

Quantum Condensed Matter Dynamics

Andrea Cavalleri

Max Planck Institut for the Structure and Dynamics of Matter

Lecture 3: Nonlinear Phononics I Lecture 4: Nonlinear Phononics II

Max Planck Institute for the Structure and Dynamics of Matter

Quantum Materials

Quantum Materials possess a wide variety of competing phases with different and unconventional properties:

Metal-insulator transitions

Colossal magnetoresistance

E. Dagotto, Science 309, 257 (2005)

Structure-function in Quantum Materials

Selective control: single lattice coordinate

Mid infrared and THz light: lattice distortions along one (or few) normal mode coordinates

Displacements ~ 1-10 %

Can one control specific bond angles with light ?

Linear coupling

Light couples to IR active phonons – whose coordinates that are odd against inversion

Linear optical excitation of IR-active modes does nothing on average

Today's lecture: beyond linear coupling

M. Först et al., Nature Physics 7, 854 (2011)

Lowest order non-linear coupling

If material centrosymmetric

Interaction is always between a driven odd mode and an even mode

Equations of motion: oscillations in Q_{IR}

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A E_{laser}^{i\omega t}$$

harmonic oscillator Laser field

Equations of motion: oscillations in $(Q_{IR})^2$

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = AE_{laser}^{i\omega t}$$

$$(\ddot{Q}_2 + \gamma \dot{Q}_2 + \omega_2^2 Q_2) = BQ_{IR}^2$$

Oscillations in Q_{IR} displace Q₂

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A E_{laser}^{i\omega t}$$

$$(\ddot{Q}_2 + \gamma \dot{Q}_2 + \omega_2^2 Q_2) = BQ_{IR}^2$$

Q_{IR} **Q**₂ term: Oscillations in **Q**_{IR} displace **Q**₂

Example: La_{0.3}Sr_{0.3}MnO₃

Excite Oxygen Stretch of E_u symmetry

Time resolved reflectivity oscillates

Oscillations indicate excitation of E_g mode

M. Foerst et al., Nature Physics 7, 854 (2011)

E_g only there if light resonant with E_u

E_g amplitude follows (E_{laser})²

M. Foerst et al., Nature Physics 7, 854 (2011)

E_g mode has the correct symmetry

 $U_{\rm int} = A Q_{ir}^2 Q_2$ $E_{1\mu}^2 E_{\rho}$

M. Foerst et al., Nature Physics 7, 854 (2011)

Is there an average displacement along $E_{g?}$

Mid-IR pump (E_{1u} mode)

Displacive field (E_g mode)

Pump probe experiment using X-ray FEL

Step change in structure factor

∆I/I0 (%)

Mid-IR pump (E₁₀ mode) E_{1u}

Displacive field (E_g mode)

M. Foerst et al. Solid State Comm. 169, 4 (2013)

Time Delay (ps)

Lowest order nonlinear phononics

Can one control specific bond angles with light ?

Demonstration away from phase boundary

Close to a Phase Boundary: Pr_{0.3}Ca_{0.3}MnO₃

Pr_{0.3}Ca_{0.3}MnO₃: competition between two insulators

Pr_{0.3}Ca_{0.3}MnO₃: a hidden metallic phase

H. Hwang et al., Phys. Rev. Lett. 52, 15046 (1995)

Pr_{0.3}Ca_{0.3}MnO₃: excite B_{1u} mode induces hidden metal

What is the dynamical lattice distortion ?

B_{1u} drives A_{1g} mode

 $U_{\rm int} = A Q_{ir}^2 Q_2$ $B_{1u}^{2}A_{1g}$

B_{1u s}tretch drives A_{1g} rotations

Frozen Phonon

Electronic Structure in the distorted state -> metallic

A. Subedi, A. Cavalleri, A. Georges Phys. Rev B 89, 330301 (2014)

Pr_{0.3}Ca_{0.3}MnO₃: control of bond tilt...after all

M. Rini et al., Nature 449, 72 (2007)

A. Subedi, A. Cavalleri, A. Georges Phys. Rev B 89, 330301 (2014)

LETTERS

Х

Centrosymmetric – only A modes

What else can I do ?

Manipulate inversion symmetry

Manipulate time reversal symmetry

Ferroelectric: no centre of inversion

Not centrosymmetric – coupling odd modes

Pump an auxilliary mode

Force on ferroelectric mode

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = 2aQ_P Q_{IR} + f(t),$$

$$\ddot{Q}_p + \gamma_p \dot{Q}_p - \omega_p^2 Q_p + c_p Q_p^3 = a Q_{IR}^2,$$

Force on ferroelectric mode

A. Subedi Phys. Rev B 92, 214303 (2014)

Coupling to Ferroelectric polarization

Coupling to Ferroelectric polarization

$$V_{p} = \frac{1}{2}\omega_{p}^{2}Q_{p}^{2} + aQ_{p}^{3} + bQ_{p}^{4} - AQ_{ir}^{2}Q_{p}$$

Probing Ferroelectric polarization

SHG only possible in noncentrosymmetric materials

$$P^{(2)} = \varepsilon_0 \cdot \chi^{(2)} \cdot E^2_{(800nm)}$$

Probing Ferroelectric polarization

Measure time-resolved second harmonic intensity

drops to zero...bounces....goes back to zero

Time Delay (ps)

Is this switching?

Time Delay (ps)

Phasing Ferroelectric Polarization

Phasing Ferroelectric Polarization

Ferroelectric Switching in LNO

$$V_{p} = \frac{1}{2}\omega_{p}^{2}Q_{p}^{2} + aQ_{p}^{3} + bQ_{p}^{4} - AQ_{ir}^{2}Q_{p}$$

Phasing Polarization Switching

R. Mankowski et al . arXiv:1701.06312

Phasing Ferroelectric Polarization

Starting from different direction

Bi-directional switching

R. Mankowski et al . arXiv:1701.06312

Up to now I discussed only lowest order

What else?

In analogy with nonlinear optics

 $Q_{IR}^{2} \cdot Q_{2}$ (lattice control)

Q_{IR}² • Q₂² (phonon squeezing)

Q_{IR}⁴ (parametric phonon amplification)

Q_{IR1} • Q_{IR2} e^{iΘ} • S (controlling time reversal invariance)

Q_{IR}² [•]U (controlling correlations)

Can we break time reversal symmetry ?

Orthorombically distorted perovskite Antiferromagnetic insulator

Exciting more than one mode

Simultaneous excitation of two lattice modes with controlled relative phase.

Break time reversal symmetry

T. F. Nova et al., Nature Physics 13, 132 (2017)

Coherent control of magnetic mode

T. F. Nova et al., Nature Physics 13, 132 (2017)

Controlling superconductivity

Lattice distortions may quench SC

Lattice distortions may promote SC

Cuprate superconductors: competing orders and hidden phases

Fradkin and Kivelson, Nature Physcs (2012)

Eu:LSCO_{1/8} stripe charge order

With Hide Takagi MPI Stuttgart

Excitation of in plane Cu-O stretch

16 μm wavelength μJ pulses MV/cm fields

> With Hide Takagi MPI Stuttgart

How do I recognize a transient superconductor ?

Josephson Plasmon

Kresin and Morawitz PRB (1988)

van der Marel and A. A. Tsvetkov Czech. J. Phys. (1996)

Probing the transient state

Mid-IR pump / THz Probe Spectroscopy

A light Induced Josephson plasma edge

Equilibrium LSCO Superconducting (eq.)

Photo-induced LESCO

Superconducting (non eq.)

Plasma mode where $\varepsilon_1(\omega)$ crosses zero

C.R. Hunt et al., Physical Review B 91, 020505(R) (2015)

C.R. Hunt et al., Physical Review B 91, 020505(R) (2015)

Am I melting charge stripes with light ?
Charge stripes are seen by soft x-ray scattering

Abbamonte et al Nature Physics 1, 155 (2005)

Ultrafast soft X-ray diffraction

Ultrafast soft X-ray diffraction

M. Foerst et al., Phys Rev Lett 112, 157002 (2014)

With John Hill, BNL

Charge stripe melting - superconductivity

Charge Stripes melt concomitantly with the formation of the SC

.....switching into a hidden phase

Can I do this in other cuprates ?

YBCO: Coherence above T_c and a CDW

A. Dubroka et al., Phys. Rev. Lett. 107, 047006 (2011)

With B. Keimer MPI Stuttgart

Apical oxygen correlates with T_c at equilibrium

E. Pavarini et al., PRL 87, 047003 (2001)

C. Weber et al. Phys. Rev. B 82, 125107 (2010).

Pump apical oxygen probe c-axis plasma

W. Hu et al. Nature Materials 13, 705 (2014)

S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Below Tc: two plasma plasma edges

Low frequency inter-bilayer plasma edge

Below Tc: Light-induced blue shift of the edge

W. Hu et al. Nature Materials 13, 705 (2014)

S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Below T_c: Enhancement of "superconductivity"

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. *Nature Materials* 13, 705 (2014)
S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Spectral weight from high frequency

W. Hu. et al. Nature Materials 13, 705 (2014)

Above T_c

With B. Keimer MPI Stuttgart

Light induced Plasma Mode – 2 X Tc

W. Hu. et al. *Nature Materials* 13, 705 (2014)

Light induced edge – follows charge order

G. Ghiringhelli et al., Science 337, 821 (2012)

S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

YBCO_{6.6}: Light induced CDW melting

So far everything like in LESCO_{1/8}

Other dopings - Surprise..... Follows T*

Follows T*

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. Nature Materials (2014) S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Dynamical modulation: what is going on ?

What is the lattice doing ?

Excite B_{1u} and displace along A_g

Doped YBCO: 11 A_g Raman modes

Only three Ag modes are coupled strongly with B1u

Femtosecond X-ray Scattering

A new, transient crystal structure

R. Mankowski et al. *Nature 516,71 (2014)*

Same distortions observed under pressure

- J. G. Huber et al. Phys. Rev. B 41, 8757 (1990)
- L. E. Schirber et al. Phys. Rev. B 35, 8709 (1987)
- B. Bucher et al. Journal of Less-Common Metals 164, 165, 20 (1990)
- J. Jorgensen et al. *Physica C 171*, 93 (1990)

Phononics d ~ 3 %

1) Staggered motion of the planes

2) Empty chain band moves down in energy

3) Charge transfer from the planes to the chains

R. Mankowski et al. Nature 516,71 (2014)

Summary: three good things

1) Staggered motion of the layers

2) Charge transfer from to chains

Let's think about YBCO again: below Tc

W. Hu et al. Nature Materials 13, 705 (2014)

Let's think about YBCO again: below Tc

Let's think about YBCO again: below Tc

P.L. Kapitza, "Dynamic stability of a pendulum with an oscillating point of suspension," *Zh. Eksp. Teor. Fiz.* 21, 588 (1951)

Let's think about YBCO again: above Tc

100 K driven

Let's think about YBCO again: above Tc

P.L. Kapitza, "Dynamic stability of a pendulum with an oscillating point of suspension," *Zh. Eksp. Teor. Fiz.* 21, 588 (1951)

100 K driven

Is this a phenomenon specific to cuprates or is it more general ?

K₃C₆₀: a 20 K superconductor

- Organic molecular solid
- High T_c (20 K)
- 3D electronic structure

Equilibrium Superconductivity in K₃C₆₀

From literature data, MM PhD thesis

Equilibrium Superconducting Transition

- Increase in $R(\omega)$
- Gap opening in $\sigma_1(\omega)$
- Increase in $\sigma_2(\omega)$

Pairing Interaction in K₃C₆₀

"On ball" vibrations plus correlations favor local pairing

Schluter, Varma, Tosatti, Capone, Gunnarson......

Kivelson, Chakravarty

Vibrational pump

MIR pump 170 meV (7.3 μm)

Iwasa et al. PRB 51, 3678 (1995)

Vibrational pump THz probe in K₃C₆₀

MIR pump 170 meV (7.3 μm)

Striking similarity with the low temperature SC

Temperature dependence

M. Mitrano et al. 530, 461 *Nature* (2016)

Crossover at ~10 times T_c

M. Mitrano et al. 530, 461 Nature (2016)

K₃**C**₆₀ : Stimulated superconductivity ?

What is going on?

T_{1u} vibration: no linear e-ph coupling

Nonlinear coupling to Jahn Teller Phonon?

Enhancement of pairing distortions ?

Or....new types of coupling

In analogy with nonlinear optics

 $Q_{IR}^{2} \cdot Q_{2}^{2}$ (lattice control)

Q_{IR}² • Q₂² (phonon squeezing)

Q_{IR}⁴ (parametric phonon amplification)

Q_{IR1} • Q_{IR2} e^{i⊖} • S (controlling time reversal invariance)

Q_{IR}² • U (controlling correlations)

Modulation of U in organics

PRL 115, 187401 (2015)

PHYSICAL REVIEW LETTERS

week ending 30 OCTOBER 2015

THz-Frequency Modulation of the Hubbard U in an Organic Mott Insulator

R. Singla,^{1,*} G. Cotugno,^{1,2} S. Kaiser,^{1,7,8,†} M. Först,¹ M. Mitrano,¹ H. Y. Liu,¹ A. Cartella,¹ C. Manzoni,^{1,4} H. Okamoto,⁵ T. Hasegawa,⁶ S. R. Clark,^{2,9} D. Jaksch,^{2,3} and A. Cavalleri^{1,2,‡}

Nonlinear coupling to correlation energy ?

G. Mazza, A. Georges (2017)

Nonlinear phononic control

