S PIN LIQUIDS, STRIPES, AND THE PSEUDOGAP IN THE HUBBARD MODEL AT FINITE TEMPERATURE Collège de France

Alexander Wietek 06/03/2021

arXiv:2009.10736 Phys. Rev. X (2021)(to appear)

The Hubbard model at strong coupling

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Weak coupling: $U/t \leq 2$ metals, Fermi liquids

Strong coupling: $U/t \gtrsim 6$ insulators, antiferromagnets

Cuprate phase diagram

Stripe physics in hole-doped antiferromagnets

Antiferromagnetism at half-filling

Hole-doping an antiferromagnet

Hole-doping an antiferromagnet

Stripe order

Stripe order

Change of antiferromagnetic domain at maximum in hole density

Stripes in the Hubbard model

Proposed within Hartree-Fock approximation

[D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749(R), (1989)] [J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391(R) (1989)]

Early evidence in DMRG simulations (T = 0) of the t - J model ($U/t \rightarrow \infty$ limit)

[White, Scalapino, Phys. Rev. Lett. 80, 1272, (1998)]

[White, Scalapino, Phys. Rev. B 60, R753(R), (1999)]

Stripes in the Hubbard model

Stripes at T = 0, p = 1/8, U/t = 8, t'/t = 0

[Zheng et al., Science 358, 6367 (2017)]

[White Scalapino, Phys. Rev. Lett. 91, 136403 (2003)]
[Ehlers et al., Phys. Rev. B 95, 125125 (2017)]
[LeBlanc et al., Phys. Rev. X 5, 041041 (2015)]
[Jiang et al., Phys. Rev. Research 2, 033073 (2020)]

▶ ... and at T/t = 0.22, p = 1/8, U/t = 6, t'/t = -0.25

[Huang et al., npj Quant Mater 3, 22 (2018)]

Stripes, antiferromagnetism, and the pseudo gap in the doped Hubbard model at finite temperature

A. Wietek, Y.-Y. He, S. R. White, A. Georges, E. M. Stoudenmire

Phys. Rev. X (2021)(to appear) arXiv:2009.10736

Numerical methods

Green's function methods

Diagrammatic QMC Cluster DMFT

METTS

Decomposition of density matrix into typical pure states

$$\langle \mathcal{O} \rangle = \frac{1}{\mathscr{Z}} \operatorname{Tr}(\mathrm{e}^{-\beta H} \mathcal{O}) = \frac{1}{\mathscr{Z}} \sum_{i} p_i \langle \psi_i | \mathcal{O} | \psi_i \rangle \quad \text{with} \quad p_i \ge 0$$

Minimally-Entangled Typical Thermal State

[White, Phys. Rev. Lett. 102, 190601 (2009)] [Stoudenmire, White, New J. Phys. 12, 055026 (2010)]

$$|\psi_i\rangle = \frac{1}{\sqrt{p_i}} e^{-\beta H/2} |\sigma_i\rangle , \quad |\sigma_i\rangle = |\sigma_i^1\rangle |\sigma_i^2\rangle ... |\sigma_i^N\rangle , \quad p_i = \langle\sigma_i|e^{-\beta H}|\sigma_i\rangle \ge 0$$

Algorithm: random sampling of the states $|\psi_i\rangle$

T/t = 0.100

T/t = 0.025

Magnetic and Charge ordering

▶ Specific Heat

$$C = \frac{\mathrm{d}E}{\mathrm{d}T}$$

Magnetic susceptibility

$$\chi_{\rm m} = \frac{{\rm d}M}{{\rm d}H} \bigg|_{H=0}$$

The pseudogap regime

Region where Fermi surface is partially gapped

temperature strange 1) Pseudogap Metal normal Metal superconductor

hole-doping

The pseudogap regime

Point temperature T^* as a maximum in the magnetic susceptibility

Momentum distribution function

Electron correlations

Energy gaps

Spin gap
$$\Delta_{\rm S} = E_0(m+1,m-1) - E_0(m,m)$$

- Single particle gap $\Delta_{
 m C}^{(1)}$
- ▶ Charge gap $\Delta_{\rm C}^{(2)}$
- Computed using ground state DMRG
- Charge gap vanishes, spin and single particle gap remain finite

Computational technique: Minimally entangled thermal typical states

Phys. Rev. X (2021)(to appear) arXiv:2009.10736

METTS

Decomposition of density matrix into typical pure states

$$\langle \mathcal{O} \rangle = \frac{1}{\mathscr{Z}} \operatorname{Tr}(\mathrm{e}^{-\beta H} \mathcal{O}) = \frac{1}{\mathscr{Z}} \sum_{i} p_i \langle \psi_i | \mathcal{O} | \psi_i \rangle \quad \text{with} \quad p_i \ge 0$$

Minimally-Entangled Typical Thermal State

[White, Phys. Rev. Lett. 102, 190601 (2009)] [Stoudenmire, White, New J. Phys. 12, 055026 (2010)]

$$|\psi_i\rangle = \frac{1}{\sqrt{p_i}} e^{-\beta H/2} |\sigma_i\rangle , \quad |\sigma_i\rangle = |\sigma_i^1\rangle |\sigma_i^2\rangle ... |\sigma_i^N\rangle , \quad p_i = \langle\sigma_i|e^{-\beta H}|\sigma_i\rangle \ge 0$$

Algorithm: random sampling of the states $|\psi_i\rangle$

Tensor network methods

Density matrix renormalization group (DMRG) for studying ground states

[S. R. White, Phys. Rev. Lett. 69, 2863 (1992)] [S. R. White, Phys. Rev. B 48 (1993)]

Finite-temperature calculations have been deemed challenging

Imaginary-time evolution

Computing the imaginary-time evolution accurately is the key challenge

$$|\psi_i\rangle = \frac{1}{\sqrt{p_i}} \mathrm{e}^{-\beta H/2} |\sigma_i\rangle$$

▶ Key algorithmic breakthrough: time dependent variational principle (TDVP)

[Haegemann et al., Phys. Rev. Lett. 107, 070601 (2011)] [Haegemann et al., Phys. Rev. B 94, 165116 (2016)] [Yang, White, Phys. Rev. B 102, 094315 (2020)] [Paeckel et al., Ann. Phys. 411, 167998 (2019)]

Imaginary-time evolution using TEBD + TDVP, together with accurate Lanczos-based exponential integrators.

Imaginary-time evolution

- $^{\triangleright} \left| \psi_{i} \right\rangle \propto \mathrm{e}^{-\beta H/2} \left| \sigma_{i} \right\rangle$
- Time step size au
- Cutoff *e* in singular value decomposition (controls bond dimension)

Validation with other methods

AFQMC, half-filling, U/t = 10

ED / TPQ, U/t = 10

Validation with other methods

DQMC, T/t = 0.22, p = 1/8, t'/t = -0.25, U/t = 6

Summary

- First application of the METTS algorithm to simulate the 2D (1.5D) Hubbard model
- Access to a broad temperature regime
- Determine onset temperature of stripes
- Antiferromagnetism in the pseudogap regime
- Single-particle gap smallest at nodal point
- Vanishing charge gap

Outlook

Exploring the cuprate phase diagram

"Handshake" with other methods

Mott insulating states with competing orders in the triangular lattice Hubbard model

A. Wietek, R. Rossi, F. Simkovic, M. Klett, P. Hansmann, M. Ferrero, E. M. Stoudenmire, T. Schäfer, A. Georges arXiv:2102.12904

Collaborators:

arXiv:2009.10736

Yuan-Yao He

Steven R. White

Edwin M. Stoudenmire

Antoine Georges

Thank you for your attention!

The METTS algorithm

Step 3: choose new product state $|\sigma_{i+1}\rangle$ according to probability $|\langle \psi_i | \sigma_{i+1} \rangle|^2$

Validation with other methods

AFQMC, half-filling, U/t = 10

ED / TPQ, U/t = 10

▶ Specific Heat

$$C = \frac{\mathrm{d}E}{\mathrm{d}T}$$

Magnetic susceptibility

$$\chi_{\rm m} = \frac{{\rm d}M}{{\rm d}H} \bigg|_{H=0}$$

Superconductivity?

No superconductivity at T = 0, p = 1/8, U/t = 8 from DMRG and AFQMC

[Qin et al., Phys. Rev. X 10, 031016 (2020)]

$$T/t = 0.50, p = 0$$

$$T/t = 0.50, p = 1/6$$

$$T/t = 0.10, p = 0$$

$$T/t = 0.10, p = 1/6$$

$$T/t = 0.10, p = 1/6$$

$$T/t = 0.10, p = 1/6$$

$$T/t = 0.02, p = 0$$

$$T/t = 0.02, p = 0$$

$$T/t = 0.02, p = 1/6$$

$$\Delta \equiv 1 - |\langle \psi^{\text{MPS}} | \psi^{\text{ED}} \rangle|^2,$$

[Huang et al., npj Quant Mater 3, 22 (2018)]

Energy gaps

Spin gap
$$\Delta_{\rm S} = E_0(m+1,m-1) - E_0(m,m)$$

- Single particle gap $\Delta_{
 m C}^{(1)}$
- ▶ Charge gap $\Delta_{\mathsf{C}}^{(2)}$
- Computed using ground state DMRG
- Charge gap vanishes, spin and single particle gap remain finite

"Handshake" among numerical methods

T/t = 0.1

Potenial energy:

$$E_{\text{pot}} = U \sum_{i} \langle \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \rangle$$

Kinetic energy:

$$E_{\text{kin}} = -t \sum_{\langle i,j\rangle,\sigma} \left\langle \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \hat{c}_{j\sigma}^{\dagger} \hat{c}_{i\sigma} \right\rangle.$$

The triangular lattice Hubbard model

arXiv.org > cond-mat > arXiv:2009.10736

Search...

Help | Advanced

Condensed Matter > Strongly Correlated Electrons

[Submitted on 22 Sep 2020]

Stripes, Antiferromagnetism, and the Pseudogap in the Doped Hubbard Model at Finite Temperature

Alexander Wietek, Yuan-Yao He, Steven R. White, Antoine Georges, E. Miles Stoudenmire

 $|\psi_i\rangle =$

 $|\psi_i\rangle =$

