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2. SOC deep in the Mott regime 

3. SOC near the Mott transition, and iridium 
oxides



Spin-orbit coupling

• This is a relativistic effect, usually considered 
weak

• responsible for the “fine structure” of atomic 
spectra

• Typically not considered very significant in solids

• But there are exceptions, and the exceptions 
are interesting...

HSOC = λL · S



When is SOC 
important?

• Phenomena where spin-rotational 
symmetry is broken

• Magnetic anisotropy

• Spintronics - e.g. spin Hall effect in 
semiconductors

• Spin relaxation

• In these situations, SOC can still be treated 
as weak, usually



Strong SOC?

• Atomic SOC grows with atomic number

• λ ∼ Z4, where Z is atomic number

• Typical values?



λ≈10meV



λ≈70meV



λ≈500meV



λ≈1.5eV



Weak correlations

• SO splittings are very small compared to 
bandwidth (s and p electrons)

band k·p Hamiltonian.12 This 20-band Hamiltonian was

built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*

levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels

were not sufficient to describe simultaneously the L point

and the # effective masses, the contribution of d levels was

mimicked via Luttinger-like parameters which played a part

in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-

eters could not be obtained directly from the matrix ele-

ments, contrary to the k·p 30-band method.

Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be

added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the

results for Si, Ge, and GaAs. The k=0 energies are presented

in Table II. The left part of this table is known;16 for the right

part of Table II, we take the same values as in Ref. 5 for Si

and Ge. For GaAs, these levels are unknown but Cardona

and Pollak5 explain how to obtain an estimation of these

energies, knowing the form factors used in pseudopotential

calculations19 and assuming that only the pseudopotential in-

teraction between the 30 plane-waves states is important.

Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first

estimated at the center of the Brillouin zone, especially for

the valence band to obtain Luttinger parameters, and for the

first conduction band for Ge and GaAs, then at the extrema X

and L and finally to respect the continuity between U#1, 1
4
,
1

4
$

and K#0, 3
4
,
3

4
$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-

tial or LCAO: on the contrary, it is the strongest numerical

difficulty of this method. Figures 3–5 show the band struc-

tures of Si, Ge, and GaAs obtained with our k·p model.

Numerical results are given in Table III. The band structure

is well reproduced on a width of about 11 eV: it describes

correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four

directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.

16

The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose

extension was only 1 eV for the valence band and 3 eV for

the conduction band.12 This 20-band method was built to

take into account the d level effects without directly consid-

ering this level in the Hamiltonian. The present calculation

shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies E
Pj

!!"
and matrix elements P

j

!!"
are linked by

E
Pj

!!"
= !2m0 /$2"#Pj

!!"$2. P
j

!!"
are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010

EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344

EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888

EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15

EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63

EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.

RICHARD, ANIEL, AND FISHMAN PHYSICAL REVIEW B 70, 235204 (2004)

235204-4

0.34eV
GaAs



Weak correlations

• In some rare materials, SOC is comparable 
to bandwidth

λBi2Se3



Topological Insulators

• Band insulators w/ significant SOI can have 
a topological structure, similar to the 
integer quantum Hall effect

• TBIs have protected surface states that are 
like chiral Dirac fermions and cannot be 
localized by disorder

3d: L. Fu, C. Kane, E. Mele (2007); J. Moore, LB (2007)
2d: Kane, Mele (2005); Bernevig, Hughes, Zhang (2006)



Bands with SOC

• Consider for simplicity a solid with 
Inversion symmetry

• I: Es,-k = Es,k

• TR: E-s,-k = Es,k

• Together, this implies E-s,k=Es,k, i.e. all bands 
are 2-fold degenerate



Bands with SOC

• Pairs of levels can approach one another at 
TR-invariant momenta

• Such a point is a 3(+1)d Dirac point

kk=Γ, etc

E



3+1d Dirac Point

• Since there are 4 levels that approach one 
another, this is described by a 4×4 Bloch 
Hamiltonian

• Can be parametrized by the Dirac Matrices

• Here Γ1, Γ2, Γ3, Γ4 are odd under TR + I

• and Γ5  is even under TR and I

• other matrices Γa,b are odd under TR*I



3+1d Dirac Point

• Can be parametrized by the Dirac Matrices

• Here Γ1, Γ2, Γ3, Γ4 are odd under TR + I

• and Γ5  is even under TR and I

• other matrices Γa,b are odd under TR*I

• Then one can always choose coordinates 
so

HBloch =
3∑

a=1

vakaΓa + mΓ5



3+1d Dirac Point

• Then the Dirac point closes when m=0 
only

• This describes a quantum critical point 
between two types of band insulators, e.g.

• m>0 ordinary band insulator

• m<0 topological band insulator

EBloch = ±

√√√√
3∑

a=1

(vaka)2 + m2



Surface states

• Solve Dirac equation for an interface

• This equation has a 2d chiral bound state

• With a 2d chiral Dirac wavefunction

(k1Γ1 + k2Γ2 − iΓ3∂z + m(z)Γ5) Ψ = EΨ

Γ3,5 = iΓ3Γ5 = sign[m(∞)−m(−∞)]

E = ±v
√

k2
x + k2

y

(kxΓ1 + kyΓ2)ψ = Eψ



Surface states

• The chiral Dirac state = “1/4 graphene”

• It “violates” the Nielsen-Ninomiya theorem 

• prohibits an odd number of Dirac cones 
in a 2d lattice model

• this is only possible because it is the edge 
of a bulk state



Example: Bi2Te3

• M.Z. Hasan group - ARPES studies

backscattering 
prohibited: no 
localization



More...

• Topological insulators are also predicted to

• have strong “quantized” magnetoelectric 
response

• show zero modes at certain crystal 
defects

• be a platform for novel hybrid structures 
(e.g. with superconductors or 
ferromagnets)



Correlations and SOC

• Key observation:

• Hopping/hybridization is suppressed by 
Mott physics

• This allows SOC to compete more 
effectively



Coherence scale

• Local physics is enhanced by Hubbard U

Ecoh

U/W

~ W

~ J ~ W2/U

λ, JH, Ecf,...



Strong Mott insulators

• U >> W

• In this case, need to compare SOC to J, Ecf

• Look for situations with 

• large λ or small J

• exact or approximate orbital degeneracy



Rare earths

• Generally, 4f electrons are tightly bound 
and well-shielded from crystal fields

• leads to large J = L + S local moments

• usually (but not always) classical 
magnetism, with strong magnetic 
anisotropy

• Example: spin ice Ho2Ti2O7, Dy2Ti2O7 

• Most heavy fermions involve such states
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Ir4+: 5d5 Conduction electrons

Ln3+: (4f)n Localized moment
Magnetic frustration

Itinerant electron system 
on the pyrochlore lattice 

Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)

IrO6

Ln

O!

pyrochlore oxides

1

TiO6



Transition Metals

• Typically, crystal fields and exchange are 
much larger

• In 3d and 4d TMs, strong SO situations are 
relatively rare



Cubic systems

• in ideal octahedron with cubic symmetry, 
the d levels split into eg and t2g multiplets

• Need to consider SOC within these 
multiplets, which are often further split by 
non-cubic distortions

eg

t2g

x2-y2, 2z2-x2-y2

 yz, xz, xy



Cuprates
• Octahedra in cuprates 

have a large elongation 
along z axis

• completely removes 
orbital degeneracy

eg

t2g

2z2-x2-y2

x2-y2

Cu2+=3d9



Double Perovskites

• A2BB’O6 often form with 4d and 5d TMs

• For instance, Ba2NaOsO6, Ba2LiOsO6

• Large separation of B’ ions minimizes 
exchange

• J ~ 5meV

• λ ~ 0.2eV



CoNb2O6

• Co2+ in high spin state (JH)

Co2+ form ferro-Ising chains along c-axis.
isosceles triangular lattice in the basal a-b plane 

Kobayashi et al., PRB (2001)

orbital degeneracy

strong Ising anisotropy



FeSc2S4

• Fe atoms occupy A sites 
of the spinel, which are 
tetrahedrally coordinated

• A-sites forming a 
diamond lattice

• Widely separated A sites 
leads to weak exchange

• Here exchange and SOC 
can compete in an 
interesting way

J1
J2



Frustration?



A-site spinels
• Spectrum of materials

1000

FeSc2S4

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)

Orbital 
degeneracy

1 10 205

CoAl2O4

MnSc2S4

MnAl2O4

CoRh2O4 Co3O4
s = 5/2

s = 3/2

s = 2

f =
|ΘCW |

TN



Orbital degeneracy in 
FeSc2S4

• Chemistry:

• Fe2+: 3d6

• 1 hole in eg level

• Spin S=2

• Orbital pseudospin 1/2

• Static Jahn-Teller does 
not appear
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Atomic Spin Orbit

• Separate orbital and spin degeneracy can be 
split!

• Energy spectrum: singlet GS with gap = λ

• Microscopically,

• Naive estimate λ ≈ 25K

HSO = −λ

(
1√
3
τx

[
(Sx)2 − (Sy)2

]
+ τz

[
(Sz)2 − S(S+1)

3

])

λ
λ =

6λ2
0

∆



Spin orbital singlet

• Ground state of λ>0 term:

• Due to gap, there is a stable SOS phase for 
λ >> J.

Sz=0 − 1√
2 Sz=2( Sz=-2+ )



Exchange

• Inelastic neutrons show 
significant dispersion 
indicating exchange

• Bandwidth ≈ 20K similar 
order as ΘCW and estimated 
λ

• Gap (?) 1-2K

• Small gap is classic 
indicator of incipient 
order

!"#$%&'()*+$$"%,'- ,'(."/*0/12(/3,'(4,5#,6()$+$"

73"','- &8(+()3,' -+3 ,'(."/*0/1

9:(;%,<<"4 et al:=(>?@):(A"B:(C"$$:(94=(0DE1F0=(0FFG

cally long-range ordered state of the Mn2+ moments.10 For
FeSc2S4, however, !H!T" remarkably exceeds the bulk sus-
ceptibility "!T", indicating an additional broadening mecha-
nism. The inset shows the relative linewidth !H!T" /H0 vs
"!T" with the temperature T as an implicit parameter. In the
case of magnetic broadening, !H!T" /H0 vs "!T" is expected
to scale with the irradiation frequencies #0 /2$ and/or ap-
plied fields H0.13 Toward low values of !H!T" /H0 and ",
i.e., high temperatures, the leveling off of !H!T" /H0 for dif-
ferent #0 /2$ and/or H0 indicates that a frequency and/or
field independent broadening mechanism is active and the
relative linewidth !H!T" /H0 cannot be explained based on
magnetic effects only.

Therefore, we attribute this contribution of !H to the in-
teraction between the electric quadrupole moment Q of the
probing nuclei and an EFG at the scandium site !B site".
Indeed, the drastic increase of !H resembles the temperature
dependence of the EFG at the A site deduced from the quad-
rupole splitting in Mössbauer experiments,17 where the enor-
mous increase of the EFG toward lower temperatures has
been explained taking into account the effects of second or-
der spin-orbit coupling and random strains on the vibronic e
doublet ground state.17 Dielectric spectroscopy indicates that
the orbital reorientation drastically slows down and is well
below 1 MHz for T%75 K.6 Hence, viewed from the time
scale set by the NMR experiment, the charge distribution of
orbitals appears to be almost frozen in producing a static
EFG at the probing nuclear site.

Figure 4 presents the temperature dependences of the
spin-spin relaxation rates 1 /T2!T" of FeSc2S4 and MnSc2S4.
At high temperatures both compounds exhibit temperature
independent rates and almost identical values of 1 /T2 result-
ing from exchange narrowing due to fast spin fluctuations.
Lowering the temperature, the spin-spin relaxation in the
manganese compound diverges and shows a peak at TN as is
usually observed in antiferromagnets !AFM".18 A fit of a
critical behavior 1 /T2& #!T−TN" /TN$−' with TN=2 K and

'=0.23 !for 2%T%70 K" is shown in the inset of Fig. 4.
This value roughly meets the theoretical prediction '=0.3
for a three-dimensional !3D" Heisenberg AFM.19 But it has
clearly to be stated that critical exponents are only defined
near TN and in zero magnetic fields. In contrast, the spin-spin
relaxation rate 1 /T2!T" in the iron compound decreases to-
ward low temperatures, exhibits a minimum at around 10 K,
and slightly increases again at lowest temperatures. As there
is no long-range magnetic order in FeSc2S4,5,20 this increase
of 1 /T2!T" for T%10 K does not indicate the vicinity of a
magnetically ordered state, but more likely is due to a release
of the exchange narrowing mechanism as orbital fluctuations
or orbital glassiness6 weaken the exchange interaction to-
ward low temperatures.

Finally, the temperature dependences of the spin-lattice
relaxation rates 1 /T1!T" are shown in Fig. 5. In MnSc2S4,
1 /T1!T" exhibits the common behavior of long-range ordered
AFMs with a divergent relaxation rate at the magnetic order-
ing temperature TN=2 K. At high temperatures, 1 /T1!T" lev-
els off at a constant value of 1 /T1%0.6 ms−1 which is
slightly below the value reported recently.10 In FeSc2S4,
1 /T1!T" at elevated temperatures is temperature independent
with a value of 1 /T1%3 ms−1, strongly enhanced when com-
pared to MnSc2S4. In the case of a predominant nuclear re-
laxation mechanism provided by fluctuations of localized
spins, 1 /T1!T" in the high-temperature limit is 1 /T1(

=&2$!)g*BAhf /z!"2z!S!S+1" / !3#ex" with the exchange fre-
quency of local spins #ex=kB '+CW ' / #,&zS!S+1" /6$.10,21

The constants z=4 and z!=6 define the numbers of
exchange-coupled local spins and that of local spins interact-
ing with the probing nuclei, respectively.10 From a plot K
versus " !not shown" we checked that MnSc2S4 as well as
FeSc2S4 exhibit the same value of the hyperfine coupling
constant Ahf%3 kOe/*B. Due to the lower spin value and
the higher value of the Curie-Weiss temperature in the case
of FeSc2S4, the relaxation rate in the high-temperature limit

FIG. 4. !Color online" Spin-spin relaxation rates 1 /T2!T" of
FeSc2S4 !circles" and MnSc2S4 !triangles" at 90 MHz. Inset: the
line is a fit of a divergent behavior !TN=2 K" for MnSc2S4 !see
text".

FIG. 5. !Color online" Spin-lattice relaxation rates 1 /T1!T" of
FeSc2S4 !circles" and MnSc2S4 !triangles" at 90 MHz. Inset:
Arrhenius plot of 1 /T1!T" for FeSc2S4. The solid line fits an acti-
vated behavior 1 /T1&exp!−! /kBT" with !=0.2 meV.

BRIEF REPORTS PHYSICAL REVIEW B 73, 132409 !2006"

132409-3

N. Büttgen et al, PRB 73, 132409 (2006)



Exchange

• Largest interaction is just Heisenberg exchange

• More exchange processes contribute

Hex ≈
1
2

∑

ij

JijSi · Sj

J J J J+K



Minimal Model

• Neutron scattering 
suggests peak close to 
2π(100)

• Indicates J2 >> J1

• Recent LDA calculations 
confirm this 
microscopically (S. 
Sarkar  et al, 2010)
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73"','- &8(+()3,' -+3 ,'(."/*0/1
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FIG. 3: Wannier function plot of Fe dxy orbital for FCS (left
panel) and FSS (right panel). Plotted are the constant value
surfaces. Two opposite lobes of the wavefunctions are colored
differently.

TABLE I: Hopping matrix elements (in meV) of FSS and
FCS (first two values of each column respectively) and the
magnitude of their differences (third value of each column)
for the NN (

[

1

4

1

4

1

4

]

) and 2NN (
[

0 1

2

1

2

]

,
[

1

2
0 1

2

]

,
[

1

2

1

2
0
]

). The
matrix elements are listed for distinct entries only. 1,2,3,4
and 5 represent the five d orbitals, dxy, dyz, d3z2−1, dxz and
dx2−y2 respectively.

m,m′
[

1

4

1

4

1

4

] [

0 1

2

1

2

] [

1

2
0 1

2

] [

1

2

1

2
0
]

1,1 -3 60 63 43 12 31 43 12 31 -16 -13 3

2,2 -3 60 63 -16 -13 3 43 12 31 43 12 31

3,3 11 10 1 -6 -1 5 -6 -1 5 -21 2 23

4,4 -3 60 63 43 12 31 -16 -13 3 43 12 31

5,5 11 10 1 -16 1 17 -16 1 17 -1 -2 1

1,2 -10 -9 1 -22 11 33 46 17 29 22 -11 33

1,3 -22 -18 4 16 8 8 16 8 8 -11 -22 11

1,4 -10 -9 1 46 17 29 -22 11 33 22 -11 33

1,5 0 0 0 -18 3 21 18 -3 21 0 0 0

2,3 11 9 2 4 11 7 7 -7 0 -24 -1 23

2,4 -10 -9 1 22 -11 33 -22 11 33 46 17 29

2,5 -19 -16 3 -7 -19 12 23 5 18 5 8 3

3,4 11 9 2 -7 7 14 4 11 7 24 1 23

3,5 0 0 0 9 -2 11 -9 2 11 0 0 0

4,5 19 16 3 -23 -5 18 7 19 12 -5 -8 3

large value of the 2NN interaction can therefore generate
strong frustration.

Focusing on the hopping parameters listed in Table
I and their difference (shown in boldface), we find the
changes to be most significant within the t2 (dxy, dyz, dxz)
block of the Hamiltonian. As shown in the effective xy
Wannier function plots in Fig. 3, the tails of the Wannier
function corresponding to FCS show large weights sitting
at the Cr site, almost nothing at the S site while the tails
of the Wannier function for FSS show much less weight

at the Sc site, and somewhat larger weight at the S site.
The 1NN hopping path as marked in Fig. 4, consists of
Fe-B-Fe, Fe-S-Fe and S-B-S bond angles of about 60◦,
80◦ and 90◦ respectively, while the corresponding bond
angles for the 2NN hopping paths are found to be close
to 120◦, 130◦ and 90◦ respectively19. For the 1NN it is
therefore the direct Fe-B hybridization that becomes im-
portant, with anions playing little role while for the 2NN
interaction, the anion mediated (Fe-S-Fe) exchange be-
comes important. The 1NN interaction is strong in FCS
and the 2NN interaction is strong in FSS. This picture is
supported by the plot of the Wannier functions for two
1NN Fe sites (top left panel of Fig. 4) and two 2NN Fe
sites (bottom right panel of Fig. 4). For FCS, we find a
clear overlap of Cr-like tails between two Wannier func-
tions, while for FSS the S-like tails point to each other.

FIG. 4: (Color online) The 1NN and 2NN interaction path
between Fe atoms. Small dark and light balls represent B
(Sc/Cr) and S atoms respectively. Big dark and light balls
represent Fe atoms belonging to two FCC sublattices consti-
tuting the diamond lattice. The dashed line in dark and light,
represent the 1NN and 2NN paths respectively. The inset in
the upper-left corner shows the overlap of the Wannier func-
tions of Fe dxy placed at two Fe atoms in FSS separated by
2NN distance. Inset in the lower-right corner shows similar
plot for Fe atoms in FCS separated by 1NN distance.

The exchange interaction may be derived from the hop-
ping integrals through the use of a superexchange like
formula. This however needs the knowledge of the ap-
propriate charge transfer energy, which is difficult to es-
timate because of complicated hopping paths. We there-
fore preferred to compute the effective magnetic exchange
interactions between Fe ions in terms of total energy cal-
culations of different spin arrangements of Fe and map-
ping the total energies to an Ising like model defined in
terms of Fe spins. For this purpose, spin-polarized cal-
culations were carried out with a plane wave basis as
implemented in VASP and with the choice of the GGA
exchange-correlation functional. While admittedly such
calculations are faced with several difficulties like the
choice of spin configurations in supercells, particularly
since it involves small energies, it is expected to provide
us with relative strength of various exchange interactions



Minimal Model

• Neutron scattering 
suggests peak close to 
2π(100)

• Indicates J2 >> J1

!"#$%&'()*+$$"%,'- ,'(."/*0/12(/3,'(4,5#,6()$+$"

73"','- &8(+()3,' -+3 ,'(."/*0/1

9:(;%,<<"4 et al:=(>?@):(A"B:(C"$$:(94=(0DE1F0=(0FFG

Hmin = J2

∑

〈〈ij〉〉

Si · Sj + HSO

Expect MFT good in 3+1 dimensions



Quantum Critical Point

• Mean field phase diagram

λ/J2

T

2π(100) AF
Ferro OO

16

SO singlet

FeSc2S4



Predictions

• Large T=0 susceptibility (estimated)

• Scaling form for (T1T)-1 ∼  f(Δ/T)

• Specific heat Cv ∼ T3 f(Δ/T)

• Possibility of pressure-induced ordering

• Magnetic field suppresses order

• opposite to simple “dimer” 
antiferromagnet

✓

✓

✓



Conclusions on FeSc2S4

• Orbital degeneracy and spin orbit 
provides an exciting route to quantum 
paramagnetism and quantum criticality

• entangled spin-orbital singlet ground 
state in an S=2 magnet!

• Look in our papers for more details



Mott transition regime

• As correlations increase, 
SOC becomes increasingly 
important

• It can easily be at least 
comparable to effective 
bandwidth near the 
transition from metal to 
insulator

• Here all 3 effects: SOC, U, 
and W are comparable!

Metal TBI?

Mott II

Mott I

U/t

λ/t
schematic phase diagram 



5d Transition Metals

• 5d transition metal oxides are especially 
interesting 

• λ ~ 0.5 eV

• U ~ 1-2eV (5d orbitals rather extended)

• W ~ 1-4eV

• Together, SOC and U can conspire to 
produce Mott insulators



Iridates

• Ir is particularly interesting

• Most common valence Ir4+ is S=1/2 in 
octahedral coordination

• Interesting interplay of orbital and spin 
degeneracy

5d5



SOC for Ir4+

• Orbital angular momentum in the t2g 
manifold behaves like for p states

• As a consequence get effective j=1/2 state

• complex:

Pt2gLPt2g = −L!=1

j=1/2

j=3/2

3λ/2

|Jz = 1
2 〉 = 1√

3
[|xy〉|↑〉 + |xz〉|↓〉 + i|yz〉|↓〉]



SOC versus Hcf

• Spin orbit and non-cubic crystal fields 
compete to split orbital degeneracy

H = Hnon−cubic + HSOI

g
2

-2
λ/Δε

s=1/2 j=1/2



Some Iridates
material structure behavior

Sr2IrO4
single-layer 
perovskite AF Mott insulator

Na2IrO3 honeycomb lattice AF insulator

Na4Ir3O8 hyperkagome lattice spin-liquid Mott 
insulator

Ir2O4
spinel-based 
pyrochlore

small gap insulator

Ln2Ir2O7 pyrochlore MITs with magnetic 
Mott insulator



Issues

• J=1/2 or S=1/2 or in between?

• Mott or Slater insulators? 

• Are there non-trivial band topologies? 

• can topological insulator physics pertain 
to Mott insulators?

• How is the Mott transition affected by 
SOC?



Sr2IrO4

moved (e.g., by the Jahn-Teller effect), the orbital
angular momentum is totally quenched. How-
ever, when the spin-orbit coupling (SOC) becomes
effective, the CF states are mixed with complex
phases, which may partially restore the orbital
angular momentum in the t2g manifold. This ef-
fect is particularly pronounced in TMOs with
heavy 5d elements, where SOC is at least an
order of magnitude larger than those of TMOs
with 3d elements and can sometimes give rise
to unconventional electronic states.

5d TMO Sr2IrO4 is a layered perovskite with
low-spind5 configuration, in which five electrons
are accommodated in almost triply degenerate t2g
orbitals. Metallic ground states are expected in 5d
TMOs because of their characteristic wide bands
and small Coulomb interactions as compared
with those of 3d TMOs. Sr2IrO4, however, is
known to be a magnetic insulator (3, 4). A recent
study has shown that the strong SOC inherent to
5d TMOs can induce a Mott instability even in
such a weakly correlated electron system (5),
resulting in a localized state very different from
the well-known spin S = 1/2 state for conven-
tionalMott insulators, proposed to be an effective
total angular momentum Jeff = 1/2 state in the
strong SOC limit expressed as

jJeff ¼ 1=2,mJeff ¼ T1=2〉

¼ 1
ffiffiffi

3
p ðjxy,∓s〉∓jyz,Ts〉þ ijzx,Ts〉Þ ð1Þ

where m is the component of Jeff along the
quantization axis and s denotes the spin state.
This state derives from the addition of S = 1/2 to
the effective orbital angular momentum Leff = 1,
which consists of triply degenerate t2g states but
acts like the atomicL = 1 state with a minus sign;
that is, Leff = –L. As a result, Jeff = 1/2 has orbital
moment parallel to spin (6). Note the charac-
teristic equal mixture of xy, yz, and zx orbitals
with complex number i involved in one of the
factors and the mixed up-and-down spin states
(7).

This realization of a Mott insulator withJeff =
1/2 moment provides a new playground for
correlated electron phenomena, because emergent
physical properties that arise from it can be
drastically different from those of the conven-
tional Mott insulators. A prime example is when
Jeff = 1/2 is realized in a honeycomb lattice
structure where electrons hopping between Jeff =
1/2 states acquire complex phase; it generates a
Berry phase leading to the recent prediction of

quantum spin-Hall effect at room temperature (8),
and it also leads to the low-energy Hamiltonian of
Kitaev model relevant for quantum computing
(9). Experimental establishment of the Jeff = 1/2
state is thus an important step toward these
physics, and the direct probe of complex phase
in the wave function has been awaited. However,
it is usually difficult to retrieve the phase in-

formation experimentally, because it is always the
intensity, the square modulus of the wave func-
tion, that is measured; and thus a reference, with
which the state under measurement can interfere,
is required.

The resonant x-ray scattering (RXS) tech-
nique uses resonance effects at an x-ray absorp-
tion edge to selectively enhance the signal of

1Department of Advanced Materials, University of Tokyo,
Kashiwa 277-8561, Japan. 2Magnetic Materials Laboratory,
RIKEN Advanced Science Institute, Wako 351-0198, Japan.
3RIKEN SPring-8 Center, Sayo 679-5148, Japan. 4Department
of Physical Science, Hiroshima University, Higashi-Hiroshima
739-8526, Japan. 5Department of Physics, Kwansei-Gakuin Uni-
versity, Sanda 669-1337, Japan. 6Institute of Multidisciplinary
Research for Adavanced Materials, Tohoku University, Sendai
980-8577, Japan.

*To whom correspondence should be addressed. E-mail:
bjkim6@gmail.com (B.J.K.); htakagi@k.u-tokyo.ac.jp (H.T.)

Fig. 1. Schematic dia-
gram of the RXS pro-
cess. The electron makes
a trip from the initial to
the final state via multi-
ple paths of interme-
diate states and thereby
scatters a photon with
initial and final polariza-
tion of a and b, respec-
tively. The presence of
multiple scattering paths
can give rise to inter-
ferences among them,
which is reflected in the
intensity of the scattered
photon.

Initial state
photon+ground state

Intermediate states
core hole+electron

Final state
ground state+photon

Energy
Inteference between
X-rays from multiple
scattering channels

12.80 12.85 12.90
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1:1 intensity ratio at L3 and L2

Jeff=1/2 Model 
resonance only at L3 edge

L3 L2 L2L3

Fig. 2. Resonant enhancement of the magnetic reflection (1 0 22) at the L edge. (A) Solid lines are
x-ray absorption spectra indicating the presence of Ir L3 (2p3/2) and L2 (2p1/2) edges around 11.22
and 12.83 keV. The dotted red lines represent the intensity of the magnetic (1 0 22) peak (Fig. 3C).
Miller indices are defined with respect to the unit cell in Fig. 3A. (B) Calculation of x-ray scattering
matrix elements expects equal resonant scattering intensities at L3 and L2 for the S = 1/2 model.
For the Jeff = 1/2 model, in contrast, the resonant enhancement occurs only for the L3 edge, and
zero enhancement is expected at the L2 edge.
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REPORTS

resonant X-ray 
scattering 

clearly show 
J=1/2 state

BJ Kim et al, Science (2009).



Pyrochlore iridates

• Formula: Ln2Ir2O7

• both Ln and Ir atoms 
occupy pyrochlore 
lattices

• Cubic, FCC Bravais 
lattice

• Ln carry localized 
moments only important 
at low T

Introduction
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Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)
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pyrochlore oxides
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Metal-Insulator 
Transition

• Decreasing Ir-O-Ir bond 
angle makes more 
insulating

Phase Diagram
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TMI tends to increase as the ionic radius of 
Ln3+ becomes smaller.

The MIT temperature TMI does not depend on 
the de Gennes factor and the magnetism of Ln3+.

Electronic correlation effect is important.

・These MIT are a second-order transition.

・The resistivity depends on the ionic radius of Ln.

・The insulating phase involves a magnetic 

    ordering driven by 5d electrons.

Ln：heavy rare-earth  　　Mott insulator

Weak FM

A difference of M(T) between FC and ZFC

As Ir-O-Ir bond angle becomes decreases, 
t2g band width becomes narrower.

Ir

O

Ir

2

Phase Diagram

0

20

40

60

80

100

120

140

160

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

T
M

I (
K

)

Ln3+ ionic radius (Å)

Nd

Pr

Sm
Eu

Gd
Ln2Ir2O7

AFM
Insulator

PM
Metal

TbDyHo

MetalSemi-metalSemiconductor

Ir

Continuous Metal Insulator Transitions in Ln2Ir2O7

TMI tends to increase as the ionic radius of 
Ln3+ becomes smaller.

The MIT temperature TMI does not depend on 
the de Gennes factor and the magnetism of Ln3+.

Electronic correlation effect is important.

・These MIT are a second-order transition.

・The resistivity depends on the ionic radius of Ln.

・The insulating phase involves a magnetic 

    ordering driven by 5d electrons.

Ln：heavy rare-earth  　　Mott insulator

Weak FM

A difference of M(T) between FC and ZFC

As Ir-O-Ir bond angle becomes decreases, 
t2g band width becomes narrower.

Ir

O

Ir

2

K. Matsuhira et al, 2007



• octahedral Ir4+: (t2g)5

• effective l=1 orbital degeneracy

• Ir-O-Ir hopping 

• dominant Vpdπ channel

• Spin-orbit coupling

•  

• Hubbard U

Model

IrO

HSOI = −λ"L · "S



U=0 Band Structure
• 3 x 4 = 12 doubly 

degenerate bands

• λ<2.8t: overlap at Fermi 
energy: metal

• λ>2.8t: bands separate

• only j=1/2 states near 
Fermi energy

3

!
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-
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! . ! " ! # $

/
"
0+

FIG. 2: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin-orbit coupling, λ → ∞. Only the
relevant eight (four doubly degenerate) bands are shown. Energy is counted from λ. A band gap between the filled lower four
bands and empty upper four bands is clearly seen.

the energy difference between the Ir d and O p states. The dimensionless hopping matrices T ii′

αα′ , arising from the
Ir-O-Ir hopping path, taking into account the rotation between the local cubic axes of each Ir ion, are given in the
supplementary material.

Band structure: The Hamiltonian (1) contains two dimensionless parameters: λ/t and U/t, which define the phase
diagram in Fig. 4. It is instructive to consider first various simple limits. For U = 0, we have a free electron model,
which is of course exactly soluble. Due to inversion symmetry, one obtains in general 12 doubly degenerate bands.
For small λ/t, these overlap at the Fermi energy and one obtains a metal. For large λ/t, the upper 4 bands originating
from the j = 1/2 doublet become well-separated from the lower 8 bands. Because there are four holes per unit cell,
the upper 4 bands are half-filled in total. On inspection, we see (Fig. 2) that they exhibit a band gap, indicating
the formation of a band insulator at large λ. As shown by Fu and Kane, one can determine the band topology of
an insulator with inversion symmetry either from the parity of the Hamiltonian eigenstates at time-reversal invariant
momenta [19], or from the number of Dirac points on the surface of the insulator. Applying the first criterion (see
Supplemental material), we find that the large λ/t state is a pure “strong” TBI of the spinons (the weak Z2 invariants
vanish, consistent with cubic symmetry). We also calculated the surface state spectrum (Fig. 3), which shows the
required odd number of intersections with the Fermi level on passing between time reversal invariant surface momenta.
The behavior for general λ/t is as follows. For λ/t < 2.8, the one obtains a metallic state, while for λ/t > 2.8 the
bands separate at the Fermi energy. For almost all of this range of large λ/t, the system is a (strong) TBI. However,
an “accidental” closing of the band gap occurs at λ/t = 3.3, at which point it is a zero-gap semiconductor with 8
Dirac points located along the 〈111〉 directions in reciprocal space. Because the number of these Dirac points is even,
there is no change in band topology due to the gap closure.

Strong coupling limit: Now consider large U/t. In this limit, one has a Mott insulator, and the Hamiltonian
is effectively projected into the space of one hole per Ir site, and the system is described by a spin-orbit (Kugel-
Khomskii type) model. Superexchange leads to spin (and orbital) exchange of order J ∼ t2/U $ t. We see that
in this limit SOI is only weak if λ $ J $ t. Thus the strong SOI regime is greatly enhanced with increasing
correlations, as the relevant “bandwidth” for large U is exchange rather than hopping. Since the general spin-orbital
Hamiltonian is cumbersome, and only relevant for very weak SOI, we will focus only on the strong SOI regime. Here,
only the half-filled doublet at each site is relevant, and the effective Hamiltonian is of Heisenberg spin-exchange type,
with an effective spin 1/2 at each site. The derivation of the low-energy Hamiltonian by second order degenerate
perturbation theory is standard. It is customary to write the resulting Hamiltonian as a sum of isotropic exchange,
Dzyaloshinskii-Moriya (DM), and anisotropic exchange parts:

Hspin =
4t2

U

∑

ii′

[
− 19

243
+ J "Si

"Si′ + "Dii′ · "Si × "Si′ + "Si ·←→Γ ii′ · "Si′

]
(2)

The convention to make the choice of Dii′ unique is that i′ > i. Since all D’s and Γ’s are related by symmetry, it is

EF



Topological Band 
Insulator

• We can show using criteria developed by 
Fu and Kane that this is a “strong” 
topological band insulator

• Surface states 
4
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FIG. 3: Projected bulk spectrum (gray), and the surface spectrum (solid blue line) for a (010) surface. The spectrum is plotted
as a function of the surface wave vector ksurf ≡ (kx, kz) running from Γ̄ = (0, 0) to X̄ = (0, 2π).

enough to specify them for one bond only:

J =
49132
177147

,

!D01 =
7280
59049

(0, 1,−1) , (3)

and
←→
Γ 01 is negligibly small (see Supplementary material). Spin ordering in this model was considered in Ref. [20].

Our DM term corresponds to the “indirect” case of Ref. [20], and |D|/J ≈ 0.63, i.e. very large DM interactions. In
this case, a magnetically ordered ground state is expected, which breaks point group symmetries but does not enlarge
the unit cell.

Slave-Rotor approach: An exact or accurate numerical solution for the full phase diagram for Eq. (1) is very
challenging, especially at intermediate U/t. To study it, we employ the slave-rotor approximation of Ref. [21]. This
approach has a number of merits. It becomes exact for U/t = 0, and captures the bandwidth reduction with
increasing U/t. Its predictions for Hubbard models on other frustrated lattices without SOI at intermediate U/t are
in agreement with more controlled approaches such as the path integral renormalization group[22], Gutzwiller-type
variational wavefunctions[23], and the variational cluster method [24]. Since we will see that the Mott transition occurs
at smaller U/t with increasing λ/t, we expect that the slave-rotor approximation should be reasonable to describe it
for the full range of SOI. It clearly fails at large U/t, but we can substitute direct analysis of the spin-orbital model
in that limit.

To this end we decompose the physical electron annihilation operator as dRiα = e−iθRifRiα, where the angle θRi

is the conjugated variable to the number of electrons on site R, i (the “angular momentum” of the rotor), and the
“spinon” fRiα carries the rest of the degrees of freedom. The constraint LRi =

∑
α f†

RiαfRiα − nd, restricting the
physical part of the Hilbert space, is treated on average. Further, we use the mean-field decomposition of the hopping
term that couples the spinons and rotors according to AB → A 〈B〉+B 〈A〉. This Mean Field Theory (MFT) reduces
the Hamiltonian (1) to two uncoupled Hamiltonians for spinons and rotors:

Hf =
∑

Riα

(εα − µ− h)f†
RiαfRiα + t Qf

∑

〈Ri,R′i′〉
αα′

T ii′

αα′f†
RiαfR′i′α′

Hθ =
U

2

∑

Ri

L2
Ri + h(LRi + nd) + t Qθ

∑

〈Ri,R′i′〉

eiθRi−iθR′i′ . (4)

Here LRi = −i ∂
∂θRi

, the coordinate-independent Lagrange multiplier h is introduced to treat the constraint on the
angular momentum, and the couplings Qf and Qθ need to be determined self-consistently from Qf =

〈
eiθRi−iθRi′

〉
,

surface Dirac point
(100) surface



Phase Diagram

U/t

λ/t2.80
0 metal TBI



Very large U/t

• Heisenberg “spin” model for j=1/2 eigenstates

• This model has been extensively studied

• very large DM:

• Ground state for |D|/J > 0.3 is definitely 
magnetically ordered

• Q=0 magnetic state

Hspin =
4t2

U

∑

ii′

[
J !Si · !Si′ + !Dii′ · !Si × !Si′ + !Si ·←→Γ ii′ · !Si′

]
.

|D|/J =
5460
12283

√
2 ≈ 0.63

Elhajal et al, 2005

structures which are not obtained in the simulations.

This underlines that the magnetic structures observed in

the simulations are the result of an entropic selection by

thermal fluctuations !which are absent in the mean-field
treatment".
The structures found in the Monte Carlo simulations

are q=0 structures: the magnetic elementary cell is identical

to the crystallographic one !one tetrahedron". This justifies
the following mean-field approximation which assumes

a wave vector q=0 and will give the corresponding magnetic

structures which minimize the energy. The following

mean-field approach thus neglects any thermal fluctuation

!T=0" and consists of minimizing the energy of one tetrahe-
dron with respect to the spins coordinates !the eight

angles defining the directions of the four spins of one tetra-

hedron".
Doing so, one finds that there is a continuous degeneracy

of states which minimize the energy of one tetrahedron.

These states can be classified in two sets. The first

one is made of the coplanar states obtained in the Monte

Carlo simulations and have a continuous global degree

of freedom which is a global rotation in the plane !rotation
around z in Fig. 6". The second set of lowest-energy states
contains noncoplanar states which can be described starting

from a coplanar structure. Starting from the coplanar struc-

ture of Fig. 6, one can parametrize the noncoplanar states as

follows:

S1 =#cos ! cos$" !
#

4
% ,

cos ! sin$" !
#

4
% ,

sin!!" ,
&

S2 =#cos ! cos$! " +
#

4
% ,

cos ! sin$! " +
#

4
% ,

! sin!!" ,
&

S3 =#cos ! cos$! " !
3#

4
% ,

cos ! sin$! " !
3#

4
% ,

! sin!!" ,
&

S4 =#cos ! cos$" +
3#

4
% ,

cos ! sin$" +
3#

4
% ,

sin!!" ,
&

where the spins are labeled as in Fig. 2 and where " and !
are not independent,

! = arctan!'2 sin "" . !2"

As soon as Eq. !2" is true, the corresponding state is one
of the degenerate ground states. The state represented in Fig.

6 corresponds to !="=0. In Eq. !2", ! is restricted to

(!# /4 ,# /4); however, starting from a state equivalent to the
one of Fig. 6 but where the spins are coplanar in the !zx" or
!yz" plane, one can write down the same kind of parametri-
zation of lowest-energy states. Note that the degeneracy due

to the free choice of one of the two angles (! or " in Eq. !2")
corresponds to a global degree of freedom for the pyrochlore

lattice, so that the macroscopic degeneracy of the pyrochlore

antiferromagnet without DMI’s is lifted and thus a phase

transition due to DMI’s is expected already on a mean-field

level.

The conclusion of the mean-field treatment is thus that

the coplanar state represented in Fig. 6 is a ground state as

well as the equivalent coplanar states in the !zx" and !yz"
planes, and these three states can be obtained one from

another by distorting continuously the magnetic structure

while staying at the minimum of the energy. However, the

intermediate states are not coplanar. The structure !in phase
space" of the lowest-energy states is sketched in Fig. 7.
As we shall see, the planar and noncoplanar states are not

equivalent as soon as temperature is not zero: they all mini-

mize the energy but the thermal fluctuations will favour the

planar states.

Finally, the magnetic structures for the direct and indirect

cases are very different. There is, however, no reason for

them to be related on a frustrated !nonbipartite" lattice. For
instance, the magnetic structures for J$0 and J%0 are very
different on the pyrochlore lattice, the ferromagnetic system

being magnetically ordered, whereas the antiferromagnetic

has a spin-liquid ground state.

3. Order by disorder

This discrepancy between the two approaches !mean field
and Monte Carlo" is interpreted as an entropic effect: the
mean-field approach neglects the thermal fluctuations and

identifies the ground states with the minima of the energy.

However, the fluctuations around the different minima are

not equivalent. Some of them are entropically favorable, and

FIG. 6. Ground state in the case of indirect DMI’s. The ground

state for the whole pyrochlore lattice is a q=0 structure so that only

one tetrahedron is represented. Similar structures in the zx and yz

planes are degenerate. Other noncoplanar states have the same en-

ergy but do not participate in the low-temperature properties !order
by disorder; see text".

ORDERING IN THE PYROCHLORE ANTIFERROMAGNET… PHYSICAL REVIEW B 71, 094420 !2005"

094420-5



Phase Diagram

U/t

λ/t2.80
0 metal TBI

Magnetic order

?



Intermediate U
• Slave-rotor approximation

• Seems to give qualitatively reasonable results 
for frustrated Hubbard models (triangular, 
checkerboard, hyperkagome) in agreement 
with several numerical approaches

• Does not describe nesting/SDW physics

• Simple to implement

• Decouple to produce independent MF 
dynamics for rotors (charge) and spinons

• Should be solved self-consistently 

c†a = eiθf†
a

Florens, Georges (2004)
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Topological Mott 
Insulator

• A U(1) spin liquid

• Gapless photon

• Stable only in 3d

• Gapless “topological spin 
metal” at surface

• Magnetic monopole 
excitations carry spin or 
charge?
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metal-TBI transition
• Long-range Coulomb: excitons
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λ/t2.80
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metal TBI

Magnetic order

TMI

G
M

I

7.6

3.8

probably weakly magnetic

c.f. Halperin, Rice (1968)



Back to iridates

• Experiments show continuous T>0 MITsIntroduction
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Back to iridates

• Experiments show continuous T>0 MITs

Anomaly in magnetization at TMI
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・The anomalies observed at TMI have a commonality. 
An ordering from 5d electrons.
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metal-TBI transition
• Perhaps consistent with an excitonic state?
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this transition? probably too optimistic!



Other possibilities?

• X. Wan et al predict an antiferromagnetic 
Mott state using LSDA+U+SO methods, 
and find a non-topological band structure

• A. Vishwanath et al find that at intermediate 
U/W a magnetic “semimetal” with 3d Dirac 
nodes obtains

• Clearly more experiments are needed 
here!



Conclusions
• Spin-orbit interactions become increasingly 

important with increased correlations due 
to reduction in effective bandwidth

• especially true in situations with orbital 
degeneracy

• Interesting new phases and transitions 
possible in 5d TMOs

• How long until interacting versions of TIs 
are discovered?
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