PHASE TRANSITIONS IN THE LOWERMOST MANTLE

S.-H. DAN SHIM¹, B. GROCHOLSKI², K. CATALLI³, AND V. PRAKAPENKA⁴

¹ARIZONA STATE UNIVERSITY, ²SMITHSONIAN INSTITUTION, ³LIVERMORE NATIONAL LAB ⁴UNIVERSITY OF CHICAGO

THANKS TO: NSF, DOE, NNSA

POST-PEROVSKITE TRANSITION

Murakami et al. (2004) Science, Oganov and Ono (2004) Nature, Shim et al. (2004) GRL

The perovskite → post-perovskite transition was found at the pressuretemperature conditions similar to those of the D" discontinuity. DISCONTINUITY AND PHASE BOUNDARY DISCONTINUITY AND PHASE BOUNDARY

* Depth vs. Pressure

* Thickness vs. Width of mixed phase region

COMPOSITIONAL EFFECTS

Catalli et al. (2009) Nature

Both Al and Fe²⁺ increase the thickness of the transition much greater than that of the D" discontinuity

COMPOSITIONAL EFFECTS

Catalli et al. (2009); Mao et al. (2004); Andrault et al. (2010); Tateno et al. (2005); Nishio-Hamane et al. (2007); Caracas et al. (2008); Ono and Oganov (2005); Mao et al. (2005); Caracas et al. (2005); Zhang and Oganov (2006); Tsuchiya et al. (2008); Akber-Knutson et al. (2005)

Both Al and Fe²⁺ increase the thickness of the transition much greater than that of the D" discontinuity

ELEMENT PARTITIONING

Irifune et al. (1998) Nature

Thickness of a phase transition can be decreased significantly by element partitioning with phases which do not participate the phase transition.

MANTLE ROCKS

EXPERIMENTS

- Crystalline (San Carlos olivine), Glass
 (Pyrolite and MORB) starting materials
- * Ar/Ne medium, Gold pressure scale
- * Two different types of measurements
 - Heating of fresh starting materials
 - Reversal measurements

Pressure

COMPOSITION COMPARISON

	Fe in Pv	Al_2O_3 in Pv	Ferropericlase
Pyrolite	~10 mol%	5 mol%	~30 mol%
San Carlos olivine	~10 mol%	0 mol%	50 mol%

SAN CARLOS OLIVINE

Grocholski et al. (2012) PNAS

Sharp post-perovskite transition in San Carlos olivine

PYROLITE

Grocholski et al. (2012) PNAS

Broad post-perovskite transition in a pyrolitic mantle

COMPARISON

Grocholski et al. (2012) PNAS

COMPOSITION OF MORB

MORB has a very large amount of Al and Si

COMPOSITION OF MORB

MORB has a very large amount of Al and Si

MORB

Grocholski et al. (2012) PNAS

Sharp, shallow post-perovskite transition in MORB

COMPARISON

Grocholski et al. (2012) PNAS

MORB has a shallow post-perovskite boundary

MINERALOGY OF MANTLE ROCKS

MORB contains large amounts of Al-bearing minerals

MINERALOGY OF MANTLE ROCKS

MORB contains large amounts of Al-bearing minerals

MINERALOGY OF MANTLE ROCKS

MORB contains large amounts of Al-bearing minerals

ELEMENT PARTITIONING

SUMMARY OF RESULTS

Grocholski et al. (2012) PNAS

MORB or high Mg/Si materials more likely have detectable postperovskite transition in the lower mantle

PHASE BOUNDARY IN SILICA

Grocholski et al. (2012) under revision

Modified Stishovite (CaCl₂ type) → Seifertite in MORB, sediments, and core-mantle reaction products

SHEAR WAVE VELOCITY

Karki et al. (1997) GRL

Shear wave velocity decreases at the silica phase transition in D"

DOUBLE DISCONTINUITY STRUCTURES

* Element partitioning among different minerals.

* Element partitioning among different minerals.

* Exploration of other compositions, chondritic, solidified mantle melts, etc.

* Element partitioning among different minerals.

* Exploration of other compositions, chondritic, solidified mantle melts, etc.

* Mineralogy of the lower mantle.