrak{a}^2$	n_0 $\frac{M}{2}$	$rac{v_{ m ph}\mathfrak{a}}{\hbar}$	m_0^x r	n_0^y m_0^z	$\frac{\Delta_0}{\epsilon_0}$	$\frac{\Delta_1}{\epsilon_0}$
2.5	0.19	1/2 8	8 · 10 ³	0	0.0 0.05	0.2	0.04
0.					.05 0.0		
ξ	$\Lambda_1^{(\xi)}$	$\Lambda_2^{(\xi)}$	$\Lambda_3^{(\xi)}$	$\Lambda_4^{(\xi)}$	$\Lambda_5^{(\xi)}$	$\Lambda_6^{(\xi)}$	$\Lambda_7^{(\xi)}$
n = 0	12.0	10.0	14.0	10.0	12.0	0.6	0.8
m = 1	-10.0	-12.0	-14.0	-12.	0 -10.0	-0.8	3 -0.6

TABLE I: Numerical values of the fixed dimensionless parameters used in all numerical evaluations. The upper and lower entries for m_0^y and m_0^z correspond to the two cases for calculating ϱ_H^{xy} and ϱ_H^{xz} , respectively. The couplings $\Lambda_i^{(\xi)}$ are given in units of ϵ_0/\mathfrak{a} .

Diagonal conductivity

$$\left(\kappa_L \sim T^{3-d-2x}\right) \left(\kappa_L \sim T^{-1}\right)_{T < T^{\star}_{\lambda}} \qquad T > T^{\star}_{\lambda}$$

One can see Heisenberg regimes ($\lambda_{mm} \gg \lambda_{nn} - T^{-1}$), anisotropic regime, extrinsic regime ($\breve{D} - T^3$)

Scaling of κ_L for $T > T_{\lambda}^{\star}$ is actually very subtle

$$v_m/v_{\rm ph} = 2.5$$

 $\kappa_L \sim T^{-1}$

Skew scattering

Cut (fix 2 out of 6 variables) through the skew scattering rate:

A very complex object, lots of phase space features

Thermal Hall resistivity

 $\kappa_0 = k_B v_{\rm ph} / \mathfrak{a}^2$ $\varrho_0 = \kappa_0^{-1}$

Observe T⁴ behavior (Heisenberg regime) Larger effect with current perpendicular to plane, even though we took the magnetism strictly 2d (magnons do not propagate in z direction)

$$\varrho_0^{\text{CFTD}} \approx 5.88 \text{ K} \cdot \text{m} \cdot \text{W}^{-1}$$
$$\varrho_0^{\text{LCO}} \approx 2.6 \text{ K} \cdot \text{m} \cdot \text{W}^{-1}$$

$$\kappa_{xx}^{\text{LCO}} \approx 10 \text{ W} \cdot \text{K}^{-1} \cdot \text{m}^{-1}$$

 $\kappa_{xy}^{\text{LCO}} \approx 40 \text{ mW} \cdot \text{K}^{-1} \cdot \text{m}^{-1}$

 $(\varrho_H/\varrho_0)^{\rm LCO} \approx 1.5 \times 10^{-4}$

Hall resistivity ϱ_H as a function of v_m/v_{ph}

Now calculate these correlation functions for specific systems

other examples: fermions — electrons, spinons...

coming soon

positions (PhD and postdoc) open in the group!

Merci !

 $\mathbf{2}$

