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Mantle FlowFactors:	


• Isostatic balance of crust	



• Orogenesis 	



• short λ uncompensated	



• Epeirogeny	



• Long λ	


• Tectonic uplift; post-glacial rebound; dynamic topography [Mitrovica et al., 1989; Gurnis, 1993]

h=− qr/δρg

Contributions to Topography	
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Earth’s Geoid: Dynamic Topography	
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Dynamic Topography: Physical Deflection	
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Observations of Lithospheric Stress	


Contributions: Mantle Stresses and Lithospheric Structure
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References of used data and software
This map made use of a number of datasets: Plate boundaries 
are from the global plate model PB2002 (Bird, 2003), topography 
and bathymetry from Smith and Sandwell (1997). Stress maps 
are produced with CASMI (Heidbach and Höhne, 2008) which is 
based on GMT from Wessel and Smith (1998).
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gInhomogeneity	


Topography	


Edge Tractions	


Basal Tractions

Sources of Stress	
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Governing Equations	
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FAULTS!  
Large range of Time- & Length-Scales

Mass -

Momentum-

Energy -

Non-linear	


What is right Constitutive Relation?

[Tackley, 1999]
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Rheology	



!8

Function of (X, P, T, σ)



Computing Mantle Flow	


!

CitComS Finite Element code	


Internal density heterogeneity from S20RTSb
!
!
!

 
  
Laterally-Varying Viscosity: (T-dependence ~ age) 

 
  
!
!
!
Lithospheric thickness from seismology.  

!
!
Use tractions at base of lithosphere

[Conrad and Lithgow-Bertelloni, 2006; Naliboff et al., 2009; van Summeren et al., 2012]
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Slab Pull from Upper Mantle Slabs	


Slab Suction from Lower Mantle Slabs	



Shallow Roots and Global Asthenosphere

[van Summeren et al., 2012]

Plate Driving Forces	
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Modeling the Lithosphere	
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CompressionExtension Strike-Slip

SH(max) & SH(min)

[Naliboff et al., 2009]−20
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Horizontal Tractions	



REGIME

Normal

Thrust
Strike-slip
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€ 

∂
∂θ

(Nθθ sinθ) +
∂Nθφ

∂φ
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∂
∂θ

(Nθφ sinθ) +
∂Nφφ

∂φ
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Nθθ + Nφφ + qrR = 0

Stresses due to Basal Tractions	
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REGIME

Normal

Thrust
Strike-slip

[modified from Naliboff & Lithgow-Bertelloni, submitted]
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Radial Tractions	
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Dynamic Uplift &	


Extension
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Dynamic Topography from S40RTS	
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Topo (m) [Lithgow-Bertelloni and de Koker, in revision]

[Forte et al., 2010; Moucha and Forte, 2011]



Model of lithospheric structure: TDL 

Procedure	


• Divide globe into regions (4 continental + oceans(age)	



• Crustal structure (CRUST 2.0) + lithospheric mantle (depleted + undepleted)	



• Oceans half-space cooling based on isochrons	



• Lithospheric mantle densities at P and T[Stixrude and Lithgow-Bertelloni, 2005; 2011]	



• Thicknesses determined by matching spherically averaged P at 350 km to PREM

[Naliboff et al., 2012; 	


Lithgow-Bertelloni and de Koker, in revision]
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Best Guess at “Observed” i.e. Residual	


FLAMENT ET AL.

 www.gsapubs.org |  | LITHOSPHERE
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Figure 1. Graphical comparison between four residual topography fi elds calculated independently. All four models account for the fl attening of old 
ocean fl oor (“plate model”) with water-loaded oceans. Continents are air-loaded, and the mean residual topography is set to zero for comparison with 
dynamic topography models. In the continents, A was calculated by removing the mean continental elevation (529 m), B was obtained by removing 
the isostatic contribution of the crust only, updated from Steinberger (2007) using the age grids of Müller et al. (2008a), and C and D were obtained 
by removing the isostatic contribution of both the continental crust and the continental lithosphere. The thin and thick black lines are the coastlines 
and plate boundaries, respectively. In A, the white contours are the continent-ocean boundary from Müller et al. (2008a), the magenta contours are 
the edge of the continents (−200 m; Harrison et al., 1983), the green contours outline Phanerozoic large igneous provinces, and the yellow contours 
indicate continental crust thicker than 50 km. The red star is the location of well COST-B2 offshore New Jersey. Mollweide projection. Data in B, C, and 
D are courtesy B. Steinberger.

TABLE 1. AMPLITUDE OF RESIDUAL AND DYNAMIC TOPOGRAPHY FIELDS

Model Minimum
(m)

Maximum
(m)

RMS*
(m)

Residual topography (Fig. 1)

A. This study –1638 3158 556
B. Steinberger (2007) –1557 2105 474
C. Panasyuk and Hager (2000) –1704 1119 439
D. Kaban et al. (2003) –2053 2144 613

Dynamic topography (Fig. 4)

A. This study –2235 1653 760
B. Steinberger (2007) –2778 3039 909
C. Ricard et al. (1993) –1605 611 430
D. Conrad and Husson (2009) –1550 1450 480
E. Spasojevic and Gurnis (2012) –3652 883 884

*Root mean square amplitude.

[Lithgow-Bertelloni and de Koker, in revision]

[Flament et al., 2013]



Wednesday, 19/11/13 Structure and Dynamics of the Lithosphere/Asthenosphere System

Topography and Lithospheric Structure	
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Effects of Lithospheric Structure	

6 J.B. Naliboff et al.

Figure 3. Variations in global mean lithostatic stress (!) and the tectonic principal stresses balancing these variations for a 100 km base depth. Regions with
large negative values of ! often correspond with topographically high regions and are characterized by extensional principal stresses (white bars, compression
∼ black bars). Mean lithostatic stress and tectonic stress patterns are shown for models with isostatically adjusted (a) and TDL (b) mantle density structures.
The globally averaged mean lithostatic stress values are (a) 1500 MPa and (b) 1496 MPa. To compare mean lithostatic stress values in (a) and (b) directly, a
reference mean lithostatic stress value was removed from each field prior to plotting rather than subtracting the globally averaged values. The reference value
was taken from a lithospheric column in the isostatically adjusted model corresponding geographically to the isostatic reference column in the TDL model.

tectonic stress patterns. For the case of the isostatically adjusted
mantle structure with a 175 km base depth (Fig. 4a), global tectonic
stress patterns are similar to those for the 100 km base depth model.
The similarity of the patterns reflects that the mean lithostatic stress
variations remain strictly related to surface and Moho topography,
while the deeper base depth reduces the lateral variations in mantle
density required to enforce isostasy (Fig. 2). Increasing the base
depth reduces lateral variations in ! thereby reducing stress magni-
tudes, in both continents and oceans by roughly the same amount.
Increasing the base depth to 250 km (Fig. 5a) largely reproduces
these trends.

In TDL, increasing the base depth incorporates in the lithospheric
column additional mantle density variations that have no assigned
role in enforcing isostatic balance. As a result, the additional man-
tle in each column may drive the models towards or away from
regional isostatic compensation, and increase or decrease regional
mean lithostatic stress gradients. The mantle incorporated by in-
creasing the base depth from 100 to 175 km leads to larger gradi-
ents in the mean lithostatic stress distribution (Fig. 4b), particularly
across tectonic provinces where different mantle geotherms influ-
ence the density structure. Increasing L from 100 to 175 km mag-
nifies the tectonic stress magnitudes regionally while the orienta-
tions remain similar (i.e. Antartica, Mediterranean, Ural Mountains,
Western Australia) while in other regions the stress orientation is

strongly modified as well (i.e. Western North America and Andes).
Increasing the base depth to 250 km (Fig. 5b) generates the largest
! gradients and resulting tectonic stress magnitudes despite the
lowest averaged mantle density variations (Fig. 2f), where the tec-
tonic stress field in many regions strongly deviates from the 100 km
reference model and long-wavelength patterns in the world stress
map. In many regions, the tectonic stress magnitudes are more than
a factor of 2 larger than those in the isostatically compensated model
with a 250 km base depth (Fig. 5).

3.3 Effects of strength variations within the lithosphere

Decreasing the base depth from 100 to 50 km for the TDL mantle
density structure (Fig. 6) illustrates the development of large-scale
stress patterns related to regions of high topography. As the base
depth decreases the relative contribution of topography to the mean
lithostatic stress increases, as shown in Tibet, the Western US and
the Andes. The larger influence of the topographically highest re-
gions for L = 50 km reveals a long-wavelength stress pattern where
compressional stresses run parallel to a large percentage of the Pa-
cific Plate boundary (Fig. 6b) and increase in magnitudes by up to
a factor of 2.

To examine possible lateral variations in strength, we limit the
sources of stress to the regional scale (Fig. 7). Stress fields are

C⃝ 2011 The Authors, GJI, 188, 1–17
Geophysical Journal International C⃝ 2011 RAS

[Naliboff  et al., 2012]



Wednesday, 19/11/13 Structure and Dynamics of the Lithosphere/Asthenosphere System

Effects of Lithospheric Structure

[modified from Naliboff  et al., 2012]

TDLIsostasy enforced

−20

−20

−15

−15

−10

−10

−5

−5

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

40

40

45

45

50

50

55

55

60

60

−40 −40

−35 −35

−30 −30

−25 −25

−20 −20

−15 −15

−10 −10

−5 −5

0 0

5 5

10 10

15 15

20 20

25 25

30 30

35 35

40 40

25 MPa 

−20

−20

−15

−15

−10

−10

−5

−5

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

40

40

45

45

50

50

55

55

60

60

−40 −40

−35 −35

−30 −30

−25 −25

−20 −20

−15 −15

−10 −10

−5 −5

0 0

5 5

10 10

15 15

20 20

25 25

30 30

35 35

40 40

25 MPa 



Wednesday, 19/11/13 Structure and Dynamics of the Lithosphere/Asthenosphere System

[Nabliboff et al. 2009; Naliboff & Lithgow-Bertelloni, submitted]
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Horizontal and Radial Tractions	
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[Naliboff et al., 2009]

Effect of Lateral Viscosity Variations	
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[Naliboff and Lithgow-Bertelloni, submitted]

Effect of Weak Asthenosphere	
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Mantle-Lithospheric coupling INEVITABLE but VARIABLE	


-horizontal mantle tractions are large..., match plate motions, but largely not stresses	


-radial tractions (i.e DYNAMIC TOPOGRAPHY) determine regime and transmit efficiently	


!

-Lithospheric structure assumptions CRUCIAL both in density and rheological structure! 	


-Choice of mantle density heterogeneity also matters

What do we need to do?	


-Complete crustal, lithospheric structure needed	


-Better representations of lithospheric and mantle rheology (crustal...)	


-temporal evolution of stress field

Conclusions	




