

Dynamics and Structure of the Mantle

Paul J. Tackley (ETH Zürich)

Mantelkonvektion mit Plattentektonik und Kontinentaldrift auf der Erde Mantle Convection with Plate Tectonics and Continental Drift on Earth

Movie by:

Tobias Rolf, Antoine Rozel, Paul Tackley

https://gfd.ethz.ch

Overview

- Concepts & cartoon models
- Tectonics: recent and early Earth
- Recyled crust & Earth evolution
- Importance of compositional viscosity contrast on deep mantle structure & dynamics

Compositional variations exist at all scales! ...and are a result of (partial) melting

Geochemical mantle: Old cartoons (2000)

from Tackley, Science, 2000: Figure 2

Long-term persistence of melting: Basal Magma Ocean Labrosse et al., 2007

Early Earth

Present day

Deep melting: cartoon models

Transition Zone Water Filter Bercovici & Karato 2003

Late Archaean to present

Basal Magma Ocean Labrosse et al., 2007

Early Archaean

Davies 2009

Upside-down differentiation Lee et al 2010

More than one process operating! a. Early Earth

More than one process operating! b. Present day

Production of oceanic crust by partial melting

3000 3500

3000 3500

Temperature (K)

W/o MCP

Temperature (K)

2000

With MCP

500 1000

500 1000 2000

Numerical and physical model

Melting-induced crustal production (MCP)

Magmatism->crust helps plate tectonics

Purely thermal -> Stagnant

With magma & crust Episodic plate tectonics

Diogo Lourenco A. **C** Rozel & Tackley, EPSL 2016

Melting + crustal production makes stagnant lid less likely

Lourenco et al., EPSL 2016

08/04/2014

Extrusive heat pipe magmatism

Eruption and cooling

(picture from Moore&Webb 2013)

But probably most magmatism is intrusive

(picture from Cawood et al 2013)

-> COLD, STRONG crust/lithosphere

-> WARM, WEAK crust/lithosphere

Typical episodic evolution - extrusive

In comparison – 90% intrusive

Diogo Lourenco et al., 2020 G-Cubed

"Plutonic Squishy Lid" mode

Lourenco et al., 2020

Subduction doesn't work on a hotter Earth

PSL in early Earth

- weak deformable plates with low topography
- mantle-flows-driven orogeny (Sizova et al., in progress)
- magma-assisted crustal convection

No plate tectonics but not a rigid lid either! -> Plutonic Squishy-Lid tectonics

Impacts (late heavy bombardment, late veneer)

- Sawtooth
 bombardment
 (Morbidelli et al. 2012)
- Supplies late veneer as in Marchi et al. (2014 Nature)
- O'Neill et al. (2017 NGeo) presented 2D models, here we explore 3D models
- BSc project of Xavier Borgeat

leukum & Ivanov (1994) Neukum & Ivanov (1994 Lunar Sawtooth Bombardment Lunar Sawtooth Bombardment N20/dt (km⁻² Gyr⁻¹ 10-3 10^{-4} N₂₀ (km⁻²) 10-4 10-5 10 3.5 4.5 3.5 4.5 Age (Gyr) Age (Gyr) >3.5 Gyr ago

A. Morbidelli et al. / Earth and Planetary Science Letters 355-356 (2012) 144-151

Greatly influence tectonics & crust!

Time: 100.418190

Basalt

Surface mobility

Impacts can break a stagnant lid, giving temporary mobility, BUT when the impacts stop, stagnant lid returns.

- If anyway a mobile-lid case, does not influence average mobility.
- Figure 4.6: Comparison of the surface mobility for the cases with and without impacts (blue cases 3-38, orange 39-49)

Early Earth: Summary

- Archean tectonics likely characterized by hot, weak, deformable lithosphere undergoing delamination and horizontal motion.
- Intrusive magmatism dominant during Archean (as opposed to "heat pipe" extrusive magmatism)
- Subduction does not appear to be necessary for production of early TTG crust
- Impacts can play a major role in promoting mobility and melting in first ~600-700 Myrs

Coupled mantle-core evolution

- The mantle controls the heat flow from the core
- Run mantle convection simulations for 4.5 Gyr of Earth history, coupling CMB heat flux to core evolution
- Which mantle evolution scenarios give a reasonable core evolution?
 - Geodynamo for at least 3.5 Gyr
 - Correct final inner core size / Tcmb
- Constrains mantle evolution & indicates what is possible

Calculations of mantle thermochemical evolution over 4.5 Gyr

- Include melting->crustal production,
 - viscosity dependent on T, d, and stress,
 - self-consistent plate tectonics,
 - decaying radiogenic elements and cooling core,
 - compressible anelastic approximation
- Many papers by Takashi Nakagawa & me

Nakagawa & Tackley 2014 G3

Only segregating MORB

Too-large inner core! (very high early CMB heat flow)

Successful core evolution Deep dense layer reduces core cooling

Primordial dense material: Effect of viscosity contrast and plate tectonics

• Langemeyer, Lowman & Tackley (2020 GJI)

 Li, Deschamps, Yang, Chen, Zhao & Tackley (2019 GRL)

Why should there be an intrinsic (chemical) viscosity contrast?

- Different composition -> different mineralogy (brigmanite vs. magnesiowüstite)
- Different water content
- Different iron content
- Different grain size (grains grow with time, recrystallise in phase transitions)

Buoyancy ratio (chemical:thermal) has a first-order influence on pile topography

 Well-known from previous studies; this is just a reminder

Viscosity contrast doesn't hugely affect the dynamics Temperature contrast increases, so does pile topography

But near the threshold, it makes a key difference High-viscosity piles are more unstable because they become hotter

It takes a while for the layer to become unstable

B=0.32

B=0.225

Piles don't stay fixed over billions of years

 Downwelling slabs move them around, split them, merge them, change their topography

3D piles are also time-dependent

Langemeyer, Lowman & Tackley, GJI submitted

Pile morphology depends more on buoyancy ratio than viscosity contrast

Viscosity contrast greatly affects CMB heat flux

6.10

Summary

- Basal Melange (BAM): any "piles" are likely a mixture of materials, much of which subducted
- Early Earth tectonics: Plutonic Squishy-Lid, also impacted by impacts
- CMB piles have a strong influence on CMB heat flux; may even be needed for a successful geodynamo evolution
- Intrinsic viscosity contrast of piles influences heat flux and stability

Image by Fabio Crameri