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I. BASIC TRANSPORT EQUATIONS

General references on this section: books by Ashcroft-Mermin,1 Pottier,9 Callen,2 Lebon et al..7

A. Thermodynamic functions

State variables: temperature T , chemical potential µ, possibly others...

Grand-canonical partition function: Z = Tre−β(Ĥ−µN̂)

Grand-canonical potential (also called Gibbs free-energy):

Ω(T, µ) = −kBT lnZ = E − TS − µN (1)

E: internal energy, S: entropy

Change of heat of the system, work done by the system:

δQ = TdS , δW = µdN , dE = δQ+ δW = TdS + µdN (2)

Hence:

dΩ = dE − TdS − SdT − µdN −Ndµ = −SdT −Ndµ (3)

so that:

S = −∂Ω

∂T
|µ , N = −∂Ω

∂µ
|T (4)

The corresponding entropy and particle current densities will be denoted jS and jN . The latter is related to the local
electrical current density by je ≡ qjN = −ejN (q = −e electron charge, e > 0). The heat current (from δQ = TdS)
is given by jQ = TjS .

Generalized thermodynamic forces (Onsager): view entropy as a function of internal energy and other state variables
S = S(U, µ, · · · ).

Note: electrochemical potential. Consider a system with a local electrostatic potential, conjugate to the local charge
density nq(r) and a local chemical potential, conjugate to the local particle density n(r). For carriers of charge q
(= −e the electron charge with e > 0), we have nq(r) = qn(r). The scalar potential V (r) and chemical potential
µ(r) thus cannot be independently observed, and only the following combinations are relevant:

µ(r) = µ(r) + qV (r) , V (r) = V (r) +
1

q
µ(r) (5)

µ is called the electrochemical potential. In any experiment, only the total voltage drop arising from V (r) can be
measured, not separately ∇V and ∇µ. The energy we need to give to the system to add one particle is µ, the
electrostatic energy to add one extra charge q is qV . Hence, it is actually convenient to forget about the scalar
potential V (r), and consider only µ(r). This is what is done in these notes: the ‘chemical potential’ is actually the
electrochemical potential but the bar is dropped everywhere for simplicity and it is simply denoted µ. The measured
electric field can be obtained as:

E ≡ −∇V (r) = −1

q
∇µ =

1

e
∇µ = −∇V − 1

q
∇µ (6)

In the following all overbars are dropped and the electric field is simply called E.
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B. Linear response and thermoelectric coefficients

We define transport coefficients from linear response equations for the pairs of conjugate variables:(
jN
jS

)
= −

(
L11 L12

L21 L22

) (
∆µ
∆T

)
(7)

which satisfy Onsager’s symmetry relations (we assume here that there is no magnetic field):

L12 = L21 (8)

Converting to electric and heat currents, we obtain:(
je
jQ

)
=

(
q2L11 qL12

TqL21 TL22

) (
E
−∇T

)
≡ σ

(
E
−∇T

)
(9)

The different entries in the conductivity matrix σ are defined from the following setups:

• Electrical conductivity. je = σE with ∇T = 0, hence:

σ ≡ q2L11 (10)

• Seebeck coefficient (‘thermoelectric power’). We consider a system in the presence of a thermal gradient and
tune the field so that no particle current flows, i.e. q2L11E = qL12∇T . This condition (‘stopping force’) defines
the Seebeck coefficient (or themoelectric power):

α ≡ E

∇T
|jN=0 =

L12

qL11
(11)

• Peltier coefficient. The Peltier effect is that fact that an electrical current flowing through a conductor is
accompanied by a heat current. The corresponding heat should be distinguished from the heat dissipated by
Joule effect in the conductor. Joule heating is irreversible, while the Peltier current is reversible and reverses
sign when the direction of the current is reversed. The Peltier coefficient (or Peltier heat per unit charge Π) is
defined in the absence of a temperature gradient as the ratio between the heat current and the electrical current:

Π ≡ jQ
je
|∇T=0 = T

L21

qL11
(12)

Because of Onsager’s symmetry: Π = Tα (one of the two Kelvin relations).

• Thermal conductivity. Under the same condition of no particle current, we calculate the ratio of heat current

to thermal gradient: jQ =
[
TL22 − TqL21

L12

qL11

]
(−∇T ) ≡ −κ∇T , hence:

κ = T

[
L22 −

L21L12

L11

]
= T

detL

L11
(13)

• detσ = σκ.

Rewriting of the conductivity matrix(
je
jQ

)
= σ

(
E
−∇T

)
, σ =

(
σ ασ

Tασ κ(1 + z)

)
(14)

where we have defined the dimensionless figure of merit by:

z ≡ Z.T ≡ T α2σ

κ
(15)
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Onsager coefficients in terms of conductivities:

L11 = σ/q2 , L12 = L21 = ασ/q , L22 =
κ

T
(1 + z) (16)

As we shall see later, z plays a key role in setting the thermoelectric efficiency of energy conversion. Alternatively,
a convenient measure of the ratio of reversible vs. irreversible (dissipative) processes6 is the coupling constant g
(−1 ≤ g ≤ +1 since detL > 0):

g ≡ L12√
L11L22

, g2 =
z

1 + z
(17)

Dimensions. The current density jX associated with a quantity X is such that dX/dt = IX =
∫
d2ljX is given by

the flux traversed by jX , hence [jX ] = [X]/[time][length]2. Hence:

• Conductivity σ has dimension Ω−1m−1. A good metal has a resistivity of order 1µΩcm, diamond has 1020µΩcm

• Seebeck has dimension Field.Length/Temperature = Energy/Temperature, hence the unit of kB/e. We note
that:

kB
e

= 86.3µV K−1 (18)

• Thermal conductivity has dimension Energy/[Length2×Time]× [Length/Temperature] = [Power]/[Length×
Temperature]. Unit is hence W.m−1K−1. Diamond, one of the best thermal conductors has κ ∼ 103W.m−1K−1

while silicon aerogels, excellent thermal insulators, have κ of order 10−2 − 10−3. Glass is O(1).

II. ENTROPY (HEAT) CURRENT AND PRODUCTION RATE

Useful references: Goupil et al.,5 Snyder et al.,10 Van den Broeck11

A. Currents

Because of δQ = TdS, the heat and entropy currents are related by:

jQ = T jS (19)

In terms of the gradients:

jS = ασE − κ

T
(1 + z)∇T (20)

Using instead the electrical current density and thermal gradient as variables and the relation je = σE − ασ∇T , we
can eliminate E and obtain:

jS = αje −
κ

T
∇T , jQ = αTje − κ∇T (21)

The second term is just Fourier law and reflects the irreversible heat current due to the thermal gradient (heat
diffusion). In contrast, the first term corresponds to entropy carried along by the moving charge carriers, and is
reversed when reversing the sign of the particle current. One can say that the Seebeck coefficient measures the flow
of entropy per unit charge.

Since efficient energy conversion requires to minimize the irreversible process viz. reversible processes (ie that heat
is as much as possible associated with reversible current flow rather than dissipation), it is clear that we’ll need to
have α as large as possible and κ as small as possible.

Since (first principle) the internal energy is given by: du = Tds+ µdn, the energy current reads:

ju = Tjs + µjn (22)
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B. Irreversible heat and entropy production rate

Reminder: given an observable Φ, associated volumic density φ(r, t) (i.e ΦV =
∫
V
d3rφ in a volume V ), and

associated current density jφ (i.e. the amount flowing out of volume V per unit time is −dΦ/dt =
∫
S
d2rjφ, we can

write:

∂φ

∂t
+ ∇ · jφ =

∂φ

∂t
|prod (23)

in which the r.h.s is the local production rate of this quantity. For a conserved quantity, the rhs vanishes.

We apply this to the entropy using ds = 1
T du−

µ
T dn and the conservation of particle number and internal energy:

∂u

∂t
+ ∇ · ju = 0 ,

∂n

∂t
+ ∇ · jn = 0 (24)

Hence:

∂s

∂t
=

1

T

∂u

∂t
− µ

T

∂n

∂t
(25)

= − 1

T
∇ · ju +

µ

T
∇ · jn (26)

= −∇
[

1

T
ju −

µ

T
jn

]
+ ju ·∇

1

T
+ jn ·∇

(
−µ
T

)
(27)

Finally:

T

[
∂s

∂t
+ ∇ · js

]
= js · (−∇T ) + jn · (−∇µ) (28)

The rhs is T times the net local entropy production rate, ie the net heat production rate. It should correspond to
irreversible processes, as will be verified below.

We also recognize that it is the sum of the power due to the electric field (jn · (−∇µ) = je · E) and the power
corresponding to entropy (heat) flow. Below we shall define an efficiency (relative to Carnot) as:

ηr ≡
−jn ·∇µ

js ·∇T
=

je ·E
js ·∇T

(29)

Obviously, ηr = +1 corresponds to a reversible adiabatic process in which there is no entropy production, i.e. a
Carnot process.

Finally, we can use the linear response equations J = LG with G ≡
(
−∇µ
−∇T

)
to obtain:

∂s

∂t
|prod ≡

∂s

∂s
+ ∇ · js =

1

T
G · LG (30)

Since the entropy production rate must be non-negative from the second principle, we see that L must be a positive
semi-definite matrix. For a 2× 2 matrix, this amounts to:

L11 ≥ 0 , L22 ≥ 0 , detL ≥ 0 (31)

If instead we wish to use the current and thermal gradient as basic variables, we can use −L11∇µ = jn +L12∇T and
obtain after simple algebra:

∂Q

∂t
|irr ≡

[
∂s

∂t
+ ∇ · js

]
= ρj2e +

κ

T
(∇T )2 (32)

with ρ = 1/σ the electrical resitivity. First term is Joule heating, second is heat lost by thermal resistance. Both
correspond to purely irreversible (dissipative) processes, as expected. Note that the thermoelectric power does not
enter here. We also see that to minimize dissipative losses for a given current and thermal gradient, we need a large
electrical conductivity and low thermal conductivity.

Note: The compensation of reversible terms requires L12 = L21, which provides an intuitive justification of Onsager’s
relations.
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FIG. 1: Basic principle of a simple engine. Heat is provided by a hot source and rejected to a cold environment. Work
W = QH −QC is produced. (After Wikipedia). If the entire operation is reversible, we have a Carnot engine.

C. Total rate of entropy (heat) change, Kelvin effect

We can finally estimate the total rate of change of entropy (heat), both irreversible and reversible, using T ṡ =

Q̇irr − T∇ · js. We calculate ∇ · js:

∇ · js = ∇(αje)−∇
[ κ
T
∇T

]
(33)

= je ·∇α− κ

T
∇2T − 1

T
∇T ·∇κ+

κ

T 2
(∇T )2 (34)

where we have used the conservation law ∇ · je = 0. Finally:

Q̇ = T ṡ = ρj2e − Tje ·∇α+ κ∇2T + ∇T ·∇κ (35)

Under the following assumptions (cf. Ashcroft-Mermin):

• α and κ depend mostly on T , weak dependence on µ (?)

• Uniform temperature gradient, so that ∇2T ' 0

we finally obtain:

Q̇ ≈ ρj2e +
∂κ

∂T
(∇T )2 − T ∂α

∂T
je ·∇T (36)

The last term corresponds to a reversible effect: it changes sign upon reversing the current at fixed temperature
gradient. Heat production or consumption is associated to this reversible process. It comes in addition to the
irreversible Joule heating which is always dissipated to the environment. This effect was first discussed by William
Thomson (Lord Kelvin). The coefficient T∂α/∂T is called the Thomson coefficient. It can be measured by reversing
the sign of the current at constant temperature gradient, to cancel the other terms.

III. EFFICIENCY OF ENERGY CONVERSION

A. Reminder: the Carnot engine

The general principle of a heat engine is recalled on Fig. 1. Heat QH is produced by a hot source and converted partly
into work W and partly into heat (loss) QC rejected to the cold environment. The first principle of thermodynamics
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FIG. 2: Carnot cycle: (pressure,volume) and (entropy,temperature) representations. (After Wikipedia).

(conservation of internal energy) implies that:

QH = W +QC (37)

Assuming that the hot source remains at constant temperature, the entropy provided by the hot source to the engine
is QH/TH . Similarly, the entropy released by the engine to the cold reservoir is QC/TC . Hence, the total entropy
change of the engine is:

∆Seng =
QH
TH
− QC
TC

(38)

The efficiency of the engine is the ratio of the work done by the heat provided:

η ≡ W

QH
= 1− QC

QH
(39)

Carnot (Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance, 1824)
was the first to realize that maximum efficiency is attained for a reversible engine in which ∆Seng = 0. From (38)
this implies that the maximum possible efficiency of a heat engine is:

ηC = 1− TC
TH

(40)

Note that it depends only on the temperatures of teh cold and hot sources. Hence, given TC , it is advantageous to have
an engine functioning at the highest possible temperatures. Importantly however, it should be noted that reversibility
implies that the process is infinitely slow (quasi-static) and hence that a Carnot engine delivers zero power !

The schematic functioning of a Carnot engine over a full cycle of operation is depicted in Fig. 2 in (p, V ) and (S, T )
variables.

The fact that the reversible Carnot engine provides the maximum possible efficiency is illustrated/demonstrated on
Fig. 3. By virtue of the second principle of thermodynamics, the temperature of the engine during one cycle can never
exceed TH (otherwise it cannot extract heat from the hot source and never go below TC (otherwise it cannot reject
heat to the cold source). Hence, the problem is to maximize (QH − QC)/QC given these constraints and it is clear
geometrically that the Carnot cycle is the answer.
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FIG. 3: Non-Carnot cycle: maximizing efficiency means maximizing the ratio of the white area to the total one subject to the
constraints from the second principle of thermodynamics that the operating temperature remains between TC and TH .

FIG. 4: An ‘endoreversible’ engine. The engine itself operates in a reversible manner between internal temperatures TiH and
TiC . It is coupled to the heat reservoirs by finite thermal conductances KH,C and hence heat transfer between the engine and
the reservoirs is irreversible.

B. Efficiency at maximum power: Chambadal-Novikov (-Curzon-Ahlborn), endoreversible engines

In order to go beyond Carnot’s ideal efficiency analysis (corresponding to zero power output...), Paul Chambadal3

and I. I. Novikov,8 concerned with the efficiency of nuclear power plants, established in 1957 the efficiency at maximum
power output of an ‘endoreversible’ engine (Fig. 4). This can be considered as the starting point of the field of so-called
finite-time thermodynamics. The Chambadal-Novikov result has been rediscovered by Curzon and Ahlborn4 in 1975.
The presentation below follows Callen2 and Lebon et al..7

Denoting by KC,H the thermal conductance coupling the engine to the heat reservoirs, the heat flow rates per unit
time are given by:

Q̇H = KH (TH − TiH) , Q̇C = KH (TiC − TC) (41)
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Hence, assuming constant operating temperatures, the time corresponding to heat injection QH and heat rejection
QC are:

tH =
QH

KH(TH − TiH)
, tH =

QC
KC(TiC − TC)

(42)

Hence, a total time of operation:

t =
QH

KH(TH − TiH)
+

QC
KC(TiC − TC)

, P =
W

t
(43)

We now use:

• The first-principle, stating that: W = QH −QC

• The endoreversibility of the engine itself, stating that the engine functions in a reversible manner and hence has
Carnot efficiency: QH/TiH = QC/TiC and η = W/QH = 1− TiC/TiH

Introducing the variables xh ≡ TiH/TH (≤ 1) and xc ≡ TiC/TC (≥ 1), we can replace W , QH and QC to obtain the
power and efficiency in the form:

P =
xhTH − xcTC
xh

KH(1−xh)
+ xc

KC(xc−1)
, η = 1− TC

TH

xc
xh

(44)

One can now extremalize the power with respect to xc, xh and obtain the following result for the efficiency at maximum
power (Chambadal-Novikov efficiency):

η(Pmax) = 1−
√
TC
TH

(45)

Remarkably, this expression only depends on the ratio TC/TH , and not on the thermal conductances. It is apparently
a (much) more realistic estimate of the efficiency of actual engines (cf. Curzon-Ahlborn’s article). Note that the
CN-efficiency is half the Carnot efficiency in teh limit of an infinitesimal temperature gradient TH − TC � TC , TH .

The maximum power output is found to be:

Pmax =
KHKC

(
√
KH +

√
KC)2

[√
TH −

√
TC

]2
(46)

and:

TiH =
√
T ∗TH , TiC =

√
T ∗TC ,

√
T ∗ ≡

√
KHTH +

√
KCTC√

KH +
√
KC

(47)

C. Efficiency of thermoelectric energy conversion: general analysis, local form

Here, we shall investigate the efficiency defined above:

ηr ≡
−jn ·∇µ

js ·∇T
=

je ·E
js ·∇T

(48)

Let us recall that this is a relative efficiency with respect to a reversible Carnot process (which would then correspond
to ηr = 1), and that it is a local definition, for infinitesimal gradients.

The idea is to study ηr as a function of the ratio between conjugate forces ∇µ/∇T . We shall actually consider the
dimensionless parameter:

x ≡ E

α∇T
(49)
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FIG. 5: Relative efficiency vs. dimensionless force ratio, for different values of the dimensionless figure of merit (coupling)

This can be viewed as the force ratio normalized to the ‘stopping’ value at which current flow vanishes (i.e. the
Seebeck value): x = E/Estop.

Using: (
je
js

)
=

(
σ ασ
ασ κ

T (1 + z)

)(
E
−∇T

)
(50)

we obtain:

α
je
js

=
x− 1

x− (1 + z)/z
(51)

and hence (using the dimensionless coupling g introduced above):

ηr =
x(x− 1)

x− (1 + z)/z
=
x(x− 1)

x− 1/g2
, g2 ≡ z

1 + z
(52)

This is plotted in Fig. 5

Differentiating, we can obtain the value of the force ratio x = xmax ≥ 1/2 which maximizes the efficiency, and
corresponding value of ηr:

ηmaxr =

√
z + 1− 1√
z + 1 + 1

=
1−

√
1− g2

1 +
√

1 + g2
, xmax =

1

z

[
z + 1−

√
z + 1

]
=

1−
√

1− g2
g2

(53)

We can also calculate the electrical power (sign convention: such that p > 0 - clarify):

p = −je ·E = −σE2 + ασE ·∇T = z
κ

T
(∇T )2 x(1− x) (54)

Hence, we see that the maximum power is always reached for x = 1/2, half of the stopping (Seebeck) field. The
maximum power is:

pmax =
z

4

κ

T
(∇T )2 =

α2σ

4
(∇T )2 (55)
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FIG. 6: Maximum efficiency and efficiency at maximum power as a function of (Left) the dimensionless figure of merit in the
range z ≤ 10 and (Right) the coupling g2 = z/(z + 1) in the full range.

We see that it is directly set by the combination α2σ, named for this reason ‘power factor’ in the field of thermoelectrics.
The corresponding efficiency at maximum power is:

ηr(pmax) =
z

2(2 + z)
=

g2

2(2− g2)
(56)

We observe that it tends to exactly half of the Carnot efficiency in the endoreversible limit z → ∞ (g2 → 1). This
precisely corresponds to the Chambadal-Novikov-Curzon-Ahlborn result, in the limit of infinitesimal gradients, since
1−

√
Tc/Th ∼ ηC/2 with ηC = 1− Tc/Th ∼ ∆T/Tc in this limit.

Finally, we can also eliminate the force ratio, and establish an efficiency vs. power plot. We define the power
normalized to its maximum value:

p ≡ p

pmax
= 4x(1− x) (57)

and invert:

x =
1

2

[
1±

√
1− p

]
(58)

with the upper (+) sign for x ≥ 1/2 and the lower (−) one for x ≤ 1/2. Inserting this into the expression of ηr, we
obtain two branches:

ηr =
p

2 + 4/z ± 2
√

1− p
, (+ : x ≤ 1/2 , − : x ≥ 1/2) (59)

D. Generality

The analysis of the previous section is completely general11 and applies to any energy-transformation process, with
x = (X1/X2)/(X1/X2)stop the normalized ratio of forces and g2 = L2

12/L11L22. Applications to biophysics (e.g.
ADP/ATP conversion) or climate science can be found in the literature (see e.g. [7,11] for references).

1 N. W. Ashcroft and N. D. Mermin, Solid-state physics, Saunders, 1976.
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FIG. 7: Relative efficiency vs. power normalized to its maximum value, for (bottom to top): z = 1, 4, 10, 100, 1000. The upper
(resp. lower) branches correspond to a force ratio x ≥ 1/2 (resp. x ≤ 1/2). Maximum efficiency is realized on the upper
branch.
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