

Onset of nematicity in YBCO

Interplay with charge order & superconductivity

Louis Taillefer

Collège de France, Paris, 26 March 2015

Onset of nematicity in YBCO

Interplay with charge order & superconductivity

UNIVERSITÉ DE SHERBROOKE

- **O. Cyr-Choinière G. Grissonnanche** S. Badoux N. Doiron-Leyraud
- L. Taillefer

J. Day R. Liang W. N. Hardy D. A. Bonn

Phases & Questions

- 1) Superconductivity Why a dome? Why peaked at p = 0.16?
- 2) Pseudogap

- What is it ? Crossover or transition ?
- 3) Charge order
- Why a dome ? Why peaked at p = 0.12 ?
- 4) Nematicity
- Where from? Crossover or transition ?

The central line $-T_x$

Ando et al., PRL 93, 267001 (2004)

In-plane anisotropy of the resistivty in YBCO

Ando et al., PRL 88, 137005 (2002)

The pseudogap energy $- E_{PG}$

Tallon & Loram, Physica C 349, 53 (2001)

Cyr-Choinière *et al.,* arXiv:1504.06972 (2015)

Tallon & Loram, Physica C **349**, 53 (2001)

The pseudogap energy $- E_{PG}$

STM on Bi-2212

+0.5

-0.5

0.35

0.30

0.25

0.20

-0.15

0.10

0.05

0.3

Fujita et al., Science 344, 612 (2014)

Tallon & Loram, Physica C **349**, 53 (2001)

Cyr-Choinière *et al.*, arXiv:1504.06972 (2015) Tallon & Loram, Physica C 349, 53 (2001)

Hücker *et al.*, PRB **90**, 054514 (2014) Blanco-Canosa *et al.*, PRB **90**, 054513 (2014) Cyr-Choinière *et al.,* arXiv:1504.06972 (2015)

Wu et al., Nat. Comm. 4, 2113 (2013)

Suppression of charge order by pressure in YBCO

Restoring the full superconducting dome

O. Cyr-Choinière D. LeBoeuf S. Badoux S. Dufour-Beauséjour N. Doiron-Leyraud L. Taillefer

R. Liang W. N. Hardy D. A. Bonn

$T_{\rm c}$ in oxygen-ordered YBCO

 $T_{\rm c}$: enhanced by pressure $T_{\rm x}$, T^* : unchanged by pressure

$T_{\rm c}$ in oxygen-ordered YBCO

Why is T_c enhanced by pressure ?

 dT_c / dP peaks at p = 0.12

$T_{\rm c}$ in oxygen-ordered YBCO

 $- dT_c / dH$ peaks at p = 0.12

 dT_c / dP peaks at p = 0.12

Enhancing T_c by P

 $T_{\rm c}$ dome restored at P = 15 GPa

 dT_c / dP peaks at p = 0.12

Cyr-Choinière *et al.*, arXiv:1503.02033 (2015) Cyr-Choinière *et al.*, arXiv:1504.06972 (2015)

SUMMARY

Kivelson et al., Nature 393, 550 (1998)

SDW nematicity

CDW nematicity

CDW nematicity

SDW scenario

CDW nematicity

SDW scenario

NMR

Wu et al., Nat. Commun. 6, 6438 (2015)

CDW nematicity

SDW scenario

Blanco-Canosa *et al.*, PRB **90**, 054513 (2014)

Comin et al., Science 347, 1335 (2015)

SDW nematicity

SDW scenario

Neutrons

SDW nematicity

SDW scenario

Hinkov et al., Science 319, 597 (2008)

SDW nematicity

SDW scenario

Hinkov et al., Science 319, 597 (2008)

SDW scenario

Phases & Questions

- Superconductivity

 Why a dome ?
- 2) <u>Pseudogap</u>
 - What is it ?
 - Crossover or transition ?
- 3) Charge order
 - Why a dome at p = 0.12 ?
- 4) <u>Nematicity</u>
 - Where from ?
 - Crossover or transition ?

SDW nematicity

CDW nematicity

Mott scenario

Phases & Questions

- Superconductivity

 Why a dome ?
- 2) <u>Pseudogap</u>
 - What is it ?
 - Crossover or transition ?
- 3) Charge order
 - Why a dome at p = 0.12 ?
- 4) <u>Nematicity</u>
 - Where from ?

merci