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Solve the Quantum Many-Body Problem ?  2

Exact diagonalization  
(small systems)

Tensor network  
(DMRG, …)

Machine Learning 
Quantum Monte Carlo  

(auxiliary field)

High order perturbation theory  
“diagrammatic” QMC

Quantum Embedding methods  
(DMFT and beyond) 

…

High-Tc cuprate superconductors 

Hubbard model



DMFT family tree [lecture 1]  3
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What is missing in DMFT ?

• Short range spatial correlations

• Control : small parameter ?
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} Cluster DMFT



• Short range fluctuations. K-dependence of self-energy. 

• Control parameter = size of cluster / momentum resolution 

Cluster DMFT  5

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Reciprocal space  
Brillouin zone patching Real space
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

• A few atoms + self-consistent bath

T

δ

A lot of authors & works e.g. Capone, Civelli, 
Ferrero, Georges, Gull, Haule, Imada, Jarrell, 

Kotliar, Lichtenstein, Katsnelson, Maier, Millis, 
Tremblay, Werner, OP, ...

• Pseudo-gap (node vs antinode, Fermi Arcs), d-wave SC dome

Hubbard model & high Tc superconductors

• But solving large clusters is hard, specially at low T.



What is missing in (cluster) DMFT ?

• Short range spatial correlations

• Control : small parameter ?

• Long range correlations / interactions

• Feedback of low energy collective modes 
onto one particle properties.

• e.g. at quantum critical points (beyond Hertz-Millis theory)
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} Cluster DMFT

Vertex methods  
(Trilex, DGA,  
Quadrilex).  
See also EDMFT, GW + DMFT

}
Let us look at a simpler problem …



Weak coupling 2d Hubbard model

• Half filled. 

• DMFT has AF order (mean field).

• Mermin-Wagner theorem 
long range AF fluctuations.
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ξ ∼ ea/T

• AF fluctuations destroys the Fermi liquid, opens pseudogap  
(Vilk-Tremblay 1997)
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Goal : Mott physics & long range fluctuations  8

T

CDW

• Mott physics & short range 
correlations 

• Cluster DMFT.

Doped Mott  
insulators

Spin Fluctuation  
Theory

Formalism with  
 Spin Fluctuation theory at weak coupling & (cluster) DMFT at strong coupling ?

• Effect of AF fluctuations

Pines ’90,  
Chubukov ’92,  ...

Anderson ’87,  
Kotliar Liu ’88, ...

G

W spW sp

Σ(k, iω) ≈

  

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

Our strategy:

Vertex corrections within a controlled approximation
while keeping Mott physics 



as we have done for the corresponding energies. This,
however, is far from trivial because during the photo-
emission process itself the system will relax. The prob-
lem simplifies within the sudden approximation, which is
extensively used in many-body calculations of photo-
emission spectra from interacting electron systems and
which is in principle applicable only to electrons with
high kinetic energy. In this limit, the photoemission pro-
cess is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system
left behind (in other words, an electron is instanta-
neously removed and the effective potential of the sys-
tem changes discontinuously at that instant). The
N-particle final state ! f

N can then be written as

! f
N!A "f

k ! f
N"1, (6)

where A is an antisymmetric operator that properly an-
tisymmetrizes the N-electron wave function so that the
Pauli principle is satisfied, "f

k is the wave function of the
photoelectron with momentum k, and ! f

N"1 is the final
state wave function of the (N"1)-electron system left
behind, which can be chosen as an excited state with
eigenfunction !m

N"1 and energy Em
N"1 . The total transi-

tion probability is then given by the sum over all pos-
sible excited states m . Note, however, that the sudden
approximation is inappropriate for photoelectrons with
low kinetic energy, which may need longer than the sys-
tem response time to escape into vacuum. In this case,
the so-called adiabatic limit, one can no longer factorize
! f

N into two independent parts and the detailed screen-
ing of photoelectron and photohole has to be taken into
account (Gadzuk and S̆unjić, 1975). In this regard, it is
important to mention that there is evidence that the sud-
den approximation is justified for the cuprate high-
temperature superconductors even at photon energies as
low as 20 eV (Randeria et al., 1995; Sec. II.C).

For the initial state, let us assume for simplicity that
! i

N is a single Slater determinant (i.e., Hartree-Fock for-
malism), so that we can write it as the product of a one-
electron orbital "i

k and an (N"1)-particle term:

! i
N!A "i

k ! i
N"1. (7)

More generally, however, ! i
N"1 should be expressed as

! i
N"1!ck! i

N , where ck is the annihilation operator for
an electron with momentum k. This also shows that
! i

N"1 is not an eigenstate of the (N"1) particle Hamil-
tonian, but is just what remains of the N-particle wave
function after having pulled out one electron. At this
point, we can write the matrix elements in Eq. (4) as

#! f
N!Hint!! i

N$!#"f
k!Hint!"i

k$#!m
N"1!! i

N"1$ , (8)

where #"f
k!Hint!"i

k$%Mf ,i
k is the one-electron dipole ma-

trix element, and the second term is the (N"1)-electron
overlap integral. Note that here we replaced ! f

N"1 with
an eigenstate !m

N"1 , as discussed above. The total pho-
toemission intensity measured as a function of Ek in at a
momentum k, namely, I(k,Ek in)!&f ,iwf ,i , is then pro-
portional to

&
f ,i

!Mf ,i
k !2&

m
!cm ,i!2'(Ek in#Em

N"1"Ei
N"h )*, (9)

where !cm ,i!2! "#!m
N"1!! i

N"1$ "2 is the probability that
the removal of an electron from state i will leave the
(N"1)-particle system in the excited state m . From this
we can see that, if ! i

N"1!!m0

N"1 for one particular state
m!m0 , then the corresponding !cm0 ,i!2 will be unity
and all the other cm ,i zero; in this case, if Mf ,i

k +0, the
ARPES spectra will be given by a delta function at the
Hartree-Fock orbital energy EB

k !",k , as shown in Fig.
3(b) (i.e., the noninteracting particle picture). In
strongly correlated systems, however, many of the !cm ,i!2

will be different from zero because the removal of the
photoelectron results in a strong change of the systems
effective potential and, in turn, ! i

N"1 will overlap with
many of the eigenstates !m

N"1 . Thus the ARPES spec-
tra will not consist of single delta functions but will show
a main line and several satellites according to the num-
ber of excited states m created in the process [Fig. 3(c)].

This is very similar to the situation encountered in
photoemission from molecular hydrogen (Siegbahn
et al., 1969) in which not simply a single peak but many
lines separated by a few tenths of eV from each other

FIG. 3. Angle-resolved photoemission spetroscopy: (a) geometry of an ARPES experiment in which the emission direction of the
photoelectron is specified by the polar (- ) and azimuthal (.) angles; (b) momentum-resolved one-electron removal and addition
spectra for a noninteracting electron system with a single energy band dispersing across EF ; (c) the same spectra for an interacting
Fermi-liquid system (Sawatzky, 1989; Meinders, 1994). For both noninteracting and interacting systems the corresponding ground-
state (T!0 K) momentum distribution function n(k) is also shown. (c) Lower right, photoelectron spectrum of gaseous hydrogen
and the ARPES spectrum of solid hydrogen developed from the gaseous one (Sawatzky, 1989).

478 Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

Reminder : one particle Green functions  9

G(x, τ) = − i⟨Tτc(x, τ)c†(0,0)⟩

Quasi-particle peak

Correlated Fermi liquid

• Experiments : Photoemission (ARPES). STM.

• In Fermi liquid, at low energy,  Σ encodes properties of the quasi-
particles, e.g. effective mass, quasi-particle weight, lifetime.

Self-energy

A(k, ω) = −
1
π

ImGR(k, ω)

Σ = G−1
0 − G−1



Two particle physics in DMFT ?  10

G�imp(⌧) ⌘ �
⌦
Tc�(⌧)c

†
�(0)

↵
Seff

• DMFT : self-consistent problem on one-particle Green function

• Questions : 

• Part I : How to compute susceptibilities in DMFT ? transport ?

• Part II : Self-consist on two-particle Green function ?  U ?

Σσ latt(k, iωn) = Σσ imp(iωn)

Se↵ = �
ZZ �

0
d⌧d⌧ 0c†�(⌧)G�1

� (⌧ � ⌧ 0)c�(⌧
0) +

Z �

0
d⌧ Un"(⌧)n#(⌧)

<latexit sha1_base64="dtTsmEb5aJigSX1DXMeIeuEnon8="></latexit>

Δ = t2G
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 Part I 

Susceptibility in DMFT



Static susceptibility

• Static susceptibility at simple q :  solve DMFT in ordered phase

 12

χ ∝
∂m
∂h

|h=0

• Need a more general method for 

• Frequency dependency

• Momentum dependency (incommensurate order)

• General χ tensor (multiple possible instability)



Kubo formula

• Quantum linear response theory 
Response of operator A to a field coupled to B
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χAB(t − t′�) = − iθ(t − t′�)⟨[A(t), B(t′�)]⟩

        E.g. : susceptibilities                                , conductivity (A = B = J)

• Requires the computation of two-particle Green functions

A = Aabc†
acb B = Bcdc†

c cd

• A, B : quadratic in the fundamental operators

∼ ⟨c†
a(t)cb(t)c†

c (0)cd(0)⟩

A = B = ∑
iσ

(−1)σc†
σicσi



Two particle Green functions  14

G(2)
āab̄b

(x1, x2, x3, x4, τ1, τ2, τ3, τ4) ≡ − i⟨Tτc†
ā(x1, τ1)ca(x2, τ2)c†

b̄
(x3, τ3)cb(x4, τ4)⟩

a,b : multi-index orbital, spin 

• Definition

• Rank 4 tensor, with 3 frequencies/momenta

• Non interacting case (Wick theorem)

+=G(2)
āab̄b

ā

a b̄

b ā

a b̄

b

G0aāG0bb̄ −G0ab̄G0bā

G(2)
āab̄b

(k, k′ �, q, ν, ν′�, ω) =

q, ω

ā, k + q, ν + ω b, k′�+ q, ν′�+ ω

a, k, ν b̄, k′�, ν′�
G(2)



Two particle Green functions  15

G(2)
āab̄b

(x1, x2, x3, x4, τ1, τ2, τ3, τ4) ≡ − i⟨Tτc†
ā(x1, τ1)ca(x2, τ2)c†

b̄
(x3, τ3)cb(x4, τ4)⟩

ā, k + q, ν + ω b, k′�+ q, ν′�+ ω

a, k, ν b̄, k′�, ν′�
G(2)

a,b : multi-index orbital, spin 

• Definition

• Rank 4 tensor, with 3 frequencies/momenta

• Perturbative expansion

+=G(2)
āab̄b

ā

a b̄

b ā

a b̄

b
F

ā

a b̄

b
+

reducible vertex FGaāGbb̄ −Gab̄Gbā

G(2)
āab̄b

(k, k′ �, q, ν, ν′�, ω) =

Full propagator

• In Fermi liquid, interactions between quasi-particles.

q, ω



Generalized susceptibilities  16

• Susceptibility : contract with A and B, sum over frequencies/momenta

• Generalized susceptibility (remove disconnected part,  <A>)

=
ā

a b̄

b
F

ā

a b̄

b
+χ̃āab̄b

χ̃0 āab̄b

χ(q, ω) = ∑
νν′�kk′�

χ̃āab̄b(q, k, k′�, ω, ν, ν′�)Aāa(k)Bb̄b(k′�)

χAB(q, ω) = A B
q, ω q, ω

A B
q, ω q, ωF+

Lindhard function Vertex corrections



Reminder : Dyson Equation  17

• Dyson equation for the one particle Green function

G = + Σ + +Σ Σ Σ Σ Σ +…

Σ = G−1
0 − G−1G = G0 + G0ΣG

• Self-energy : 1PI (particle irreducible) diagrams



Bethe-Salpeter equation  18

Fνν′ �ω
aābb̄;kk′�q = Γνν′ �ω

aāb;̄kk′ �q + ∑
cc̄dd̄,k1,ν1

Γνν1ω
abāb̄;kk1q

χ̃ν1ω
0cc̄dd̄,k1k1q

Fν1ν′ �ω
dd̄bb̄;k1k′ �q

b̄

b
= +Γ Γ FF

ā

a b̄

b

a

ā

b̄

b

a

ā

d

d̄

c̄

c

•                              : Irreducible vertex in the particle-hole channelΓaābb̄(k, k′�, q, ν, ν′�, ω)

• Reducibility in particle-hole channel

a, k + q, ν + ω b̄, k′�+ q, ν′�+ ω

ā, k, ν b, k′�, ν′�

• Matrix equation  
grouping indices 
 
diagonal in (q,ω)

I = (a, ā, k, ν) J = (b, b̄, k′�, ν′�)

F = Γ + Γχ̃F



Bethe-Salpeter equation

• Relation (exact) between the irreducible vertex Γ and χ

 19

= + + + …Γ Γ Γχ̃
χ̃0

χ̃ = χ̃0 + χ̃0Γχ̃ ⟺ Γ = χ̃−1 − χ̃−1
0

• Approximations for Γ

• RPA : 

• DMFT ?

Γ ∝ U



DMFT  20

Cf. A. Georges et al.  
Rev. Mod. Phys.1996

Φ[G] ≈ ∑
i

ϕatomic[Gii]

• DMFT : atomic approximation of Luttinger-Ward functional 

Γlattice
ijkl =

δ2Φ
δGjiδGlk

• The irreducible vertex Γ 

Σlatt
ij =

δΦ
δGji

= δijΣimp

• Impurity model : auxiliary problem to solve the approximation.

Γlattice(k, k′�, q, ν, ν′�, ω) ≈ Γimp(ν, ν′�, ω)

Γlattice
ijkl ≈ δi=j=k=lΓimp

• In DMFT susceptibilities



Susceptibilities in DMFT  21

Cf. A. Georges et al.  
Rev. Mod. Phys.1996

χ̃−1
lattice = Γlattice + χ̃−1

lattice,0Γimp = χ̃−1
imp − χ̃−1

imp,0

• Solve DMFT

• Compute impurity two-particle functions

• Use BSE for impurity and lattice

Gimp

χ̃imp

Γimp Γlattice

G(2)
imp

χ̃imp,0 χ̃lattice χlattice(q, ω)

Numerically harder  
  e.g. noise control in BSE inversion.}

Does not feedback in DMFT self-consistency loop

M. Jarrell et al., ‘90



Are vertex corrections important ?

• Magnetic susceptibility 

• Non interacting case. Lindhard function 

• Mott insulator: charge gap vs low energy spin excitations

• Conductivity

• Cancellation of vertex corrections by symmetry in DMFT
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χcharge = χspin ∝ G0G0

χAB(q, ω) =
q, ω q, ω q, ω q, ω

F+



Simple example

• 1 band Hubbard model, 2d square lattice, DMFT.
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M. Jarrell 92  
Curves from T. Schaefer

χ(q = (π, qy), ω = 0)

π

χ(q, iΩ0) =
A

(q − QAF)2 + ξ−2

Ornstein-Zernike form
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Sr2RuO4
 24

χab(q, ω = 0)

Magnetic susceptibility

Cf  Talk by Hugo Strand  
ArXiv:1904.07324

• Ab initio : DFT + DMFT

Hall effect

Cf  Talk by Manuel Zingl  
ArXiv:1902.07324

• Origin of sign change  
of Hall coefficient with T ?
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Figure 1. Sketch of the temperature dependence of the Hall coefficient RH (solid line) and the

different transport/electronic regimes in Sr2RuO4 after experimental data from Refs. [4–6]. RH

changes sign twice at about 30 and 120K, which can be suppressed by adding small amounts of Al

impurities (dashed lines) [6].

10

• Structure of magnetic excitations ?
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Cluster DMFT susceptibilities: examples on Hubbard model
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Knight shift, ref. 37 identifies T! based on cluster susceptibility,
whose doping dependence is not consistent with NMR
experiment.)

Figure 2 expands further upon the data in Fig. 1, including
additional doping levels at x¼ 0.0178 and x¼ 0.0585 for
temperatures above the superconducting Tc and below T!

Ks
as

an Arrhenius plot. Once a gap has fully opened, the resulting
curves become straight lines within uncertainties, allowing us to
interpret our data as thermal excitations over a rigid gap and to
extract an energy scale from the slopes using wm(T)¼
w0 exp( # Dpg(2p)/T). The inset of Fig. 2 shows the comparison
between the pseudogap energy determined by this method (open
symbols) and the corresponding pseudogap energy extracted
from the peak-to-peak distance of the single particle spectral
function at the antinode (filled symbols). The two energy gaps are
proportional as a function of doping. The distinct energy scales
are however expected since Dpg(2p) averages over the Brillouin
zone while Dpg(1p) only considers the antinodal momenta. As a
result, their actual gap values in this case differ by a factor of 75,
independent of doping. Similar comparisons for experimental
data on YBa2Cu4O8 yield values of Dpg(1p)E150meV and
Dpg(2p)¼ 7.75meV, a difference of a factor of 20 (refs 5,7,40–42).
Potentially, a quantitative comparison of this ratio to experiment
it might allow for a more precise determination of model
parameters than considering single-particle properties alone.

Spin echo decay time. Figure 3 shows the spin echo decay time
T2G, a measure of indirect spin–spin coupling, calculated
according to equation (5). Owing to the divergence of lattice
susceptibility near (p , p ), we use the cluster susceptibility. This
quantity shows a linear rise with temperature in the normal state
and increases as doping is increased. The inset of Fig. 3 plots these
data as T # 1

2G , the spin echo decay rate. T # 1
2G becomes less tem-

perature dependent as more charge carriers are added. Otherwise,
and consistent with experiment, T2G is rather featureless in the
normal state and shows no marked change upon entering the
pseudogap region.

The linear increase of T2G depicted in Fig. 3 is similar to data
obtained on YBa2Cu4O8 in NMR experiments reported in Fig. 3

of ref. 43 and Fig. 3 of ref. 44, and NQR experiment (Fig. 4 of
ref. 30). The change of magnitude of a factor of 4 from 100 to
700K is comparable in this calculation and experiment. The
increase of T # 1

2G as charge carriers are added is similarly observed
in YBa2Cu3O7 # x experiment, see, for example, Fig. 8 of ref. 45
and Fig. 11 of ref. 18. We find no indication of a change of slope
around B500K as discussed in Fig. 4 of ref. 30.

Spin relaxation rate. Figure 4 shows the simulated spin-lattice
relaxation rate multiplied by the inverse temperature, (T1T) # 1, as
a function of T for three dopings (see equation (6)) with structure
factors corresponding to copper and oxygen nuclei. All results are
obtained at an interaction strength of U ¼ 6t using the cluster
susceptibility. (T1T) # 1 for 63Cu (solid line) rises rapidly when
temperature is reduced. As doping is reduced, the value of
(T1T) # 1 decreases, and no clear indication of the pseudogap
onset temperature is visible. In contrast, (T1T) # 1 for 17O (solid
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Figure 2 | Extracting pseudogap energy scales. Extraction of Dpg(2p) from
Knight shift data via wm(T)¼ w0 exp( # Dpg(2p)/T). Open symbols: data of
Fig. 1 plotted as log(wm) versus b. Dashed lines: linear fits to the data in
exponentially decaying regime. Inset: comparison between pseudogap
energy extracted from the slope of Arrhenius plot (open symbols, right y
axis) and from the single particle spectral function at K¼ (0, p) (filled
symbols, left y axis).
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1
T1T

1
T1T

∝ lim
ν→0 ∑

q

f (q)
χ′�′ �(q, ν)

ν

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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Part II

Beyond (cluster) DMFT

Trilex, DΓΑ, Quadrilex
 

A self consistent approximation at the two-particle level
 

Toschi et al. (2007)
 

T. Ayral et al. (2015-2016)



Functionals

• A general method in statistical physics:

• Find relevant physical quantity X

• Build a functional Γ(X) using Legendre transforms.

• Approximate the “complicated” part of Γ(X)

• Examples:

• magnetic transition X =m

• Density functional theory X = ρ(x), electronic density

• DMFT, X = G

 27

Trilex, Quadrilex, DΓA  
X = Some two-particle Green function



DMFT 

• Hubbard model action.  Add a quadratic source h

 28

• Legendre transform to eliminate h for G.

• Free energy is a function of h

S =

Z
d⌧d⌧ 0

X

ij

c†
i�(⌧)

⇣
g�1
0ij + hij

⌘
(⌧ � ⌧ 0)c�j(⌧

0) +

Z
d⌧U

X

i

ni"(⌧)ni#(⌧)

Gij(⌧ � ⌧ 0) = �
D
ci(⌧)c

†
j(⌧

0)
E
=

@⌦

@hji(⌧ 0 � ⌧)

�[G] = Tr lnG � Tr(g�1
0 G)

| {z }
U=0 term

+ �[G]

�[G] = ⌦[h] � Tr(hG) @�[G]

@G
= h = 0

⌦[h] = � log

Z
D[c†c]e�S[h]

�ij =
�⇥

�Gji
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• Functional of one-particle Green function

• Eliminate λ by Legendre transform

• Higher functionals of vertex, two particle functions 
 De Dominicis, Martin, Math. Phys. 1, 1964. 

• Idea : these objects are more local than the self-energy.  
Approximation on these functionals rather than ΦLW.

�[G,�] = Tr lnG � Tr(g�1
0 G)

| {z }
U=0 term

+ �LW [G]

<latexit sha1_base64="EloBsrZpsOYVTq5o++t4WOQUnlM="></latexit>

Two ways to implement this idea : Trilex, DΓA
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1- TRILEX

T. Ayral & O.P.   Phys. Rev. B 92, 115109 (2015)
T. Ayral & O.P.   Phys. Rev. B 94, 075159 (2016)

     T. Ayral, J Vucicević, and O.P.  Phys. Rev. Lett. 119, 166401 (2017)
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2

TRILEX method as a local approximation of the three-
particle irreducible functional K, as well as additional
results (i) in the frustrated case and (ii) on the triangular
lattice.

In section II, we derive the TRILEX formalism and
describe the corresponding algorithm. In section III, we
elaborate on the technicalities of the scheme. In sec-
tion IV, we apply the method to the two-dimensional
Hubbard model and discuss the results. We give a few
conclusions and perspectives in section V.

II. FORMALISM

In this section, we derive the TRILEX formalism.
Starting from a generic electron-boson problem, we de-
rive a functional scheme based on the renormalization not
only of the fermionic and bosonic propagators, but also
of the fermion-boson coupling vertex (subsection IIA).
In subsection II B 1, we show that electron-electron in-
teraction problems can be studied in the three-particle
irreducible formalism by introducing an auxiliary boson.
Finally, in subsection II C, we introduce the main approx-
imation of the TRILEX scheme, which allows us to write
down the complete set of equations (subsection II D).

Our starting point is a generic mixed electron-boson
action with a Yukawa-type coupling between the bosonic
and the fermionic field:

Seb = c̄u
⇥
�G�1

0

⇤
uv

cv+
1

2
�↵

⇥
�W�1

0

⇤
↵�

��+�uv↵c̄ucv�↵

(1)
c̄u=R⌧� and cu=R⌧� are conjugate �-antiperiodic

Grassmann fields. Latin indices gather space, time,
spin and possibly orbital or spinor indices: u ⌘
(Ru, ⌧u,�u, au), where ⌧ denotes imaginary time and R
a site of the Bravais lattice. Greek indices denote ↵ ⌘
(R↵, ⌧↵, I↵). Repeated indices are summed over. Sum-
mation

P
u is shorthand for

P
R2BL

P
�

´ �
0
d⌧ . G0,uv

(resp. W0,↵�) is the non-interacting fermionic (resp.
bosonic) propagator. Finally, we will denote

n↵ ⌘ c̄u�uv↵cv (2)

As will be elaborated on in subsection II B 1, the action
(1) may come from a problem with only electron-electron
interactions such as the Hubbard model.

A. Three-particle irreducible formalism

In this subsection, we construct the three-particle ir-
reducible (3PI) functional K[G,W,⇤]. This construction
has first been described in the pioneering works of de Do-
minicis and Martin.58,59 It consists in successive Legen-
dre transformations of the free energy of the interacting
system.

Let us first define the free energy of the system in the
presence of linear (h↵), bilinear (B↵� , Fuv) and trilinear

sources (�uv↵, which are already present by construction)
coupled to the bosonic and fermionic operators,

⌦[h,B, F,�] ⌘ � log

ˆ
D[c̄, c,�]e�Seb+h↵�↵� 1

2�↵B↵����c̄uFuvcv

(3)
⌦[h,B, F,�] is the generating functional of correlation
functions, viz.:

'↵ ⌘ h�↵i = � @⌦

@h↵
(4a)

W nc

↵� ⌘ �h�↵��i = �2
@⌦

@B�↵
(4b)

Guv ⌘ �hcuc̄vi =
@⌦

@Fvu
(4c)

The above correlators contain disconnected terms as de-
noted by the superscript “nc” (non-connected).

1. First Legendre transform: renormalization of
propagators

Let us now perform a first Legendre transform with
respect to h, B and F :

�2[', G,W nc,�] ⌘ ⌦[h, F,B,�]� Tr (FG)

+
1

2
Tr (BW nc) + Tr (h') (5)

with TrAB ⌘ AuvBvu for two-point functions and ⌘
AuBu for one-point functions. By construction, the
sources are related to the derivatives of � through:

@�

@Gvu
= �Fuv (6a)

@�

@W nc

�↵

=
1

2
B↵� (6b)

@�

@h↵
= '↵ (6c)

In a fermionic context, �2 is often called the Baym-
Kadanoff functional.60,61 We can decompose it in the fol-
lowing way:

�2[', G,W nc,�] = �2[', G,W nc,� = 0]+ [', G,W nc,�]
(7)

�2[', G,W nc,� = 0] is the noninteracting contribution,
while  can be defined as:

 [', G,W nc,�] ⌘
ˆ

1

0

dx
@�[', G,W nc, x�]

@x
(8)

The computation of �2[', G,W,� = 0] is straightforward
since in this case relations (4c-4b) are easily invertible
(as shown in Appendix D), so that

�2[', G,W,�] = �Tr log
⇥
G�1

⇤
+Tr

⇥�
G�1 �G�1

0

�
G
⇤

+
1

2
Tr log

⇥
W�1

⇤
+

1

2
Tr

⇥�
W � '2

�
W�1

0

⇤

+ [', G,W,�] (9)

• Hubbard model : decouple in spin/charge channel.

• Coulomb interaction. Beyond GW + DMFT ?

• Electron-phonon.

• Low energy effective spin fermion model.

'↵ ⌘ h�↵i
W nc

↵� ⌘ �h�↵��i
Guv ⌘ �hcuc̄vi
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3PI diagrams  
Vertex corrections 
“3PI Dyson equation”

De Dominicis Martin, Math. Phys. 1, 1964.

3

2 �[G, v] 2  [G,W,�]

2 K[G,W,⇤]

(a) (b)

(c) /2 K[G,W,⇤](d)

Figure 1: Simplest contribution to functionals of various de-
grees of irreducibility. (a) Luttinger-Ward functional (the
small black dot stands for the bare interaction U) (b) Alm-
bladh functional (the small black dot stands for the bare
electron-boson vertex �) (c) three-particle irreducible func-
tional (the big black dot stands for the fully renormalized
electron-boson vertex ⇤) (d) an example of diagram not con-
tributing to K.

where we have defined the connected correlation function:

W↵� ⌘ �
D
(�↵ � ') (�� � ')

E
= W nc

↵� + '2 (10)

The physical Green’s functions (obtained by setting F =
B = 0 in Eqs(6a-6b)) obey Dyson equations:

⌃uv =
⇥
G�1

0

⇤
uv

�
⇥
G�1

⇤
uv

(11a)

P↵� =
⇥
W�1

0

⇤
↵�

�
⇥
W�1

⇤
↵�

(11b)

where we have defined the fermionic and bosonic self-
energies as functional derivatives with respect to  :

⌃uv ⌘ @ 

@Gvu
(12a)

P↵� ⌘ �2
@ 

@W�↵
(12b)

The two Dyson equations (11a-11b) and the functional
derivative equations (12a-12b) form a closed set of equa-
tions that can be solved self-consistently once the depen-
dence of  on G and W is specified.

The functional  [', G,Wc,�] is called the Almbladh
functional.62 It is the extension of the Luttinger-Ward
functional �[G],61,63 which is defined for fermionic ac-
tions, to mixed electron-boson actions. While �[G] con-
tains two-particle irreducible graphs with fermionic lines
G and bare interactions U (see e.g. diagram (a) of
Fig. 1),  [', G,Wc,�] contains two-particle irreducible
graphs with fermionic (G) and bosonic (W ) lines, and
bare electron-boson interactions vertices � (see e.g. dia-
gram (b) of Fig. 1).

Both � and  can be approximated in various ways,
which in turn leads an approximate form for the self-
energies, through Eqs (12a-12b). Any such approxima-
tion, if performed self-consistently, will obey global con-
servation rules.60 A simple example is the GW approx-
imation, which consists in approximating  by its most

Guv
W↵�

u v ↵ �

⇤uv↵
↵

u v

�uv↵

↵

u v

Figure 2: Graphical representation of the diagrammatic ob-
jects of the electron-boson model (Eq. 1): the fermionic prop-
agator Guv (Eq. (4c)), the bosonic propagator W↵� (Eq.
(10)), the three-point correlation function �uv↵ (Eq. (15))
and the three-leg vertex ⇤uv↵ (Eq. (16)) . Note that the first
index, u, of �uv↵ corresponds to an outgoing leg, while it is
an ingoing leg in ⇤uv↵.

simple diagram (diagram (b) of Fig. 1). The DMFT
(resp. extended DMFT, EDMFT64–66) approximation,
on the other hand, consists in approximating �[G] (resp.
 [', G,Wc]) by the local diagrams of the exact func-
tional:

�DMFT[G] =
X

R

�exact[GRR] (13a)

 EDMFT[G,W,�] =
X

R

 exact[GRR,WRR,�RRR]

(13b)

This approximation becomes exact in the limit of in-
finite dimensions.14 Motivated by this link between irre-
ducibility and reduction to locality in high dimensions,
we perform an additional Legendre transform to go one
step further in terms of irreducibilty.

2. Second Legendre transform: renormalization of the
three-leg vertex

We introduce the Legendre transform of �2 with re-
spect to �:

�3[', G,W,�nc] ⌘ �2[', G,W,�] + Tr (��nc) (14)

with Tr��nc ⌘ �uv↵�nc

uv↵, and �nc

uv↵ is the three-point
correlator:

�nc

uv↵ ⌘ hcuc̄v�↵i = � @⌦

@�vu↵
(15)

We now define the connected three-point function � and
the three-leg vertex ⇤ as:

/2 K

3

2 �[G, v] 2  [G,W,�]

2 K[G,W,⇤]

(a) (b)

(c) /2 K[G,W,⇤](d)

Figure 1: Simplest contribution to functionals of various de-
grees of irreducibility. (a) Luttinger-Ward functional (the
small black dot stands for the bare interaction U) (b) Alm-
bladh functional (the small black dot stands for the bare
electron-boson vertex �) (c) three-particle irreducible func-
tional (the big black dot stands for the fully renormalized
electron-boson vertex ⇤) (d) an example of diagram not con-
tributing to K.

where we have defined the connected correlation function:

W↵� ⌘ �
D
(�↵ � ') (�� � ')

E
= W nc

↵� + '2 (10)

The physical Green’s functions (obtained by setting F =
B = 0 in Eqs(6a-6b)) obey Dyson equations:

⌃uv =
⇥
G�1

0

⇤
uv

�
⇥
G�1

⇤
uv

(11a)

P↵� =
⇥
W�1

0

⇤
↵�

�
⇥
W�1

⇤
↵�

(11b)

where we have defined the fermionic and bosonic self-
energies as functional derivatives with respect to  :

⌃uv ⌘ @ 

@Gvu
(12a)

P↵� ⌘ �2
@ 

@W�↵
(12b)

The two Dyson equations (11a-11b) and the functional
derivative equations (12a-12b) form a closed set of equa-
tions that can be solved self-consistently once the depen-
dence of  on G and W is specified.

The functional  [', G,Wc,�] is called the Almbladh
functional.62 It is the extension of the Luttinger-Ward
functional �[G],61,63 which is defined for fermionic ac-
tions, to mixed electron-boson actions. While �[G] con-
tains two-particle irreducible graphs with fermionic lines
G and bare interactions U (see e.g. diagram (a) of
Fig. 1),  [', G,Wc,�] contains two-particle irreducible
graphs with fermionic (G) and bosonic (W ) lines, and
bare electron-boson interactions vertices � (see e.g. dia-
gram (b) of Fig. 1).

Both � and  can be approximated in various ways,
which in turn leads an approximate form for the self-
energies, through Eqs (12a-12b). Any such approxima-
tion, if performed self-consistently, will obey global con-
servation rules.60 A simple example is the GW approx-
imation, which consists in approximating  by its most

Guv
W↵�

u v ↵ �

⇤uv↵
↵

u v

�uv↵

↵

u v

Figure 2: Graphical representation of the diagrammatic ob-
jects of the electron-boson model (Eq. 1): the fermionic prop-
agator Guv (Eq. (4c)), the bosonic propagator W↵� (Eq.
(10)), the three-point correlation function �uv↵ (Eq. (15))
and the three-leg vertex ⇤uv↵ (Eq. (16)) . Note that the first
index, u, of �uv↵ corresponds to an outgoing leg, while it is
an ingoing leg in ⇤uv↵.

simple diagram (diagram (b) of Fig. 1). The DMFT
(resp. extended DMFT, EDMFT64–66) approximation,
on the other hand, consists in approximating �[G] (resp.
 [', G,Wc]) by the local diagrams of the exact func-
tional:

�DMFT[G] =
X

R

�exact[GRR] (13a)

 EDMFT[G,W,�] =
X

R

 exact[GRR,WRR,�RRR]

(13b)

This approximation becomes exact in the limit of in-
finite dimensions.14 Motivated by this link between irre-
ducibility and reduction to locality in high dimensions,
we perform an additional Legendre transform to go one
step further in terms of irreducibilty.

2. Second Legendre transform: renormalization of the
three-leg vertex

We introduce the Legendre transform of �2 with re-
spect to �:

�3[', G,W,�nc] ⌘ �2[', G,W,�] + Tr (��nc) (14)

with Tr��nc ⌘ �uv↵�nc

uv↵, and �nc

uv↵ is the three-point
correlator:

�nc

uv↵ ⌘ hcuc̄v�↵i = � @⌦

@�vu↵
(15)

We now define the connected three-point function � and
the three-leg vertex ⇤ as:

2 K

3PI diagrams  

Φ[G, W ]

G(3)
uv↵ ⌘ hcuc̄v�↵i

⇤uv↵ ⌘ G�1
xuG

�1
vwW

�1
↵� G

(3)
wx�
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Weak coupling, U ⟶0 Atomic limit, t⟶0 

• No vertex correction: Λ =λ

• Spin fluctuation diagram

• Exact in this limit

• Mott physics (DMFT)

Spin-fluctuation and DMFT are two “asymptotic” regimes of  TRILEX.

+ Cluster Trilex

W η(q, iΩ)

G(q+ k, iω + iΩ)
Λη(k, q, iω, iΩ)

Σ(k, iω) =
∑

η=ch,sp

2

Simp[G(i!),U⌘(i⌦)]

⌃(k, i!) =

P
⌘(q, i⌦) =

G

W
⌘

lattice quantities

Eq (9)

G(k, i!)
W

⌘(q, i⌦)

Dyson
equations consistency
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self-
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⇤⌘
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impurity
vertex
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G
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self-energies
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model

quantum

Figure 1: (color online) Description of the TRILEX method

ing Hamiltonian:

H =
X

ij

tijc
†
i cj + U

X

i

ni"ni# (1)

The indices i, j denote lattice sites, � =", #, c†i� and ci�

are fermionic creation and annihilation operators, and
ni� ⌘ c

†
i�ci�. tij is the tight-binding hopping matrix,

while U is the on-site Coulomb interaction. We now
rewrite the operators of the interaction term as:

Uni"ni# =
1

2

X

I=0,x,y,z

U
II
n
I
in

I
i (2)

where U
II is the bare interaction in channel I, and

n
I
i ⌘

P
��0 c

⇤
i��

I
��0ci�0 where �

0 = 1 and �
x,y,z are

the Pauli matrices. In the rotationally-invariant case,
U

xx = U
yy = U

zz ⌘ U
sp and U

00 ⌘ U
ch, reducing the

number of channels to ⌘ = ch, sp. U
sp and U

ch satisfy:
U = U

ch � 3U sp. In this paper, we fix the ratio of the
channels by requiring the expansion of the charge and
spin susceptibilities to be exact at second order in U ,
leading to U

ch = U/2 and U
sp = �U/2. We now decou-

ple (2) using real bosonic Hubbard-Stratonovich fields
�
I
i (⌧) in each channel and at each lattice site, so that the

action becomes:

Slatt =

ˆ �

0
d⌧

X

ij

c
⇤
i�⌧ {@⌧ + tij} cj�⌧

+
X

i,I


1

2
(U II)�1

�
I
i⌧�

I
i⌧ + �

I
�
I
i⌧n

I
i⌧

�
(3)

c
⇤
i�⌧ and ci�⌧ are conjugate �-antiperiodic Grassmann

fields, and �
I = 1. We are now dealing with an inter-

acting lattice problem with a local electron-boson cou-
pling. The fermionic and bosonic self-energies are given
by the exact expressions (written here for the paramag-
netic phase) [67]:

⌃(k, i!) = �
X

q,i⌦,
⌘=ch,sp

m⌘�
⌘
G q+k,

i!+i⌦
W

⌘
q,i⌦⇤

⌘
k,q,
i!,i⌦

(4a)

P
⌘(q, i⌦) = 2

X

k,i!

�
⌘
G q+k,

i!+i⌦
Gk,i!⇤

⌘
k,q,
i!,i⌦

(4b)

Here, mch = 1, msp = 3, G(k, i!) and W
⌘(q, i⌦)

are the fermionic and bosonic propagators (which are
the Fourier transforms of �hci�⌧ c⇤j�0i and �h�⌘

i�⌧�
⌘
j�0i,

respectively), k and q are momentum variables and
i!(i⌦) stands for a fermionic (bosonic) Matsubara fre-
quency. ⇤⌘(q,k, i!, i⌦) is the exact one-particle ir-
reducible electron-boson coupling (or Hedin) vertex,
namely the effective interaction between electrons and
bosons renormalized by electronic interactions. The lat-
tice Green’s functions G(k, i!) and W

⌘(q, i⌦) are com-
puted via Dyson equations:

G(k, i!) = [i! + µ� ✏(k)� ⌃(k, i!)]�1 (5a)
W

⌘(q, i⌦) = s
⌘
U

⌘ [1� U
⌘
P

⌘(q, i⌦)]�1 (5b)

with s
ch/sp = ⌥1; ✏(k) is the Fourier transform of tij . We

now construct a local effective model and use its three-leg
vertex as a local approximation to ⇤:

⇤⌘(q,k, i!, i⌦) ⇡ ⇤⌘
imp(i!, i⌦) (6)

The resulting self-energy and polarization, computed
from (4a-4b), are thus momentum-dependent while con-
taining local vertex corrections which will be essential
to capture Mott physics (see also [50]). As in DMFT,
the local effective model is constructed by imposing
self-consistency conditions on the fermionic and bosonic
Green’s functions:

Gimp(i!) =
X

k

G(k, i!), (7a)

W
⌘
imp(i⌦) =

X

q

W
⌘(q, i⌦) (7b)

The action of the impurity model reads:

Simp = �
¨ �

0
d⌧d⌧

0
X

�

c
⇤
�⌧G(⌧ � ⌧

0)c�⌧ 0

+
1

2

X

I=0,x,y,z

¨ �

0
d⌧d⌧

0
n
I
⌧UI(⌧ � ⌧

0)nI
⌧ 0 (8)

Klatt(G, W, G(3)) ⇡
X

i

Katomic(Gii, Wii, G(3)
iii )
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Figure 5: The TRILEX self-consistency loop

two-particle vertex by its local, four-leg component
�fir(i!, i⌫, i⌦), can be regarded as a first step towards a
more irreducible scheme. While formally appealing, this
idea has so far been restricted to very simple systems48
(“parquet D�A”) or modified so as to avoid the costly
solution of the parquet equations (“ladder D�A”46). In-
deed, in the parquet version, the main difficulty lies in
solving the notoriously difficult parquet equations for
the reducible two-particle vertex F (k,k0,q, i!, i⌫, i⌦),
which is then used to construct momentum-dependent
self-energies via Schwinger-Dyson equations. This com-
putational hurdle – the existing “parquet solvers” have
so far been used to handle very small systems only85,86

– makes D�A difficult to implement for realistic calcula-
tions, at least in the near future. In the ladder version,
the parquet hurdle is circumvented by choosing a given
channel making a local approximation on the irreducible
vertex in this channel, resumming the ladder series in
this channel, adjusting some sum rules on the suscepti-
bilities and then constructing the momentum-dependent
self-energy. This variant reintroduces the aforementioned
Fierz ambiguity through the arbitrary choice of a given
channel. Independently of these difficulties, in the ex-
isting implementations, the two-particle observables do
not feed back on the impurity model,87 contrary to the
TRILEX algorithm.

D. The TRILEX loop

The self-consistent TRILEX loop consists in the fol-
lowing steps (all illustrated by Fig 5):

1. Initialization. The initialization consists in finding

G(q+ k, i! + i⌦)

G(k, i!)

W ⌘(q, i⌦)

G(q+ k, i! + i⌦)

⇤⌘
imp(i!, i⌦)

⌃(k, i!) ⇡

P ⌘(q, i⌦) ⇡

(a)

(b)

⌃
⌘

Figure 6: Lattice self-energy and polarization in the TRILEX
approximation

initial guesses for the self-energy and polarization.
Usually, converged EDMFT self-energies provide
suitable starting points for ⌃(k, i!) and P ⌘(q, i⌦).

2. Dyson equations. Compute lattice observables
through Dyson equations:

G(k, i!) =
1

i! + µ� ✏(k)� ⌃(k, i!)
(50a)

W ⌘(q, i!) =
U⌘

1� U⌘P ⌘(q, i⌦)
(50b)

Eqs (50a-50b) are Fourier transforms of the generic
equations (11a-11b). The relation between the bare
interaction value U⌘ on the Hubbard U depends on
the choice of decoupling. It is detailed in Section
II E.

3. Weiss fields. Update the Weiss fields:

G(i!) =
⇥
G�1

loc
(i!) + ⌃loc(i!)

⇤�1 (51a)

U⌘(i⌦) =
h
[W ⌘

loc
(i⌦)]

�1
+ P ⌘

loc
(i⌦)

i�1

(51b)

The loc suffix denotes summation over the Brillouin
zone.

4. Solve the impurity action (47) for ⇤⌘
imp

(i!, i⌦),
⌃imp(i!) and Pimp(i⌦)

5. Construct momentum-dependent lattice self-
energies as (see Fig. 6 and Eqs (33a-33b)):

⌃k,i! = �
X

⌘,q,i⌦

m⌘Gk+q,i!+i⌦W
⌘
q,i⌦⇤

⌘
impi!,i⌦(52a)

P ⌘
q,i⌦ = 2

X

k,i!

Gk+q,i!+i⌦Gk,i!⇤
⌘
impi!,i⌦ (52b)

The factor m⌘ depends on the decoupling. In the
case of the Heisenberg decoupling, msp = 3 and
mch = 1, while in the Ising decoupling, msp =
mch = 1.

6. Go back to step 2 until convergence

Self-consistent impurity model

T. Ayral & OP Phys. Rev. B 92, 115109 (2015),  
Phys. Rev. B 94, 075159 (2016)

     T. Ayral et al.    Phys. Rev. Lett. 119, 166401 (2017)

• Cluster TRILEX & benchmark 3
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic
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• Proof of concept, with Hubbard model

• d-SC with one site impurity model (≠ cluster DMFT).

• From high temperature, compute leading instability.

Strong interaction  
d-SC & Mott physics  

SC disappear close to Mott insulator

 J. Vucicevic, et al. Phys. Rev. B 96, 104504 (2017)

CD

• Comparison cluster DMFT ?
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• Adatoms on a Si(111) surface. 

• Extended Hubbard model with long range Coulomb interaction, 
triangular lattice

X. Cao, T. Ayral, Z. Zhong, OP, D. Manske, P. Hansmann Phys. Rev. B 97, 155145 (2018)        

CAO, AYRAL, ZHONG, PARCOLLET, MANSKE, AND HANSMANN PHYSICAL REVIEW B 97, 155145 (2018)

For translational invariant two-dimensional systems, the long-
range Coulomb interaction, in momentum space, reads Uq =
U0 + V

∑
i ̸=0 eiq·Ri /|Ri |, where Ri are real space coordinates,

U0 is the on-site interaction, and V is the strength of the
long-range interaction, respectively (Supplemental Material A
in Ref. [33] and Ref. [34]). More specifically, we adopt hop-
ping parameters up to next-nearest-neighbors (t = 0.042 eV
and t ′ = − 0.02 eV) from Refs. [2,3] derived from density-
functional theory (DFT) for the Pb:Si(111) adatom system
(closest to the triple point) and vary the interaction parameters
in realistic regimes for the adatom materials found by cRPA [3].

TRILEX approximates the three-legged fermion-boson in-
teraction vertex using a local self-consistent quantum im-
purity model. For systems retaining SU(2) symmetry, the
self-consistent TRILEX equations [21–24] for the fermionic
single particle self-energy !(k,iωn) and bosonic polarization
in charge and spin channel P c,s(q,iνn) can be rewritten as

!k,iωn
= !

imp
iωn

−
∑

η,q,iνn

mηG̃k+q,iωn+iνn
W̃

η
q,iνn

%
imp,η
iωn,iνn

,

P
η
q,iνn

= P
imp,η
iνn

+ 2
∑

k,iωn

G̃k+q,iωn+iνn
G̃k,iωn

%
imp,η
iωn,iνn

, (2)

where the index η = {c,s} corresponds to charge and spin
channel, respectively, and ωn and νn are fermionic and bosonic
Matsubara frequencies. Gk,iωn

is the dressed Green’s function,
and W c,s

q,iνn
are the fully screened interactions in the charge

and spin channels, respectively. The local part of self-energy
and polarization are replaced by their impurity counterparts
!

imp
iωn

and P
imp,η
iνn

, respectively, and for any quantity X, X̃k,iωn
=

Xk,iωn
− Xloc

iωn
with Xloc

iωn
= 1

Nk

∑
k∈B.Z. Xk,iωn

. We employ the
Heisenberg decomposition of the interaction [22], for which
we have mc = 1, ms = 3, and W

η
q,iνn

= U
η
q [1 − U

η
q P

η
q,iνn

]− 1.
Bare interactions in charge and spin channel are, hence, given
by U c

q = U0
2 + vq and U s = − U0

6 (for details see Supplemental
Material A in Ref. [33]). This spin/charge ratio is a choice
(dubbed “Fierz ambiguity” [22,24]). Moreover, in the param-
eter range explored in this paper, we have observed (Fig. 2
and Supplemental Material B in Ref. [33] and Ref. [35])
that using %

imp,η
iωn,iνn

≈ 1 in Eq. (2) does not change our results
qualitatively as it was also found in Ref. [23]. This simplified
TRILEX version can be seen as a GW+EDMFT-like scheme
which, however, can treat simultaneously both charge and
spin fluctuations. The impurity problem was solved using
the segment picture in the hybridization-expansion continuous
time quantum Monte-Carlo algorithm [36–40] implemented
with the TRIQS library [41].

To probe SC instabilities, we solve the linearized gap
equation with converged simplified TRILEX results as an
input [23]. For singlet d-wave pairing, the corresponding
eigenvalue equation for the gap reads

λ'k,iωn
= −

∑

k′,iω′
n

∣∣Gk′,iω′
n

∣∣2
'k′,iω′

n
V eff

k− k′,iωn− iω′
n
, (3)

where the singlet pairing interaction is given by

V eff
q,iνn

= mcW c
q,iνn

− msW s
q,iνn

, (4)

and is therefore a combination of effective interaction in charge
and spin channel. The SC instability occurs when the largest

FIG. 1. Phase diagram of the Hamiltonian Eq. (1) as function
of temperature (for T > 40 K) and doping for U0 = 0.7 eV, V =
0.2 eV (circles) and V = 0.3 eV (diamonds). Green/blue regions
correspond to 1 ! Max[− Ps(q,iνn = 0)Us] ! 0.95 for q ∈ B.Z. Or-
ange/red regions indicate chiral d-wave superconductivity.

eigenvalue λ = 1. The pairing symmetry is monitored by the
k dependence of the gap function 'k,iωn

.

III. RESULTS

Emergence of d-wave SC. In Fig. 1, we plot the temperature–
doping (T –δ) phase diagram for V = 0.2 eV and V = 0.3 eV
for a fixed value of U0 = 0.7 eV in the simplified TRILEX
approximation. At half-filling (δ = 0) we obtain a correlated
Fermi liquid (Supplemental Material C in Ref. [33]) with
strong magnetic fluctuations. The static spin-spin correlation
function χ s(q,iνn = 0) is very large at some q but has not
diverged yet, i.e., no phase transition has occurred. More
precisely, we use Max[− Ps(q,iνn = 0)Us] with q ∈ B.Z.,
which reaches 1 at a second-order spin-ordering phase tran-
sition to quantify the strength of the spin fluctuations and
color code regions in the phase diagram for which 1 >
Max[− Ps(q,iνn = 0)Us] ! 0.95 in green (V = 0.2 eV) and
blue (V = 0.3 eV). From this plot, we see that spin fluctuations
are slightly enhanced by increasing V . For δ > 0.2 we observe
the emergence of a dome-shaped superconducting phase (a
plot of λ in Eq. (3) as a function of temperature is shown
in the Supplemental Material D in Ref. [33]). The pairing
symmetry of the SC phase is of d-wave character and includes
doubly degenerate dx2− y2 - and dxy-wave pairing channels (see
Supplemental Material E in Ref. [33] and Ref. [42] for a plot
of the gap function). The degeneracy of these two pairing
symmetries is protected by the C6v point group of the triangular
lattice, which then yields chiral d-wave symmetry below Tc to
maximize condensation energy. The predicted chiral SC phase
depends crucially on V : Tc increases from V = 0.2 eV (red
circles) to V = 0.3 eV (orange diamonds) as shown in Fig. 1.
Moreover, for V = 0.0 eV and V = 0.1 eV (not shown here),
we do not find a SC phase for T > 40 K.

Impact of long-range interaction on susceptibilities and
single particle spectra. The crucial impact of V on the SC
instability is reflected in the effective singlet-pairing inter-
action V eff

q,iνn
, which depends on fluctuations in both charge

and spin channels. We analyze the respective susceptibilities
χ c/s(q,iνn) with the data shown in Fig. 2: In the upper panels

155145-2

H = ∑
ijσ

tijc†
iσcjσ +

1
2 ∑

ij

Uijninj − μ∑
i

ni

Uq = U0 + V∑
i≠0

eiqRi

|Ri |

• Prediction : (chiral) d-wave  
superconductivity (TRILEX and EDMFT)
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2- DΓA / Quadrilex

Toschi, A., A. A. Katanin, and K. Held, Phys. Rev. B 75,  045118 (2007)  

Rohringer et al. Rev. Mod. Phys 90 025003 (2018) 

Ayral,  O.P.   Phys. Rev. B 94, 075159 (2016) 



Parquet equations

• 3 Channels for two-particle reducibility 

• Bethe Salpeter equation in each channel  
Φr, Γr: reducible/irreducible vertex in channel r

 38

F = Λ(4) + Φph + Φph + Φpp

+ +
F

Γph F

F

F = Λ +Γph

Γpp

F = Γr + Φr

r = ph, ph, pp

Φr = Γr χ̃0rF

• Λ(4) : Fully irreducible vertex (in all channels)

= +Γph FF ΓphTHOMAS AYRAL AND OLIVIER PARCOLLET PHYSICAL REVIEW B 94, 075159 (2016)

With these notations, Eqs. (20a), (20b), and (20c) become
a simple matrix product:

!̂r
r,αβ ≡ $̂r

r,αγ χ̂ r
r,γ δF̂r,δβ . (24)

Here Greek indices denote the channel-dependent combi-
nation of two fermionic indices. They only make sense with a
subscript r to specify which pairing of indices is chosen.

We also note (see Appendix B for a proof) for further
reference that we have, for all r:

Ĝ2 = χ̂ r F̂ χ̂ r . (25)

The passage from the notation in channel r to the notation
in channel r ′ is performed via a tensor ζ r ′r

αβ,γ δ defined by the
following transformation of correlators:

Ĉr ′,αβ = ζ r ′r
αβ,γ δĈr,γ δ. (26)

Here we do not sum over r and r ′. Some basic properties of
this tensor are summarized in Appendix A. We further note that
the trace of two operators which do not intrinsically depend
on r does not depend on the choice of notation, i.e.,

TrĈV̂ = Ĉr,αβ V̂r,βα = Ĉr ′,γ δV̂r ′,δγ . (27)

The transformation from r notation to r ′ notation for vertex
functions follows from this property:2

V̂r ′,αβ = ζ rr ′

δγ ,βαV̂r,γ δ. (28)

In the above expressions, Einstein summation is performed
only on the Greek indices. For the same reason as above, the
inverse of correlators transform like vertex functions.

The Bethe-Salpether equation (19) can now be formally
inverted. For all r’s we have

$̂r
r = F̂r

(
1̂ + χ̂ r

r F̂r

)− 1
, (29)

where inversion is performed in the space of Greek indices.
Finally, we define the fully irreducible vertex ). It contains

all diagrams that are irreducible in the ph, ph, and pp channels.
It thus obeys the relation

F = ) +
∑

r

!r . (30)

Combining (19) and (30) yields

$r = ) +
∑

r ′ ̸=r

!r ′
. (31)

The parquet equations are obtained by using the definition
of !r , Eq. (24), and replacing $r and F using (30) and (31):

!̂r
r =

(
)̂r +

∑

r ′ ̸=r

!̂r ′

r

)
χ̂ r

r

(
)̂r +

∑

r ′

!̂r ′

r

)
. (32)

The parquet equations relate ) and !r (at fixed χ r , i.e.,
fixed G), and thus [through Eqs. (30) and (25)] ) to G2.
They couple the three channels [the passage from !̂r

r to !̂r
r ′ is

2Indeed, using Eq. (A1) of Appendix A, one can check

Ĉr,αβ V̂r,βα = ζ rr ′
αβ,γ δĈr ′,γ δζ

r ′r
δ̄γ̄ ,αβ V̂r ′,γ̄ δ̄ = Ĉr ′,γ δV̂r ′,δγ .

FIG. 3. (a) Simplest diagram of K4, (b) an example of a four-
particle-reducible diagram, (c) simplest diagram of δ), and (d) an
example of a reducible four-leg diagram. Lines denote G, while red
squares denote F .

given by Eq. (26)]. Conversely, the inverse parquet equations
consists in computing $r and !r from a given G2 or F [via
Eqs. (29) and (19)], and eventually [through (30)] ). They do
not couple the three channels and are as such much easier to
solve than the direct parquet equations.

The first contribution to ) is the bare interaction U . It is
thus natural to define the correction of ) beyond U as

δ) ≡ ) − U. (33)

The lowest-order diagram of δ) is of order U 4. It is shown
in Fig. 3, right panel.

One can now observe that the parquet equations formally
relate the bare interactions U , the nontrivial contribution to
the fully irreducible vertex δ), and the (fully reducible)
two-particle correlator G2 (the functions $r and !r can be
regarded as bystanders). In that sense, they are analogous
to the Dyson equations, which relate the bare correlator G0,
the irreducible contribution or self-energy *, and the (full)
one-particle correlator G.

We note that in a single-orbital context, all the above-
mentioned four-point functions depend on three momenta and
three frequencies in the time- and space-translation invariant
case, as well as orbital and spin indices, e.g.,

)σ1σ2σ3σ4 (k,k′,q,iω,iω′,i-).

Further simplifications of the spin structure arise in SU(2)
invariant problems (see, e.g., Ref. [43] for more details).

C. Four-particle irreducible formalism

Here we introduce (Sec. II C 1) the Legendre transform
of $2[G,U ] with respect to the quartic sources, as well as
its irreducible part K4 and its properties. We then show that
the approximation K4 = 0 corresponds to the parquet approx-
imation (Sec. II C 3), and finally prove that approximations
on K4 preserve the consistency of the self-energy given as

075159-4
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Quadrilex/DΓA
• Second Legendre transform

 39

⇤(4)
uūvv̄ = �(4)bare

uūvv̄ � 2
@K4[G,G2]

@G2ūuv̄v

• Solvable with impurity model

• Quadrilex approximation

THOMAS AYRAL AND OLIVIER PARCOLLET PHYSICAL REVIEW B 94, 075159 (2016)

Hence, using Eqs. (19)–(30) we find, using Eq. (28) and
multiplying (43) by 2,

Ûr,αβ = 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r ′

ζ r ′r
κη,βα'̂r ′

r ′,ηκ

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r ′

'̂r ′

r,αβ (45a)

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r ′

(
F̂r,αβ − (̂r ′

r,αβ

)

= 2
∂K4

∂Ĝ2,r,βα

+ F̂r,αβ −
∑

r ′

(̂r ′

r,αβ

= 2
∂K4

∂Ĝ2,r,βα

+ )̂r,αβ . (45b)

In the last step we have used Eq. (30). By identification
with Eq. (33), we find the final result, Eq. (41).

3. The parquet approximation: K4 = 0

The most trivial approximation of K4, namely

Kparquet app.
4 = 0 (46)

corresponds to the parquet approximation. Indeed, Eq. (46),
combined with Eqs. (33)–(41), leads to

)parquet app. = U. (47)

By construction, this approximation is limited to the weak-
coupling regime since it neglects higher order terms. It has
been recently applied to the Hubbard model [42]. We note that
an alternative functional view on the parquet approximation is
proposed in Ref. [46].

4. Consistency of the self-energy

Any approximation of K4[G,G2] results in (i) an approx-
imate irreducible vertex δ) and, via the parquet equations,
approximate fully reducible vertex F and (ii) an approximate
Luttinger-Ward functional [via. Eq. (38)].

From here there are a priori two ways of computing the
self-energy. The first way is compute + as the derivative of
(LW with respect to G [Eq. (12)]. The second one is to use the
Schwinger-Dyson equation, an exact expression giving + as a
function of G, F , and U and illustrated in Fig. 4:

+ūv = −UbācūGaāGcc̄Gbb̄Fab̄vc̄

+UvūaāGaā − UvāaūGaā. (48)

FIG. 4. Schwinger-Dyson expression of the self-energy.

The last two terms correspond to the Hartree and Fock
terms, respectively.

We prove in Appendix C that provided the approximation
on K4[G,G2] preserves its homogeneity properties, both ways
of computing the self-energy are equivalent.

In the next subsection we introduce, instead of the simple
approximation (46), an atomic approximation of K4.

D. A quadruply irreducible local expansion: QUADRILEX

1. A local expansion of the 4PI functional

Similarly to DMFT, we propose to approximate the 4PI
functional by the atomic limit (and later by a cluster method)

KQUADRILEX
4 [GR1R2 ,G2,R1R2R3R4 ] ≡

∑

R

K4[GRR,G2,RRRR].

(49)

To solve Eq. (49) we propose to follow a similar procedure
as the one used in DMFT (see Sec. II A 2), by replacing (LW
by K4.

First, we introduce the following model:

SQUADRILEX
imp

= −
∫∫

ττ ′

∑

σσ ′

c̄τσ [G−1(τ − τ ′)]σσ ′cτ ′σ ′

+ 1
2

∫∫∫∫

τ1τ2
τ3τ4

∑

σ1σ2
σ3σ4

U τ1,τ2,τ3,τ4
σ1σ2σ3σ4

c̄τ1σ1cτ2σ2 c̄τ3σ3cτ4σ4 . (50)

This action describes an impurity embedded in a noninter-
acting bath described by the field G and with dynamical
interactions U with three independent times. Its functional
K4[G,G2] is the same as the summand of the right-hand side of
Eq. (49), and does not depend on the noninteracting propagator
G(iω) and bare interaction U(iω,iω′,i/).

Second, we assume that one can adjust the noninteracting
propagator G and bare interaction U of the auxiliary model
such that

Gimp[G,U](iω) = GRR(iω), (51a)

G2,imp[G,U](iω,iω′,i/) = G2,RRRR(iω,iω′,i/). (51b)

G and U can be thought of as Lagrange multipliers to
enforce the two above constraints.

Finally, if we solve Eqs. (51a) and (51b), then

Kimp
4 [Gimp,G2,imp] = K4[GRR,G2,RRRR]

and therefore Eqs. (41)–(49) imply that

δ)(k,k′,q,iω,iω′,i/) = δ)imp(iω,iω′,i/). (52)

For simplicity, we will henceforth use the following
shorthand notation for four-leg functions on the lattice:

Xlatt ≡ Xσ1σ2σ3σ4 (k,k′,q,iω,iω′,i/). (53)

We point out that while DMFT is the approximation of
(LW[G,U ], which depends on one full correlator G, and
has correspondingly one “dynamical bath” G, QUADRILEX,
an approximation of K4[G,G2], which depends on two full
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De Dominicis, Martin, Math. Phys. 1, 1964. 

Γ4[G, G(2)] ≡ Γ[G, U ] −
1
2

U ⋅ G(2)

�4[G,G(2)] = �4,0[G,G(2)] +K4[G,G(2)]
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With these notations, Eqs. (20a), (20b), and (20c) become
a simple matrix product:

!̂r
r,αβ ≡ $̂r

r,αγ χ̂ r
r,γ δF̂r,δβ . (24)

Here Greek indices denote the channel-dependent combi-
nation of two fermionic indices. They only make sense with a
subscript r to specify which pairing of indices is chosen.

We also note (see Appendix B for a proof) for further
reference that we have, for all r:

Ĝ2 = χ̂ r F̂ χ̂ r . (25)

The passage from the notation in channel r to the notation
in channel r ′ is performed via a tensor ζ r ′r

αβ,γ δ defined by the
following transformation of correlators:

Ĉr ′,αβ = ζ r ′r
αβ,γ δĈr,γ δ. (26)

Here we do not sum over r and r ′. Some basic properties of
this tensor are summarized in Appendix A. We further note that
the trace of two operators which do not intrinsically depend
on r does not depend on the choice of notation, i.e.,

TrĈV̂ = Ĉr,αβV̂r,βα = Ĉr ′,γ δV̂r ′,δγ . (27)

The transformation from r notation to r ′ notation for vertex
functions follows from this property:2

V̂r ′,αβ = ζ rr ′

δγ,βαV̂r,γ δ. (28)

In the above expressions, Einstein summation is performed
only on the Greek indices. For the same reason as above, the
inverse of correlators transform like vertex functions.

The Bethe-Salpether equation (19) can now be formally
inverted. For all r’s we have

$̂r
r = F̂r

(
1̂ + χ̂ r

r F̂r

)− 1
, (29)

where inversion is performed in the space of Greek indices.
Finally, we define the fully irreducible vertex ). It contains

all diagrams that are irreducible in the ph, ph, and pp channels.
It thus obeys the relation

F = ) +
∑

r

!r . (30)

Combining (19) and (30) yields

$r = ) +
∑

r ′ ̸=r

!r ′
. (31)

The parquet equations are obtained by using the definition
of !r , Eq. (24), and replacing $r and F using (30) and (31):

!̂r
r =

(
)̂r +

∑

r ′ ̸=r

!̂r ′

r

)
χ̂ r

r

(
)̂r +

∑

r ′

!̂r ′

r

)
. (32)

The parquet equations relate ) and !r (at fixed χr , i.e.,
fixed G), and thus [through Eqs. (30) and (25)] ) to G2.
They couple the three channels [the passage from !̂r

r to !̂r
r ′ is

2Indeed, using Eq. (A1) of Appendix A, one can check

Ĉr,αβ V̂r,βα = ζ rr ′
αβ,γ δĈr ′,γ δζ

r ′r
δ̄γ̄ ,αβ V̂r ′,γ̄ δ̄ = Ĉr ′,γ δV̂r ′,δγ .

FIG. 3. (a) Simplest diagram of K4, (b) an example of a four-
particle-reducible diagram, (c) simplest diagram of δ), and (d) an
example of a reducible four-leg diagram. Lines denote G, while red
squares denote F .

given by Eq. (26)]. Conversely, the inverse parquet equations
consists in computing $r and !r from a given G2 or F [via
Eqs. (29) and (19)], and eventually [through (30)] ). They do
not couple the three channels and are as such much easier to
solve than the direct parquet equations.

The first contribution to ) is the bare interaction U . It is
thus natural to define the correction of ) beyond U as

δ) ≡ ) − U. (33)

The lowest-order diagram of δ) is of order U 4. It is shown
in Fig. 3, right panel.

One can now observe that the parquet equations formally
relate the bare interactions U , the nontrivial contribution to
the fully irreducible vertex δ), and the (fully reducible)
two-particle correlator G2 (the functions $r and !r can be
regarded as bystanders). In that sense, they are analogous
to the Dyson equations, which relate the bare correlator G0,
the irreducible contribution or self-energy *, and the (full)
one-particle correlator G.

We note that in a single-orbital context, all the above-
mentioned four-point functions depend on three momenta and
three frequencies in the time- and space-translation invariant
case, as well as orbital and spin indices, e.g.,

)σ1σ2σ3σ4 (k,k′,q,iω,iω′,i-).

Further simplifications of the spin structure arise in SU(2)
invariant problems (see, e.g., Ref. [43] for more details).

C. Four-particle irreducible formalism

Here we introduce (Sec. II C 1) the Legendre transform
of $2[G,U ] with respect to the quartic sources, as well as
its irreducible part K4 and its properties. We then show that
the approximation K4 = 0 corresponds to the parquet approx-
imation (Sec. II C 3), and finally prove that approximations
on K4 preserve the consistency of the self-energy given as
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DΓA vs Quadrilex  40

Simp[G(i!);

G
impurity model

δΛlatt ≈ δΛimp

δΛimp

G(k; !)

U

inverse

lattice
parquet

U(i!; i!0; iΩ)]

parquet

Σimp

G2;loc

Gloc

[U]

[δΛimp]

impurity

Σ(k; i!) = Flatt

G2;latt

Dyson

[G0(k; !)]

lattice

Dyson
impurity

[Σimp]

• DΓA Toschi et al. 2007  
No renormalisation of the interaction in the impurity model

• Both Quadrilex/DΓA are (in theory) cluster-controlled.



Ladder DΓA

• Solving Parquet equations is hard ! (not a matrix equation).

• In most cases, further approximation are made.

• Ladder DGA

• Approximation on the irreducible vertex in PH channel only Γ

• Solve Bethe-Salpeter in this channel, recompute self-energy

• One shot computation (no self-consistency). 

• “Moriya” correction (ad-hoc constant to adjust some sum rules)

 41

Γlatt = Γimp

A. Toschi et al (2007)
Rohringer et al. Rev. Mod. Phys 90 025003 (2018) 



Weak coupling 2d Hubbard model

• Half filled. 

• DMFT has AF order (mean field).

 42

• Correlation length ξ (T) (from a fit of χ(q,0)), U= 2t

ξ ∼ ea/T
From T. Schaefer, N. Wentzell,  
Y.Y. He et al. (in preparation)
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FIG. 3. (Color online.) Imaginary part of the self energy for antinode (upper row) and node (lower row) as a function of
Matsubara frequencies for various techniques. The left panel shows data from CDet, the middle panel a comparison between
DQMC and the right one data from D�A, respectively.

III. WALK THROUGH THE OBSERVABLES
FOR DIFFERENT TECHNIQUES

After the presentation of the general emergent picture
of its physics in the previous Section, now we present re-
sults for the two dimensional Hubbard model on a simple
square lattice Eq. (1) at U = 2t and half-filling, calcu-
lated by various state of the art quantum many body
techniques. We will start with the presentation of one-
particle level results (self energy and Green function) and
potential energies (double occupancies) before, eventu-
ally turning to spin susceptibilities, magnetic correlation
length and charge susceptibilities.

A. One-particle properties: Self energy and Green
function

We start by presenting results for the self-energy.
Fig. 3 shows the imaginary part of the self-energy for the
antinode (upper panel) and node (lower panel) and di↵er-
ent temperatures as a function of Matsubara frequency.
The data for CDet (left column) clearly follow the scene-
rio expounded in Sec. II B (see also [3]): at high T = 1
(corresponding to region 1�), the self-energy shows insu-
lating behavior for both k-points. When slightly cooled
to T = 0.33, the nodal direction is at the verge of be-
coming coherent, whereas the antinode is still insulating
(region 2�), i.e. nodal-/antinodal di↵erentiation is set-
ting in. At T = 0.1 the self-energy can be described
be a Taylor expansion Eq. (6), i.e. as a (renormalized)
Fermi liquid (region 3�), before the slope of the antin-
odal self-energy shows the onset of a change of sign at

T = 0.067, corresponding to the “pseudogap” regime 4�.
Eventually, at the lowest temperature shown 0.063, both
slopes of antinodal and nodal self-energy have changed
sign (region 5�). A somewhat clearer view can be gained

FIG. 4. (Color online.) Upper panel: Quasiparticle scatter-
ing rate for antinode (circles) and node (triangles) in CDet
(black solid lines) and D�A (blue dashed lines). Lower panel:
Quasiparticle weight with the same conventions.

• See also diagrammatic QMC  
 F. Simkovic et al.(arXiv:1812.11503 )
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FIG. 2. (Color online.) Left: Schematic phase diagram of the two-dimensional Hubbard model on a simple square lattice
in the weak-coupling regime around U = 2t. TN

coh and TAN
coh denote the quasiparticle coherence temperatures at the nodal

k = (⇡/2,⇡/2) (triangle) and antinodal k = (⇡, 0) (dot) Brillouin zone point respectively. The onset of the (pseudo-)gap at
antinode and node is denoted by TAN

⇤ and TN
⇤ respectively. Right: Imaginary parts of the self energy on the Matsubara axis

for temperatures corresponding to the colors given in the phase diagram.

the value of the local Coulomb interaction in Eq. (1),
the phase diagram in this parameter regime is structured
by the onsets of di↵erent energy scales. Those di↵er-
ent scales, indicated by di↵erent colors in the Figure, re-
flect themselves in the (one-particle) spectrum: at high
temperatures (red shaded area 1�) thermal fluctuations
are responsible for the incoherence of the spectrum, pre-
venting the appearance of quasiparticles. Cooling the
system progressively extinguishes these thermal fluctua-
tions, leading to coherence in the spectrum and, eventu-
ally, quasiparticles. However, due to the van-Hove sin-
gularity present at the Fermi level of the model’s non-
interacting density of states, which stems from states
around the antinodal Brillouin zone point kAN = (⇡, 0),
the coherence scale is momentum dependent: the onset
of the coherence can at first be seen for the nodal point
kN = (⇡/2,⇡/2), i.e. at temperature T

N

coh
, whereas the

one of the antinodal points only sets in at T
AN

coh
< T

N

coh
,

corresponding to the entry into the orange shaded area
2� of Fig. 2. After coherence is gained for all points of
the Fermi surface, the light-blue shaded area 3� indicates
a (bad) metallic behavior of the spectrum. Lowering the
temperature in this regime results in still freezing out
thermal, but also charge fluctuations [TO CHECK: is
this correct?], leading to a reduced quasiparticle scatter-
ing rate. However, due to the existence of an antiferro-
magnetic ordered phase at zero temperature TN = 0, a
low-temperature regime emerges, in which exponentially
enhanced antiferromagnetic fluctuations in the finite-
temperature paramagnetic phase (Slater paramagnons)
are present. These long-ranged fluctuations lead to an
enhancement of the quasiparticle scattering rate - and
to the eventual destruction of the quasiparticles them-
selves at temperature T⇤. However, in contrast to the
coherence temperature Tcoh, the destruction of quasipar-
ticle first sets in at the antinode kAN at T

AN

⇤ , leading

to a partially gapped Fermi surface (“pseudogap”) in the
blue shaded area 4�. Eventually, all states of the Fermi
surface are suppressed by antiferromagnetic fluctuations
at T

N

*
< T

AN

*
, leading to a true gap in the spectrum

(dark blue shaded area 5�). Let us stress again that true
antiferromagnetic order only sets in at TN=0, what can
immediately understood by the Mermin-Wagner theorem
[1].

B. Signatures of crossovers: one-particle properties

Due to the crossover nature of the temperature scales
(no thermodynamic phase transition is present at any-
one of these), appropriate criteria have to be defined in
view of their quantification. At the one-particle level, one
could associate them with properties of the (momentum-
resolved) spectral function

A(k,!) = � 1

⇡
GR(k,!) = � 1

⇡
lim
�!0

G(k,! + i�), (3)

as a function of real frequency !. However, as all of the
methods considered in the following are formulated in
Matsubara frequencies, a much more practical criterion
can be obtained via the imaginary frequency dependence
of the (imaginary part of the) momentum-resolved self
energy (see Fig. 2, right) [2, 3], which captures the e↵ect
of correlations in the system: at high temperature, the
thermal fluctuations lead to a divergent behavior at low
frequencies. Tcoh can now be determined by the tempera-
ture, where this divergent behavior is eased, i.e. the slope
between first and second Matsubara frequency changes
sign, leading to a low-energy behavior which can be ap-
proximated by a Taylor series. Particularly, for Fermi

ImΣ(k, ω) in DΓA

TNéel in DMFT

Node

T. Schaefer et al.  PRB 125109 (2015),  
J. Magn. Magn. Mat. 400, 107(2016)  
(and in preparation)

Antinode
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which is a diagrammatic extension [25,30–39] of dynamical
mean field theory (DMFT) [40,41] built on its two-particle
vertices [42,43]. It has been already successfully used to
study classical, finite temperature criticality of strongly
correlated systems in three dimensions [44–46], as well as
long-range antiferromagnetic (AFM) fluctuations and their
effect on the electronic self-energy in two dimensions
[26,47]. In fact, DΓA builds up nonlocal corrections at all
length scales on top ofDMFT [42], which in turn captures, in
a nonperturbative fashion, all purely local temporal corre-
lations [41]. Hence, per construction, the scheme is particu-
larly suited to the study of quantum critical phenomena.
The obtained phase diagram of the 3D Hubbard model as

a function of doping displays a progressive suppression of
the Néel temperature (TN), a crossover to an incommen-
surate SDW order, and eventually the vanishing of the
magnetic order at a QCP with ∼20% doping. Upon doping,
the critical scaling properties of the second-order magnetic
transition change abruptly from the ones expected for the
universality class of the 3D Heisenberg model, a “classical”
finite-T phase transition, to a quantum critical behavior
visible in a relatively broad funnel-shaped temperature
region above the QCP. Our results unveil the importance of
Kohn anomalies for the scaling properties of the QCP. In
particular, the T dependence of the magnetic susceptibility
(χQ ∝ T−γ) at the SDW wave vector Q and of the
correlation length (ξ ∝ T−ν) largely deviate from the typical
behavior expected from the HMM theory for AFM quan-
tum phase transitions in three dimensions.
Phase diagram.—We focus here on the magnetic tran-

sitions in the Hubbard model on a simple cubic lattice [48]:

H ¼ −t
X

hijiσ
c†iσcjσ þ U

X

i

ni↑ni↓; ð1Þ

where t is the hopping amplitude between nearest
neighbors,U the local Coulomb interaction,c†iσ (ciσ) creates
(annihilates) an electron with spin σ ¼ ↑;↓ at site i, and
niσ ¼ c†iσciσ; the average density is n ¼ hni↑iþ hni↓i. Here-
after, all energies are measured in units of 2

ffiffiffi
6

p
t, twice the

standard deviation of the noninteracting density of states; we
employ U ¼ 2.0, for which the highest TN at half-filling is
found in both, DMFT and DΓA [44]. We do not consider
phase separation [49], charge ordering [50,51], or disorder-
induced effects [52].
To explore the magnetic phase diagram, we employ

DMFTwith exact diagonalization (ED) as an impurity solver
and DΓA in its ladder-approximation version supplemented
by Moriyaesque λ-corrections; see Refs. [26,28,53] for the
implementation used here as well, see Supplemental
Material, Sec. II(ii) for more specific details [54]. This
approach includes spin fluctuations and was successfully
applied to calculate the critical exponents in three dimensions
before [44]. Superconducting fluctuations are treated at the
DMFT level (the full parquet DΓA [57,58] which would

incorporate these fluctuations is numerically too demanding
for the required momentum grids at the QCP).
The primary quantity we calculate is the static, fully

momentum-dependent magnetic susceptibility χq≡
χqðω ¼ 0Þ, as a function of temperature T. It has a
maximum at a specific (temperature-dependent) wave
vector q ¼ QT, and diverges at T ¼ TN , marking the
occurrence of a second-order phase transition towards
magnetism with ordering vector QTN

.
Figure 1 shows the corresponding divergence points

in the T-n phase-diagram both for DMFT (green) and
DΓA (red). By progressively reducing n, TN decreases and
two regions of the magnetic ordering can be distinguished:
(i) close to half-filling, we observe an instability at QTN

¼
ðπ; π; πÞ, i.e., to commensurate AFM (open triangles);
(ii) at higher doping (n≲ 0.88) the ordering vector is
shifted to QTN

¼ ðπ; π; Qz < πÞ, i.e., an incommensurate
SDW (filled triangles). The inset of Fig. 1 quantifies the
incommensurability π −Qz, i.e., the deviation from a
checkerboard AFM order.
Eventually, ordering is suppressed completely as

TN → 0, leading to the emergence of a QCP at
nDΓAc ≈ 0.805. We note that the critical filling in DMFT
is comparable to that obtained before [59] for a similar
interaction strength (U ¼ 2.04).
Critical properties.—Let us now turn to the (quantum)

critical behavior. We select representative temperature cuts
at four different dopings (n ¼ 1.0=0.87=0.805=0.79)
chosen on both the ordered and the disordered side of
the QCP. Along these four paths we compute two funda-
mental observables, which yield the (quantum) critical
exponents γ and ν of the magnetic transition: (i) the spin

T
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FIG. 1. Phase diagram of the 3D Hubbard model at U ¼ 2.0,
showing the leading magnetic instability as a function of the
density n in both DMFT and DΓA. Inset: Evolution of the
magnetic ordering vector along the instability line of DΓA,
showing a transition from an commensurate AFM with Qz ¼ π
(open triangles in the main panel) to incommensurate SDW with
Qz < π (full triangles in the main panel). The dashed red line
indicates the presumptive crossover between AFM and SDW.
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We study the phase diagram and quantum critical region of one of the fundamental models for
electronic correlations: the periodic Anderson model. Employing the recently developed dynamical
vertex approximation, we find a phase transition between a zero-temperature antiferromagnetic
insulator and a Kondo insulator. In the quantum critical region we determine a critical exponent
� = 2 for the antiferromagnetic susceptibility. At higher temperatures we have free spins with � = 1
instead; whereas at lower temperatures there is an even stronger increase and suppression of the
susceptibility below and above the quantum critical point, respectively.

PACS numbers: 71.27.+a, 71.10.Fd, 73.43.Nq

Introduction. Quantum phase transitions are exceedingly
exciting since, besides the spatial correlations of a classi-
cal phase transition, also (quantum) correlations in time
become relevant at zero temperature T . This changes
the universality class, i.e., the critical exponents, and can
be best understood when considering imaginary time ⌧
which is restricted to ⌧ 2 [0, 1/T ]. Hence at any finite
T , temporal (quantum) correlations are cut o↵ at 1/T so
that only the spatial correlations remain relevant [1].

Most well studied are, on the experimental side, quan-
tum critical points (QCP’s) in heavy fermion systems
[2, 3] such as CeCu6-xAux [4] and YbRh2Si2 [5, 6]. Ex-
perimentally accessible is the unusual behavior within
the quantum critical region at a finite T above the QCP;
for a schematics see Fig. 1. The theoretical description of
such heavy fermion QCP’s is, however, still in its infancy.

The conventional Hertz[7]-Moriya[8]-Millis[9] (HMM)
theory relies on the consideration of the e↵ective �4

model for magnetic degrees of freedom and may hence
not be applicable for heavy fermion systems with their
strong electronic correlations. HMM theory is by con-
struction a (renormalized) weak-coupling approach which
is also valid above the upper critical dimension, i.e., for
de↵ = d+z > 4. Here, the spatial dimensions d need to be
supplemented by a dynamical exponent z, which relates
the critical behavior of the correlation length in space
(⇠ ⇠ T�⌫ ; ⌫: critical exponent) and time (⇠⌧ ⇠ T�z⌫) at
the QCP. Other proposals for a solution of the antiferro-
magnetic (metallic) criticality problem include the frac-
tionalized electron picture [10], the critical quasiparticle
theory [11], and the strong coupling theory [12], see also
[13–17] for quantum criticality studies employing other
methods.

Quantum criticality below the upper critical dimension
for de↵ = 3 (d = 2, z = 1) was considered by Chubukov
et al. [18] for the Heisenberg model within a 1/N expan-
sion and by renormalization-group approaches for Ising
symmetry [19, 20]. But again, these approaches cannot

FIG. 1. (Color online) Schematic phase diagram of the sym-
metric PAM with a T = 0 quantum phase transition towards
an antiferromagnetic insulator in d = 2. Emanating from
the QCP, is a quantum critical region with particular critical
exponents. The parameters and values indicate actual D�A
results presented below.

be straightforwardly extended to include fermionic exci-
tations, which are actually essential regarding the exper-
imental realization of QCP’s in heavy-fermion systems.
Despite many promising approaches [1, 2, 21–24], we
hitherto still lack a reliable solution even for the simplest
model for heavy fermion QCP’s, the periodic Anderson
model (PAM) beyond a mere (conjectured) mapping onto
bosonic models.
In this paper, we hence analyze the QCP of the PAM

by means of a recently developed method, the dynami-
cal vertex approximation (D�A) [25, 26]. The D�A is,
similar as related approaches [27–31], a diagrammatic
extension of the dynamical mean field theory (DMFT)
[32–34]; for a recent review see [35]. From the DMFT
it inherits a reliable and non-perturbative description of
(local) temporal correlations. But on top of these, also
non-local spatial correlations are taken into account by
means of ladder or parquet diagrams, which do not take
the bare interaction but the local irreducible or fully irre-
ducible vertex as a building block. These diagrammatic
extensions have been successfully employed for study-

T. Schaefer et al.  
Phys. Rev. Lett. 122, 227201 (2019)

T. Schaefer et al.  
Phys. Rev. Lett. 119, 046402 (2017)
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ing critical exponents and phenomena in the Hubbard
and Falicov-Kimball model [36–40]. We are hence in the
fortunate situation that we can revisit quantum critical-
ity in fermionic models thanks to recent methodological
progress.
Model and analytical considerations. To arrive at a non-
mean-field, non-Gaussian critical behavior we study the
PAM in d = 2 which can be expected to have the same
quantum critical exponents as the Heisenberg model,
which in turn has a conjectured z = 1 [18, 41]. This
suggests an e↵ective dimension de↵ = 2+1 = 3 [42]. The
Hamiltonian of the PAM reads

H =
X

k,�

"kd†
k�dk� + "f

X

i�

f†
i�fi�

+U
X

i

nf,i"nf,i# + V
X

i,�

⇥
d†

i�fi� + f†
i�di�

⇤
(1)

It consists of localized f -electrons with creation (anni-
hilation) operators f†

i� (fi�), nf,i� = f†
i�fi�, interact-

ing through a local Coulomb repulsion U and with a lo-
cal one-particle potential "f . Further, there are itiner-

ant d†
i� (di�) electrons with a nearest neighbor hopping

t, or a corresponding energy-momentum dispersion rela-
tion "k = �2t [cos(kx) + cos(ky)]. Finally, there is a hy-
bridization V between both kinds of electrons. In the pre-
sented calculations, we fix U =4t (intermediate-to-strong
coupling). We consider the half-filled case "f = �U/2,
for which the PAM maps onto the Kondo lattice model
with a coupling J = 8V 2/U in the limit U � V . That
is, for large U , the f -electrons form localized spins. This
Kondo lattice model shows the famous Doniach [43] T -V
phase diagram, with two competing phases.

On the one hand there is the Kondo e↵ect [44]: below
the Kondo temperature TK , the spins, that are free at
high T with a Curie susceptibility � ⇠ T�1, get screened.
In this case a Kondo resonance forms at the Fermi level.
In our particle-hole symmetric case of half-filling, this
Kondo resonance is however gapped. This can be under-
stood starting from the non-interacting model (U = 0):
the flat f -band at the Fermi energy EF hybridizes with
the dispersive conduction d-band so that a hybridization
gap opens at EF . That is, we have a band insulator and
for a finite U a quasiparticle-(Kondo-)renormalized pic-
ture thereof, i.e. a Kondo insulator. For the (single-site)
Kondo model

TK ⇠ e�
1

⇢0J , (2)

where ⇢0 is the non-interacting density of states of the
conduction electrons at the Fermi level [44, 45]. For the
PAM we get a similar, somewhat enhanced TK [45, 46].

Competing with the Kondo e↵ect is a magnetic phase,
which can be understood as the e↵ective Ruderman-
Kittel-Kasuya-Yosida (RKKY) coupling between f -
electron spins through the conduction electrons. In sec-
ond order perturbation theory in J , the coupling strength
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FIG. 2. (Color online) Phase diagram T vs. V of the half-
filled 2d PAM at U = 4t. The figure shows the AF transition
TN line in DMFT (green) and D�A (red), the DMFT Kondo-
temperature TDMFT

K (blue), and TRKKY [yellow, calculated
from Eq. (3), cf. Ref. 7 of the Supplemental Material [45]].

and hence the critical temperature is

TRKKY =
1

4
J2�!=0

0,Q , (3)

where �0 is the (non-interacting; V = 0) susceptibility of
the conduction electrons and the factor 1/4 = S(S+1)/3
for spin S = 1/2 corresponds to the mean-field critical
temperature. In our case, the maximal coupling appears
at the antiferromagnetic (AF) wave vector Q = (⇡,⇡).
An AF ordering opens a gap, so that we obtain an AF in-
sulator. Since TK is exponentially small for small J [43],
TRKKY prevails for small J , whereas at large J the Kondo
e↵ect wins. Hence, there is a phase transition from an
AF to a Kondo insulator at TK ⇡ TRKKY. Hence, the
ground state is always insulating. At high temperatures,
the f -electrons are also gapped and form free spins, but
the conducting electrons are itinerant; at T >

⇠ TK the
Kondo peak starts to develop but the Kondo insulating
gap that is present at lower T ’s is still smeared out due
to strong scattering.
Phase diagram. Fig. 2 presents the actual phase diagram
of the PAM as calculated using DMFT and D�A. Here,
we employ the ladder D�A with Moriya-� correction [47]
which generates spin-fluctuations starting from the lo-
cal vertex � calculated for a converged DMFT solution,
for further details on the method we refer the reader to
[35, 48–51]. For the DMFT phase diagram of the Kondo
lattice model (and including short-ranged correlations),
cf. [52–54].
Let us start with the DMFT results, which show AF

order at small V in the light-green shaded region of Fig. 2.
This order breaks down as the Kondo e↵ect sets in and
a QCP emerges: there is a T = 0 phase transition. As
we see, the perturbative result, TRKKY ⇠ J2

⇠ V 4 (yel-

χ ∼ T−2
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FIG. 3. (Color online) Magnetic susceptibilities (on a double logarithmic scale) in DMFT (upper panel, dark green open
circles) and D�A (lower panel, red squares). The black solid and blue dotted lines indicate a � ⇠T�1 and � ⇠T�2 behavior,
respectively; the green dashed line is the DMFT susceptibility � ⇠(T � TDMFT)

�1 (black line from the upper panel).

low line), only holds for small V ; for larger V ’s DMFT
yields a smaller AF transition temperature due to tem-
poral correlations (green line). As we see the AF order
breaks down when the DMFT Kondo temperature (blue
line, determined from the maximum of the local suscep-
tibility as a function of T ) becomes of similar amplitude
as the DMFT Néel temperature (green line).

The D�A phase diagram in Fig. 2 is distinctively dif-
ferent. Concomitant with the Mermin-Wagner theorem
[55], AF order is only found at T = 0 because of strong
non-local fluctuations in d = 2, cf. [26] for D�A fulfilling
the Mermin-Wagner theorem for the 2d Hubbard model.
Nonetheless, we have AF order along the red line in Fig. 2
and Fig. 1, and hence, at T = 0, a QCP develops at
VQCP ⇡ 0.91t.

Quantum critical region. Above this QCP region we
expect a quantum critical region as visualized in Fig. 1,
with non-Gaussian fluctuations. Hence, we study the AF
susceptibility � = �!=0

Q at momentum Q = (⇡,⇡) and its
critical behavior around the critical VQCP in Fig. 3. In
DMFT, � ⇠ (T � TN )��

⇠ (T � TN )�1 see Fig. 3 (up-
per panels) so that we have a critical exponent � = 1.
This reflects the (bosonic) mean-field critical behavior
of DMFT which neglects spatial fluctuations. At high
temperatures, it smoothly evolves into the Curie suscep-
tibility � ⇠ T �1 of free spins.

In D�A, Fig. 3 (lower panels), we observe a completely
di↵erent behavior. While at high T , we have the same
� = 1 Curie behavior, there is a crossover to � ⇠ T �2,
i.e., a quantum critical exponent � = 2 at lower T ’s.
This critical exponent and the related correlation length
⇠ ⇠ T �⌫

⇠ T �1 agrees with the conjectured mapping
onto a non-linear � model [18, 56], which also displays
antiferromagnetic ordering within an insulating phase (as
we have) with a dynamical critical exponent z = 1 and
yields the same ⇠ ⇠ 1/T in the quantum critical regime.
This yields the critical exponent ⌫ = 1 for the correlation

length, which happens to be the same critical exponent
that one gets if setting the correlation length in time to
its cut-o↵ ⇠⌧ ⇠ 1/T and accepting that z = 1. With the
Fisher relation �/⌫ = 2 � ⌘ [57], � ⇡ 2 for the suscep-
tibility as observed in Fig. 3 (note that, typically, ⌘ is
vanishingly small even in d = 2). In the Supplemental
Material [45] Section S.III we present an explanation for
this critical exponent on the basis of a sum rule.

With increasing dimensionality, we expect the critical
exponents at d � 3 approach their values in HMM theory
[45]. Computing quantum critical exponents of strongly
correlated electron models such as the PAM was, how-
ever, not possible hitherto; quantum Monte Carlo simu-
lations and cluster extensions of DMFT are restricted to
too short-ranged correlations.

At the lowest T , deviations from this quantum critical
behavior are discernible in Fig. 3 (lower panels) and are
to be expected as we leave the cone-shaped quantum crit-
ical region in Fig. 1. For V < VQCP, eventually antifer-
romagnetic order sets in at T = 0. Already at finite T ’s,
an exponential increase of the correlation length and the
susceptibility with 1/T is to be expected [56]. A similar
exponential scaling was observed for the Hubbard model
[58]. Consistently with this description, one observes a
deviation to even larger susceptibilities at V ⌧ VQCP and
lowest T ’s in Fig. 3. For low T and V > VQCP, on the
other hand, eventually a Kondo insulating phase develops
(quantum disordered phase in Fig. 1). For this (renor-
malized) band insulator, one has � ! 0 for T ! 0. In
agreement with this, Fig. 3 shows a deviation to smaller
susceptibilities at lower T ’s; a full suppression of the sus-
ceptibility because of the Kondo gap will only occur at
larger V in the accessible T -range.

An intriguing, non-universal aspect is the strong en-
hancement of the susceptibility in the crossover regime
between the � ⇠ 1/T and � ⇠ 1/T 2 behavior, in par-
ticular at V = 0.9 and V = 0.91 in Fig. 3. This
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the necessity of calculating the vertex functions only locally
mitigates secondary (but important) numerical problems such
as the sign problem in quantum Monte Carlo (QMC) solvers.
Nonetheless, the overall numerical efforts for treating the
parquet equations have limited, so far, a wide application of
D!A-based methods in their more complete (parquet-based)
form: Hitherto, all successful applications of D!A to 2D and
3D systems have been performed in cases where fluctuations in
a given scattering channel predominate [9,13,25]. In this case,
the solution of the parquet equations can be replaced by a much
simpler ladder resummation performed in the most relevant
channel only [25]. We note, in passing, that such considerations
apply, with very few exceptions [30,40], also to almost all
other diagrammatic extensions of DMFT. For similar reasons,
no application of the nano-D!A algorithm, as illustrated
in Refs. [17,22] has been realized hitherto. Exploiting the
constant improvements of the numerical performance both in
the DMFT calculation of vertex functions [34,35,38] as well as
in the numerical solution of the parquet equations [41– 43], we
will present here our first results of the full (i.e., parquet-based)
nano-D!A, applied to a set of correlated nanoscopic rings of
increasing size.

The importance of the results presented in the following
is twofold, and goes beyond the demonstration of a full
applicability of the algorithm proposed in Ref. [17]: Physically,
our calculations allow us to understand the interplay of local
and nonlocal correlations in spectral and transport properties
of finite systems of different sizes; from a methodological
perspective, the application of a full (parquet-based) D!A
scheme to these nanoscopic systems represents one of the most
severe benchmarks conceivable for this theoretical approach.
In fact, the accuracy of a D!A calculation depends on the
correctness of the locality assumption for the two-particle
irreducible vertex functions. Heuristically, this assumption
looks plausible for 3D and 2D systems with local interactions,
where strong spin, charge, and pair fluctuations are already
generated by the corresponding collective modes built on
local irreducible vertices. Numerically, a direct verification
of the D!A assumption is difficult in 2D or 3D: While
the irreducible vertex surely displays a strong frequency
dependence [34,35], taken into account by the D!A, its
dependence on momentum has been shown explicitly only
in few calculations [44] beyond DMFT, and it was found to
be weak. In this work, we focus instead on systems where
an exact numerical solution is available, so that both, the
D!A performances and assumptions, can be tested. Let us
emphasize that the low connectivity and the peculiarity of
1D physics represent the most challenging situation for D!A.
In this perspective, our numerical analysis will also allow us
to draw conclusions, on a more quantitative ground, on the
physical content of parquet-based approximations. The paper
is organized as follows: In Sec. II, we introduce the general
properties of the nanoscopic systems under consideration,
namely, Hubbard rings of different sizes. In Sec. III, we
discuss the parquet implementation of D!A. In Sec. IV,
we present the numerical parquet D!A results, while in
Sec. V we also make a comparison with data obtained within
the ladder approximation of the D!A scheme. Finally, Sec. VI
provides a summary and our conclusions, while the Appendix
contains the technical details of the numerical calculations.

FIG. 1. (Color online) Energy-momentum dispersion relation
ϵ(k) with respect to the Fermi level µ (dashed line) for nanorings
with N = 4,6,8 sites. The symbols denote the discrete eigenstates
corresponding to the allowed values of the momentum: k = 2πn/N ,
with n ∈ N.

II. MODELING THE NANORINGS

The correlated nanoscopic rings considered in the following
consist of N isolated correlated atoms, arranged in a chain with
periodic boundary conditions, and described by the Hubbard
Hamiltonian

H = − t
∑

σ

N∑

i=1

(
c
†
iσ ci+1σ + c

†
i+1σ ciσ

)
+ U

N∑

i=1

ni↑ni↓, (1)

where c
†
iσ (ciσ ) denote the creation (annihilation) operators

of an electron on site i with spin σ , fulfilling the periodic
boundary conditions c(i+N)σ = ciσ , while niσ = c

†
iσ ciσ de-

notes the number operator; the parameters t and U denote
the nearest-neighbor (NN) hopping amplitude and the onsite
Hubbard interaction, respectively. Due to the translational
invariance of the system, granted by the periodic boundary
conditions of the ring, it is convenient to formulate the hopping
term in the reciprocal space, yielding a tight-binding dispersion
ϵ(k) = − 2t cos(ka) − µ, where µ is the chemical potential.
In the following, we set the lattice spacing a = 1 and consider
rings with N = 4,6,8 sites. We restrict ourselves to the
half-filled case, i.e., µ = U/2, where electronic correlations
stemming from the local Hubbard interaction are expected to
be most effective. Under these conditions, all rings display
a particle-hole-symmetric density of states and, in particular,
in the noninteracting case (U = 0) the systems display either
a “band” gap (as in the case of the N = 6 sites ring) or a
twofold-degenerate state at the Fermi level (as in the case of
N = 4,8 sites rings). The rings considered in this work and
the corresponding dispersions ϵ(k) are shown in the upper and
lower panels of Fig. 1, respectively.

III. PARQUET-BASED IMPLEMENTATION
OF THE NANO-D!A

We recall that the idea of D!A is to apply the locality
assumption of DMFT at a higher level of the diagrammatics:
While in DMFT all one-particle irreducible (1PI) one-particle
diagrams (i.e., the self-energy %) are assumed to be purely
local, D!A confines the locality to the two-particle irreducible
(2PI) two-particle diagrams, i.e., the fully irreducible vertex
!irr is approximated by all local Feynman diagrams [45].
Hence, in the D!A framework, the purely local, but frequency-
dependent [46], 2PI vertex !irr = &ωνν ′

iiii is calculated for a site i
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FIG. 8. (Color online) As in Fig. 5, but for the N = 4 ring.

correlations within the parquet D!A scheme reduces [55]
TN . However, it is plausible that the local physics described
by DMFT, and hence the information encoded into the 2PI
vertex of DMFT, can be very different from the local physics
of the exact solution.

We discuss the effect of local and nonlocal correlations
on the Green’s function, as shown in Fig. 7, as we already
did for the N = 6 sites ring. Both in DMFT and D!A, a
sizable value of Gii(β/2) indicates a metallic spectral function,
while in the exact solution this quantity is strongly suppressed,
revealing an insulating nature. In this respect, we note that,

even in the insulating state, a value of Gii(β/2) = 0 can
only be achieved at T = 0, while here we observe a finite
value due to the average over an energy window due to the
broadening of the Fermi distribution at finite temperature.
The combined information of a sizable value of Gii(β/2)
and the large scattering rate γk at the Fermi surface (i.e.,
k = π/2) in the corresponding self-energy in Fig. 6 suggest
the presence of a local minimum in the spectral function
at the Fermi level (pseudogap). Hence, we can conclude
that the D!A, in its full parquet-based implementation,
yields a quantitative improvement over the DMFT description,
however, the nonlocal correlations stemming from the 2PI
local vertex of DMFT are not yet strong enough to completely
open a well-defined gap in the spectral function, which is
instead present in the exact solution.

A deeper understanding of the above results can be obtained
by the analysis of the frequency and momentum structure of
the 2PI vertex. Let us first discuss the local 2PI vertex, shown in
Fig. 8. The most striking feature of the vertex of the N = 4 sites
ring is the strongly enhanced low-frequency structure which
now exhibits strong deviations from the bare interaction U =
2t. In fact, the vertex corrections are orders of magnitude larger
than for the N = 6 insulating ring, and the low-frequency
structure is also more complex. In particular, one can observe
additional negative “spots” (of highest intensity) which are
generated by the change of sign of several eigenvalues of
the generalized local susceptibility [35]. This low-frequency
structure of the local 2PI vertex is responsible for a k-selective
enhancement of the D!A self-energy over the one obtained
within the PA.

The direct numerical evaluation of the exact 2PI vertex,
shown in Fig. 9, allows us to understand the role of its
momentum structure. The q-resolved exact fully irreducible
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FIG. 9. (Color online) Exact fully irreducible vertex in the (particle-hole) density and magnetic channels with respect to the static
asymptotics, i.e., %d − U (upper row) and %m + U (lower row), as a function of the two fermionic frequencies νn and νn′ , for bosonic
frequency ω = 0. The q-resolved vertex %(q) [panels (a), (b), (c), (e), (f), and (g)] corresponds to the fully irreducible vertex averaged over k

and k′, while the local % [panels (d) and (h)] is averaged over q as well. In addition to the nontrivial momentum structure of %(q), neglected
within the parquet D!A, it is worth noting that the complex frequency structure of the local % is not captured from the DMFT vertex (cf.
Fig. 8). This suggests that a full self-consistency at the two-particle level, via a corresponding redefinition of the AIM, might improve the
present D!A results. Parameters: N = 4, U = 2t, and T = 0.1t.
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correlations within the parquet D!A scheme reduces [55]
TN . However, it is plausible that the local physics described
by DMFT, and hence the information encoded into the 2PI
vertex of DMFT, can be very different from the local physics
of the exact solution.

We discuss the effect of local and nonlocal correlations
on the Green’s function, as shown in Fig. 7, as we already
did for the N = 6 sites ring. Both in DMFT and D!A, a
sizable value of Gii(β/2) indicates a metallic spectral function,
while in the exact solution this quantity is strongly suppressed,
revealing an insulating nature. In this respect, we note that,

even in the insulating state, a value of Gii(β/2) = 0 can
only be achieved at T = 0, while here we observe a finite
value due to the average over an energy window due to the
broadening of the Fermi distribution at finite temperature.
The combined information of a sizable value of Gii(β/2)
and the large scattering rate γk at the Fermi surface (i.e.,
k = π/2) in the corresponding self-energy in Fig. 6 suggest
the presence of a local minimum in the spectral function
at the Fermi level (pseudogap). Hence, we can conclude
that the D!A, in its full parquet-based implementation,
yields a quantitative improvement over the DMFT description,
however, the nonlocal correlations stemming from the 2PI
local vertex of DMFT are not yet strong enough to completely
open a well-defined gap in the spectral function, which is
instead present in the exact solution.

A deeper understanding of the above results can be obtained
by the analysis of the frequency and momentum structure of
the 2PI vertex. Let us first discuss the local 2PI vertex, shown in
Fig. 8. The most striking feature of the vertex of the N = 4 sites
ring is the strongly enhanced low-frequency structure which
now exhibits strong deviations from the bare interaction U =
2t. In fact, the vertex corrections are orders of magnitude larger
than for the N = 6 insulating ring, and the low-frequency
structure is also more complex. In particular, one can observe
additional negative “spots” (of highest intensity) which are
generated by the change of sign of several eigenvalues of
the generalized local susceptibility [35]. This low-frequency
structure of the local 2PI vertex is responsible for a k-selective
enhancement of the D!A self-energy over the one obtained
within the PA.

The direct numerical evaluation of the exact 2PI vertex,
shown in Fig. 9, allows us to understand the role of its
momentum structure. The q-resolved exact fully irreducible
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FIG. 9. (Color online) Exact fully irreducible vertex in the (particle-hole) density and magnetic channels with respect to the static
asymptotics, i.e., %d − U (upper row) and %m + U (lower row), as a function of the two fermionic frequencies νn and νn′ , for bosonic
frequency ω = 0. The q-resolved vertex %(q) [panels (a), (b), (c), (e), (f), and (g)] corresponds to the fully irreducible vertex averaged over k

and k′, while the local % [panels (d) and (h)] is averaged over q as well. In addition to the nontrivial momentum structure of %(q), neglected
within the parquet D!A, it is worth noting that the complex frequency structure of the local % is not captured from the DMFT vertex (cf.
Fig. 8). This suggests that a full self-consistency at the two-particle level, via a corresponding redefinition of the AIM, might improve the
present D!A results. Parameters: N = 4, U = 2t, and T = 0.1t.
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Figure S.14. Strong-coupling parameters (Point C, U/D = 1.4, δ = 4%, βD = 8, t′/t = −0.3), α = 0.5, Ising decoupling.
Impurity cluster vertex Λη

imp(i, j, k; iω, iΩ) in the charge and spin channels, at fixed fermionic Matsubara frequency ω0.
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• Beyond DMFT,  a family of approaches with two-particle self-consistency

• Solved with an auxiliary quantum impurity model 

• Local approximations for vertex instead of self-energy. 

• Controlled by cluster extensions

Guv
Wαβ

u v α β

Λuvα
α

u v

χuvα

α

u v

⌃ =
��LW

�G

DMFT (2PI) Quadrilex (4PI)/ DΓA

3

2. DMFT as an expansion of ΦLW around the
atomic limit

Let us first briefly review the DMFT construction.
DMFT consists in approximating ΦLW by an ex-
pansion around the atomic limit:1

ΦDMFT
LW [GRR′ , URR′′R′′′R′′′′ ]

≡
∑

R

ΦLW[GRR, URRRR] (13)

In the right-hand side, ΦLW[GRR] is shorthand
for ΦLW[GRRδRR′ ] (and similarly for U). The
form of this approximation shows that DMFT is
best suited for local interactions (URR′′R′′′R′′′′ =
UδRR′′R′′′R′′′′ ).1

As a result, the DMFT self-energy is local:

ΣDMFT
RR′ (iω) = ΣRR(iω)δRR′ (14)

Here, iω denotes a fermionic Matsubara frequency.

The resummation of the infinite class of local dia-
grams in (13) is done by the following construction.

First, one introduces the following auxiliary impu-
rity model:

SDMFT
imp = −

∫∫

ττ ′

∑

σσ′

c̄τσ
[

G−1(τ − τ ′)
]

σσ′
cτ ′σ′

(15)

+
1

2

∫

τ

∑

σ1σ2
σ3σ4

Uσ1σ2σ3σ4
c̄τσ1

cτσ2
c̄τσ3

cτσ4

Its Luttinger-Ward functional Φimp
LW is the same as

the summand in the right-hand side of Eq. (13).
Note that Φimp

LW depends on the full propagator G
and bare interaction U , not on the non-interacting
propagator G.

Second, one adjusts the non-interacting propaga-
tor G of the auxiliary model such that

Gimp[G](iω) = GRR(iω) (16)

where the notation [G] means that Gimp depends
on G through the solution of the impurity model,
Eq.(15). G can be regarded as a Lagrange multi-
plier to enforce the constraint (16).39

Finally, if Eq.(16) is satisfied, then

Φimp
LW [Gimp, U ] = ΦLW[GRR, U ]

and therefore Eq. (14) implies that

ΣDMFT(k, iω) = Σimp(iω) (17)

1 In the DMFT approximation, nonlocal interactions only
contribute at the Hartree level.38

ū u

v̄v

G2;ūuv̄v

u ū

vv̄

Fuūvv̄

Figure 1: Graphical representation of the 4-point func-
tions

The determination of the G fulfilling (16) is usually
done in an iterative fashion. We emphasize that
in this construction, U is the same in the lattice
model and in the impurity model. Cluster DMFT
methods,2–6 which consist in introducing an ex-
tended (i.e multi-site) impurity model instead of
Eq. (15), provide a systematic expansion beyond
DMFT.

B. A reminder on vertex functions and the
parquet formalism

In this section, we give a reminder of the parquet
equations40,41 so as to fix our notations (which are
similar to those used in Refs 10,11,42–44).

The fully reducible vertex F is defined as the am-
putated, connected four-point function:

Fuūvv̄ ≡ G−1
āuG

−1
ūaG2,āab̄bG

−1
b̄v

G−1
v̄b (18)

F contains all connected diagrams with two outgo-
ing and two ingoing entries. We note that G2 and
F are of slightly different nature: F is of the “ver-
tex” type (it is amputated, i.e. its external points
correspond to bare vertices), while G2 is a “corre-
lator” (it is not amputated, i.e. its external points
correspond to propagator ends). In diagrams, “ver-
tices” can only be connected to “correlators”, and
reciprocally. G2 and F are shown graphically in
Fig. 1.

We next define the irreducible vertex in channel
r, Γr, where r = ph, ph, pp. The irreducible ver-
tex in the particle-hole channel, Γph (resp. irre-
ducible vertex in the horizontal particle-hole chan-
nel, Γph), contains all diagrams that do not fall
apart if two horizontal (resp. vertical) counter-
propagating propagators are cut open. Similarly,
the irreducible vertex in the particle-particle chan-
nel, Γpp, contains all diagrams which do not fall
apart when two propagators going in the same di-
rection are cut open.

These diagrammatic definitions imply that F and
Γr are related by the Bethe-Salpether equation:

Fuūvv̄ = Γr
uūvv̄ + Φr

uūvv̄ (19)

  Toschi et al. 2007

T. Ayral & OP (2016)
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• Work in progress : 

• More applications

• Can we control DΓA with clusters ? 

• Quadrilex : is it better to have a self-consistent interaction ?
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