Spin-orbit physics and the Mott regime

Leon Balents, KITP CDF Seminar, June 2010

The David and Lucile Packard Foundation

Collaborators

Gang Chen

Andreas Schnyder MPI Stuttgart

• Mott transition (pyrochlore iridates)

Dymtro Pesin UT Austin

Outline

- I. Introduction to SOC in solids, and the recent discovery of topological insulators
- 2. SOC deep in the Mott regime
- 3. SOC near the Mott transition, and iridium oxides

Spin-orbit coupling $H_{SOC} = \lambda \mathbf{L} \cdot \mathbf{S}$

- This is a *relativistic* effect, usually considered weak
 - responsible for the "fine structure" of atomic spectra
- Typically not considered very significant in solids
- But there are exceptions, and the exceptions are interesting...

When is SOC important?

- Phenomena where spin-rotational symmetry is broken
 - Magnetic anisotropy
 - Spintronics e.g. spin Hall effect in semiconductors
 - Spin relaxation
- In these situations, SOC can still be treated as weak, usually

Strong SOC?

Atomic SOC grows with atomic number
λ ~ Z⁴, where Z is atomic number
Typical values?

Series

Cm

Bk

Cf

Fm

Es

Md

No

Lr

+ Actinide Series

Th

Pa

U

Np

Pu

Am

+ Actinide Series

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Fm

Es

Md

Lr

No

	1A			Periodic Table														
1	н	IIA											IIIA	IVA	VA	VIA	VIIA	Не
2	³ Li	Be	of the Elements											°C	7 N	°	9 F	¹⁰ Ne
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	²⁰ Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	⁵⁷ *La	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	λ	≈I	.5e	eV	82 Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ +Ac	104 Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	m 111	112 112	113 113					
* Lanthanide Series			58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	⁶³ Eu	Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	⁷¹ Lu		
+ Actinide Series			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³		

Weak correlations

 SO splittings are very small compared to bandwidth (s and p electrons)

Weak correlations

In some rare materials, SOC is comparable to bandwidth

Topological Insulators

2d: Kane, Mele (2005); Bernevig, Hughes, Zhang (2006) 3d: L. Fu, C. Kane, E. Mele (2007); J. Moore, LB (2007)

- Band insulators w/ significant SOI can have a topological structure, similar to the integer quantum Hall effect
- TBIs have protected surface states that are like chiral Dirac fermions and cannot be localized by disorder

Bands with SOC

- Consider for simplicity a solid with Inversion symmetry
 - I: $E_{s,-k} = E_{s,k}$
 - TR: $E_{-s,-k} = E_{s,k}$
- Together, this implies E_{-s,k}=E_{s,k}, i.e. all bands are 2-fold degenerate

Bands with SOC

 Pairs of levels can approach one another at TR-invariant momenta
 E

k=Γ, etc

k

• Such a point is a 3(+1)d Dirac point

3+1d Dirac Point

- Since there are 4 levels that approach one another, this is described by a 4×4 Bloch Hamiltonian
- Can be parametrized by the Dirac Matrices
 - Here Γ_1 , Γ_2 , Γ_3 , Γ_4 are odd under TR + I
 - and Γ_5 is even under TR and I
 - other matrices $\Gamma_{a,b}$ are odd under TR*I

3+1d Dirac Point

- Can be parametrized by the Dirac Matrices
 - Here Γ_1 , Γ_2 , Γ_3 , Γ_4 are odd under TR + I
 - and Γ_5 is even under TR and I
 - other matrices $\Gamma_{a,b}$ are odd under TR*I
- Then one can always choose coordinates so $H_{\rm Bloch} = \sum^{3} v_a k_a \Gamma_a + m \Gamma_5$

a=1

3+1d Dirac Point

Then the Dirac point closes when m=0 only

$$E_{\text{Bloch}} = \pm \sqrt{\sum_{a=1}^{3} (v_a k_a)^2 + m^2}$$

- This describes a quantum critical point between two types of band insulators, e.g.
 - m>0 ordinary band insulator
 - m<0 topological band insulator

Surface states

 Solve Dirac equation for an interface $(k_1\Gamma_1 + k_2\Gamma_2 - i\Gamma_3\partial_z + m(z)\Gamma_5)\Psi = E\Psi$ • This equation has a 2d chiral bound state $\Gamma_{3,5} = i\Gamma_3\Gamma_5 = \operatorname{sign}[m(\infty) - m(-\infty)]$ With a 2d chiral Dirac wavefunction $(k_x\Gamma_1 + k_y\Gamma_2)\psi = E\psi$

$$E = \pm v \sqrt{k_x^2 + k_y^2}$$

Surface states

- The chiral Dirac state = "1/4 graphene"
- It "violates" the Nielsen-Ninomiya theorem
 - prohibits an odd number of Dirac cones in a 2d lattice model
 - this is only possible because it is the edge of a bulk state

Example: Bi₂Te₃

• M.Z. Hasan group - ARPES studies

backscattering prohibited: no localization

More...

- Topological insulators are also predicted to
 - have strong "quantized" magnetoelectric response
 - show zero modes at certain crystal defects
 - be a platform for novel hybrid structures (e.g. with superconductors or ferromagnets)

Correlations and SOC

• Key observation:

- Hopping/hybridization is suppressed by Mott physics
- This allows SOC to compete more effectively

Coherence scale

• Local physics is enhanced by Hubbard U

Strong Mott insulators

- U >> W
- In this case, need to compare SOC to J, E_{cf}
- Look for situations with
 - large λ or small J
 - exact or approximate orbital degeneracy

Rare earths

- Generally, 4f electrons are tightly bound and well-shielded from crystal fields
 - leads to large J = L + S local moments
 - usually (but not always) classical magnetism, with strong magnetic anisotropy
- Example: spin ice Ho₂Ti₂O₇, Dy₂Ti₂O₇
- Most heavy fermions involve such states

Transition Metals

- Typically, crystal fields and exchange are much larger
- In 3d and 4d TMs, strong SO situations are relatively rare

Cubic systems

 in ideal octahedron with cubic symmetry, the d levels split into eg and t2g multiplets

 Need to consider SOC within these multiplets, which are often further split by non-cubic distortions

Cuprates

- Octahedra in cuprates have a large elongation along z axis
- completely removes orbital degeneracy

Double Perovskites

- A₂BB'O₆ often form with 4d and 5d TMs
 For instance, Ba₂NaOsO₆, Ba₂LiOsO₆
 Large separation of B' ions minimizes
 - exchange
 - J ~ 5meV
 - $\lambda \sim 0.2 eV$

CoNb₂O₆

• Co²⁺ in high spin state (Jн)

orbital degeneracy

strong Ising anisotropy

FeSc₂S₄

- Fe atoms occupy A sites of the spinel, which are tetrahedrally coordinated
- A-sites forming a diamond lattice
- Widely separated A sites leads to weak exchange
- Here exchange and SOC can compete in an interesting way

Frustration?

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)

Orbital degeneracy in FeSc₂S₄

- Chemistry:
 - Fe²⁺: 3d⁶
 - I hole in eg level
- Spin S=2
- Orbital pseudospin 1/2
- Static Jahn-Teller does not appear

Atomic Spin Orbit

- Separate orbital and spin degeneracy can be split! $H_{SO} = -\lambda \left(\frac{1}{\sqrt{3}} \tau^x \left[(S^x)^2 - (S^y)^2 \right] + \tau^z \left[(S^z)^2 - \frac{S(S+1)}{3} \right] \right)$
- Energy spectrum: singlet GS with gap = λ
- Microscopically,

$$\lambda = \frac{6\lambda_0^2}{\Delta}$$

 $\uparrow \lambda$

• Naive estimate $\lambda \approx 25 \text{K}$
Spin orbital singlet

• Ground state of $\lambda > 0$ term:

$$\left| S^{z}=0\right\rangle -\frac{1}{\sqrt{2}} \left| S^{z}=2\right\rangle + \left| S^{z}=-2\right\rangle \right\rangle$$

• Due to gap, there is a stable SOS <u>phase</u> for $\lambda >> J$.

Exchange

- Inelastic neutrons show significant dispersion indicating exchange
- Bandwidth \approx 20K similar order as Θ_{CW} and estimated λ
- Gap (?) I-2K
 - Small gap is classic indicator of incipient order

N. Büttgen et al, PRB 73, 132409 (2006)

Exchange

• Largest interaction is just Heisenberg exchange

$$H_{ex} \approx \frac{1}{2} \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

More exchange processes contribute

Minimal Model

- Neutron scattering suggests peak close to 2π(100)
- Indicates $J_2 >> J_1$
- Recent LDA calculations confirm this microscopically (S. Sarkar et al, 2010)

Minimal Model

 Neutron scattering suggests peak close to 2π(100)

• Indicates $J_2 >> J_1$

$$H_{min} = J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \langle \mathbf{S}_j \rangle + H_{SO}$$

Expect MFT good in 3+1 dimensions

Quantum Critical Point

• Mean field phase diagram

Predictions

- Large T=0 susceptibility (estimated)
- Scaling form for $(T_{I}T)^{-1} \sim f(\Delta/T)$
- Specific heat $C_v \sim T^3 f(\Delta/T)$
- Possibility of pressure-induced ordering
- Magnetic field suppresses order
 - opposite to simple "dimer" antiferromagnet

Conclusions on FeSc₂S₄

- Orbital degeneracy and spin orbit provides an exciting route to quantum paramagnetism and quantum criticality
 - entangled spin-orbital singlet ground state in an S=2 magnet!
 - Look in our papers for more details

Mott transition regime

- As correlations increase, SOC becomes increasingly important
- It can easily be at least comparable to effective bandwidth near the transition from metal to insulator
- Here all 3 effects: SOC, U, and W are comparable!

5d Transition Metals

- 5d transition metal oxides are especially interesting
 - λ ~ 0.5 eV
 - U ~ I-2eV (5d orbitals rather extended)
 - W ~ I-4eV
- Together, SOC and U can conspire to produce Mott insulators

Iridates

Ir is particularly interesting

Most common valence Ir⁴⁺ is S=1/2 in octahedral coordination

5d⁵

 Interesting interplay of orbital and spin degeneracy

SOC for Ir⁴⁺

 Orbital angular momentum in the t_{2g} manifold behaves like for p states

 $P_{t_{2g}}\mathbf{L}P_{t_{2g}} = -\mathbf{L}_{\ell=1}$

• As a consequence get effective j=1/2 state

SOC versus H_{cf}

 $H = H_{non-cubic} + H_{SOI}$

 Spin orbit and non-cubic crystal fields compete to split orbital degeneracy

Some Iridates

material	structure	behavior
Sr ₂ IrO ₄	single-layer perovskite	AF Mott insulator
Na ₂ IrO ₃	honeycomb lattice	AF insulator
Na4lr3O8	hyperkagome lattice	spin-liquid Mott insulator
Ir ₂ O ₄	spinel-based pyrochlore	small gap insulator
Ln ₂ lr ₂ O ₇	pyrochlore	MITs with magnetic Mott insulator

Issues

- J=1/2 or S=1/2 or in between?
- Mott or Slater insulators?
- Are there non-trivial band topologies?
 - can topological insulator physics pertain to Mott insulators?
- How is the Mott transition affected by SOC?

Sr₂IrO₄

resonant X-ray scattering clearly show J=1/2 state

BJ Kim et al, Science (2009).

Pyrochlore iridates

• Formula: Ln₂lr₂O₇

- both Ln and Ir atoms occupy pyrochlore lattices
- Cubic, FCC Bravais lattice
- Ln carry localized moments only important at low T

Metal-Insulator Transition K. Matsuhira et al, 2007

 Decreasing Ir-O-Ir bond angle makes more insulating

Model

• octahedral lr⁴⁺: (t_{2g})⁵ • effective I=I orbital degeneracy Ir-O-Ir hopping dominant $V_{pd\pi}$ channel Spin-orbit coupling • $H_{SOI} = -\lambda \vec{L} \cdot \vec{S}$ Hubbard U

U=0 Band Structure

- $3 \times 4 = 12$ doubly degenerate bands
- $\lambda < 2.8t$: overlap at Fermi energy: metal
- λ >2.8t: bands separate
 - only j=1/2 states near Fermi energy

Topological Band Insulator

 We can show using criteria developed by Fu and Kane that this is a "strong" topological band insulator

Very large U/t

 Heisenberg "spin" model for j=1/2 eigenstates $H_{spin} = \frac{4t^2}{U} \sum \left[J\vec{S}_i \cdot \vec{S}_{i'} + \vec{D}_{ii'} \cdot \vec{S}_i \times \vec{S}_{i'} + \vec{S}_i \cdot \overleftarrow{\Gamma}_{ii'} \cdot \vec{S}_{i'} \right]$ Elhajal et al, 2005 This model has been extensively studied • very large DM: $|D|/J = \frac{5460}{12283}\sqrt{2} \approx 0.63$ Ground state for |D|/| > 0.3 is definitely magnetically ordered

• Q=0 magnetic state

Intermediate U

- Slave-rotor approximation
 Florens, Georges (2004)
 - Seems to give qualitatively reasonable results for frustrated Hubbard models (triangular, checkerboard, hyperkagome) in agreement with several numerical approaches
 - Does not describe nesting/SDW physics
- Simple to implement $c_a^{\dagger} = e^{i\theta} f_a^{\dagger}$
 - Decouple to produce independent MF dynamics for rotors (charge) and spinons
 - Should be solved self-consistently

Topological Mott Insulator

- A U(I) spin liquid
 - Gapless photon
 - Stable only in 3d
- Gapless "topological spin metal" at surface
- Magnetic monopole excitations carry spin or charge?

metal-TBI transition

Long-range Coulomb: excitons

c.f. Halperin, Rice (1968)

Back to iridates

K. Matsuhira et al, 2007

Experiments show continuous T>0 MITs

Back to iridates

K. Matsuhira et al, 2007

Experiments show continuous T>0 MITs

closest to QCP

metal-TBI transition

• Perhaps consistent with an excitonic state?

Other possibilities?

- X.Wan et al predict an antiferromagnetic Mott state using LSDA+U+SO methods, and find a non-topological band structure
- A.Vishwanath et al find that at intermediate U/W a magnetic "semimetal" with 3d Dirac nodes obtains
- Clearly more experiments are needed here!

Conclusions

- Spin-orbit interactions become increasingly important with increased correlations due to reduction in effective bandwidth
 - especially true in situations with orbital degeneracy
- Interesting new phases and transitions possible in 5d TMOs
 - How long until interacting versions of TIs are discovered?

References - FeSc₂S₄: PRL <u>102</u>, 096406 (2009), PRB <u>80</u>, 224409 (2009). Na₄Ir₃O₈: PRB <u>78</u>, 094403 (2008); Mott+SO: Nat. Phys. <u>6</u>, 376 (2010).