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(e.g., Houston 2007TOG; Knopoff and Randall 1970; Kuge 
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Frohlich 1994,1995; Julian et al., 1998; Richardson and 
Jordan, 2002BSSA; Vavrycuk 2004,2006; Okal et al., 2018; 
Romanowicz,2018; Li et al., 2018)



University of HOUSTON | EAS

Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =
Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =
Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =
Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =
Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

Problem



University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

?What Produces

(Non Double Couple)

Problem



fCLVD

Histogram of fCLVD

University of HOUSTON | EAS

Shear Slip  +  Isotropic Medium  =

(Double Couple)

?What Produces

(Non Double Couple)

(Knopoff and Randall 1970; Kuge and Kawakatsu 1993; Kuge and Lay 1994; 
Frohlich 1994 Science; Julian et al., 1998; Vavrycuk 2004,2006; Li et al., 
2018)

Problem



Proposed explanations
• sources are different such as implosion (e.g., Okal et al. 2018)?  
• multi-faulting - rupture on nonplanar fault (e.g., Kuge et al. 

1990,1992,1993,1994a,b) 
• 3D path effect 
• slab structure effect, high-velocity core, slow MOW 
• station coverage effect 
• anisotropy outside of the slab 
• anisotropy around the EQs in the slab (e.g., Vavrycuk 2004,2006; 

Li et al., 2018natgeo)
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non-double-couple component

mij =

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fclvd =−
λ2

max |λ1 |,|λ3 |{ }

−0.5≤ fclvd ≤0.5

Moment tensor
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Methods

mij = u S Cijkl nk ν l

(Vavrycuk 2004,2006; Aki and Richards, 1980)

1. First invert for the TTI symmetry axis orientation

moment tensor displacement
x

fault area

elastic tensor normal vector
x

slip vector

2. Anisotropy strength at this TTI symmetry axis
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Inversion For Real Data from CMT Catalog

http://www.globalcmt.org/

(Dziewonski, Chou & Woodhouse 1981; Ekström,Nettles, and Dziewonski, 2012)
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Data/Moment tensor Selection
• We finally choose 1,057 earthquakes worldwide

• Focal depth Range >100km

• Mw~5-6.6

• From 1976 to 2013

• In the vicinity of subducting slabs (Gudmundsson et al. 1998)

• Frohlich’s criteria of selecting ‘better-determined’ mechanisms (Frohlich 

and Davis, 1999)
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Tonga γ 1( ) = 24 ± 5%

γ 2( ) = 26 ± 2%

γ 3( ) = 27 ± 3%

γ 4( ) = 30 ± 3%

γ 5( ) = 35 ± 4%

γ 6( ) = 30 ± 4%

γ 7( ) = 46 ± 4%

γ 8( ) = 23± 2%

Thomsen Parameter: 
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Tonga

γ

γ

γ

γ

γ

γ

γ

γ

Tonga1: γ = 0.24 ± 0.05

Tonga5: γ = 0.35 ± 0.04

Tonga2: γ = 0.26 ± 0.02 Tonga3: γ = 0.27 ± 0.03 Tonga4: γ = 0.30 ± 0.03

Tonga6: γ = 0.30 ± 0.04 Tonga7: γ = 0.46 ± 0.04 Tonga8: γ = 0.23± 0.02
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Vanuatu
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Vanuatu
Thomsen Parameter: 

γ 1( ) = 25 ± 5%

γ 2( ) = 14 ± 3%
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Molucca
Thomsen Parameter: 

γ 1( ) = 29 ± 4%

γ 2( ) = 30 ± 4%
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Indonesia
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Indonesia
Thomsen Parameter: 

γ 1( ) = 31± 5%
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Mariana-Japan-Kuril

1

2
3

4

5

7

6

γ 1( ) = 33± 5%

γ 2( ) = 22 ± 7%

γ 3( ) = 34 ± 7%

γ 4( ) = 6 ± 5%

γ 5( ) = 27 ± 5%

γ 6( ) = 15 ± 2%

γ 7( ) = 25 ± 5%

Thomsen Parameter: 
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1

2

Aleutian
Thomsen Parameter: 

γ 1( ) = 35 ± 6%

γ 2( ) = 36 ± 5%
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Tonga4

which pair is different?
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Non-double-couple Component Fitting

• We can reproduce the non-DC 
component using shear 
dislocation source in tilted 
laminated anisotropy. 

• For 1057 deep earthquakes.

• We can fit both large non-DC and 
small non-DC simultaneously.
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Inversion summary
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Gamma (S anisotropy)-Depth

γ
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Angle-Depth

TG: Tonga 
MJK: Mariana-Japan-Kuril 
AL: Aleutian 
MO: Molucca 
VA: Vanuatu   
IND: Indonesia

intermediate-depth 
deep-focus
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Schematic Diagram



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

Schematic Diagram



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

Schematic Diagram

TTI symmetry axis



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

Schematic Diagram

TTI symmetry axis (Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

Schematic Diagram

TTI symmetry axis (Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7

Schematic Diagram

TTI symmetry axis (Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7
(C)

fab
ric

MJK6

MJK7

TG8

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7
(C)

fab
ric

MJK6

MJK7

TG8

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7
(C)

fab
ric

MJK6

MJK7

TG8

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)

(Holyoke et al., 2014;
Yang et al., 2014;)

Magnesite



University of HOUSTON | EAS

100 km

200 km

400 km

500 km

600 km

300 km

“410km”

Overriding plate

olivine

Wadsleyite

(A)

fab
ric

fluids

do
wng

oin
g s

lab

(B)

MO2

TG6

TG7
(C)

fab
ric

MJK6

MJK7

TG8

Schematic Diagram

TTI symmetry axis

TTI symmetry axis

TTI symmetry axis

(Hacker et al., 2003
Mainprice et al., 2009;
Brownlee et al., 2013;
Yang et al., 2014;)

(Holyoke et al., 2014;
Yang et al., 2014;)

Magnesite



(Green, Chen, Brundzinski 2010 Nature)

deep-focus earthquakes: phase change?



the “410-km” discontinuity can be imaged clearly, no meta-stable 
olivine ?!

(Zheng et al., 2007 Science)

!31
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Discussion: 
possible role of carbonates in generating deep-focus EQs?

• meta stable ol phase change anisotropy is far too weak
• mechanically weak, orders of magnitude weaker compared to 

olivine in mantle conditions, e.g., Holyoke et al., 2014 JGR
• show ductile-to-brittle transition behavior (similar to serpentines), 

e.g., Holyoke et al., 2014 JGR
• single-grain anisotropy is high, > 40% (Yang et al., 2014 EPSL)



Origin of anisotropy



inclusion model Hard matrix + weak inclusions

matrix Vp=8km/s, Vs=4km/s; density 3400kg/m3

inclusion Vp=8km/s, Vs=??; density 3400kg/m3

(Garboczi,1998, NIST)

Finite element stress-strain modeling



How much inclusion do we need to produce such a high anisotropy?

γ ~87ηc

ηc =
3
4π

φ
e

Thomsen, L. (1995), Elastic anisotropy due to aligned cracks in porous rock, Geophysical Prospecting, 43(6), 805-829.
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How much inclusion do we need to produce such a high anisotropy?

γ ~87ηc

ηc =
3
4π

φ
e

volume fraction

aspect ratio

φ =0.02,e=0.01 γ =0.5

Thomsen, L. (1995), Elastic anisotropy due to aligned cracks in porous rock, Geophysical Prospecting, 43(6), 805-829.

very weak inclusions (melt/fluid)



inclusion Vs = 10% matrix Vsweak inclusion



inclusion Vs = 10% matrix Vsweak inclusion



Strong inclusion: CANNOT get large anisotropy!
meta-stable ol inclusion?



Prediction



FĲI Event 2018-08-19 00:19:37 UTC M8.2!40



2018 
M8.2

!41



Historical earthquake 
(similar location; focal mechanism, & non-DC)

1994 
M7.6

!42



• Using the anisotropy information (Thomsen gamma=0.2 for shear 
anisotropy), we can fit the “beach ball” well and the P,B, T axes. 


• Shear rupture in the anisotropy can produce 11% non-DC 
component shown in the W-phase moment tensor inversion.

!43
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Conclusions

1. Most Deep earthquake faulting mechanisms are mostly shear dislocation.

2. Slab has very strong (S anisotropy ~25%) laminated anisotropy around deep 
earthquakes.

3. Intermediate depth: laminated fabric parallel to the slab interface (favors 
dehydration).

4. Deep-focus regions: laminated fabric: 3 parallel and 3 perpendicular

5. “weak inclusions” (maybe magnesites) to create large anisotropy

6. olivine metastable phase change cannot produce the large anisotropy inferred here

7. Magnesite may also produce ductile-to-brittle failure to produce earthquakes
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histogram of fclvd as a function of Mw

smaller Mw EQs —> smalelr faults: more non-DC? 
larger Mw EQs, larger faults: more DC? 
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Optimized TTI Symmetry Axis and P Axes



Li et al. (2018 natgeo)

Cross-Section

GAP_P4 Model 
Fukao and Obayashi (2013)


